船兴波及其对结构物作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于势流理论,利用边界元方法,对船舶兴波及其作用的问题进行了数值研究。本文的工作主要分为以下几个方面:时域格林函数的计算方法、常航速行驶船舶兴波问题的计算、船兴波对水中固定结构物作用的计算、船舶兴波对漂浮结构物作用的计算、系泊结构物在船兴波作用下的受力及运动响应。
     本文的结构安排如下:
     首先,对无限水深时域格林函数、有限水深时域格林函数的计算方法进行了推导,并介绍了时域格林函数的快速算法,用于接下来的时域计算。
     其次,在势流理论的基础上,应用满足线性自由水面条件的定常移动源格林函数的边界元方法(Kelvin源)对船舶兴波问题进行了计算。该方法可以用于任意物体定常运动的线性兴波问题,包括潜体的兴波问题。应用该方法计算了截断圆柱的绕流问题。应用薄船假定对Wigley船型的兴波进行了计算,结合Noblesse给出的定常移动源格林函数,推导出薄船兴波的远场势函数及其波面高度的解析表达式。该方法可以简单快捷地求解出薄船的远场波形。
     然后,将时域格林函数法应用于计算结构物在船兴波作用下的绕射问题。这种方法可以计算任意几何形状的物体的绕射作用,以及由波浪在该物体上绕射产生的波浪场。同时,本文还给出了无限水深中结构物(淹没圆球、固定半球、淹没方箱、截断方箱和截断圆柱)在不同频率的规则波作用下的绕射问题,并将其与频域解得到的结果进行比较,由此来验证数值方法的准确性。关于结构物在船兴波作用下的绕射问题,文中给出了几个算例,分别计算了结构物(如淹没圆球、漂浮半球、淹没方箱和截断方箱等)在薄船兴波作用下的绕射问题。通过对计算结果的系统分析总结了在船兴波作用下,结构物所受波浪力大小与船速、结构物与船行进路线之间的距离、船体尺寸等的关系。
     在前面工作的基础上,将船兴波对固定结构物作用问题拓展到对漂浮结构物作用问题的计算,从理论上对漂浮结构物在船兴波作用下的运动响应及绕射-辐射问题进行了数值计算与分析,使用时域格林函数法对该问题进行求解。这种方法可以计算任意几何形状的物体的绕射-辐射作用,以及由波浪在该物体上绕射产生的波浪场。同时,本文还给出了无限水深中的结构物(如漂浮方箱、Wigley船)在不同频率的规则波作用下的绕射-辐射问题,并将其与频域结果或实验结果进行比较,由此来验证数值方法的准确性。关于结构物在船兴波作用下的绕射-辐射问题,文中给出了相应的算例,通过对计算结果的系统分析总结了在船兴波作用下,结构物的运动响应与船速、结构物与船行进路线之间的距离、船体尺寸等的关系。
     最后,探讨了系泊浮体在船兴波作用下的运动响应问题。应用时域格林函数计算了一条Wigley船经过另一系泊结构物的受力及运动响应问题。通过对计算结果的系统分析总结了在船兴波作用下,系泊结构物的受力及运动响应与船速、结构物与船行进路线之间的距离、船体尺寸等的关系。
A panel method based on potential flow theory has been developed to solve the ship waves-body interactions in the time domain. The thesis includes the evaluations of time -domain Green function, ship waves caused by a ship with uniform speed, ship waves interactions with various structures (fixed structures, floating bodies and moored floating bodies).
     A Kelvin source panel method is applied to solve the wave-making problems. This model can be evaluated by flow around fixed structures. The results for truncated cylinder incurrent are presented as well as the thin ships. The wave-making model developed in this thesis can be applied to the linear wave-making problems of arbitrary bodies including submerged bodies.
     Due to the huge CPU and mass storage requirements of the time-domain computation, a fast algorithm for time-domain Green function and its derivatives is presented and applied to the ship waves-body interactions. The model is first examined by the diffraction of simple shape bodies (submerged sphere, hemisphere, submerged box and truncated box). The computed wave forces are compared with the frequency-domain results, and they agree very well. The diffraction problems of fixed structures under thin ship waves are considered. The focal points of the work are analyzing the relationships of distance between ship and structures, ship length, ship beam and ship draft with wave forces induced by ship waves.
     Then, diffraction-radiation problems are examined in context of simple shape bodies (floating box and Wigley hull) and compared with the frequency-domain results or experimental results. The parameter analysis of ship speed, distance between ship and structures, ship length, ship beam and ship draft with wave forces and motion responses of floating bodies by thin ship waves is implemented.
     In the final application, Wave loads and motion responses are computed with a Wigley hull passing by a moored truncated cylinder. The diffraction-radiation problems are examined by comparing the time domain results with the frequency domain ones and they agree very well. The parameter analysis of ship speed, distance between ship and structures, ship length, ship beam and ship draft with wave forces and motion responses of moored structure by thin ship waves is also implemented.
引文
[1]Allen T,Chwang F,Chen YH.Field Measurement of Ship Wave in Victoria Harbor.Journal of Engineering Mechanics.2003:1138-1148.
    [2]蒋宗燕,潘宝雄,船行波的研究和研究进展,中国海港工程,2000,6:34-38.
    [3]周家宝,陈文辽,船行波与河岸护坡工程综述,江苏交通工程,1996,1:28-33.
    [4]Nobless F,Yang C,Cheng FK.Formulation of wave diffraction-radiation by ships or offshore structures,Ship Technology Research,1983,28(3):13-33.
    [5]李云波,一种兴波理论方法探究及其在多种船型中的应用,博士论文,哈尔滨工程大学,1999,3.
    [6]Svanberg K.Method of moving asymptotes -A new method for structural optimization.International Journal for Numerical Methods in Engineering,1987,24:359-373.
    [7]Miehell JH.The wave resistance of a ship.Philosophical Magazine,1898,45(5):106-123.
    [8]Havelock TH.The theory of wave resistance.Proeeedings of the Royal Soeiety of London,Series A,1932,138:339-348.
    [9]Inui T.Wave-making resistance of ships.Transactions of the Soeiety of Naval Architects and Marine Engineers,1962,70:282-326.
    [10]Brard R.The representation of a given ship form by singularity distribution when the boundary condition on free surface is linearized.JSR,1972,16:79-92.
    [11]Hsiung CC.Optiamal ship forms for minimum wave resistance.JSR,1981,25:95-116.
    [12]Wilson MB,Hsu C C,Jenkins D S.Experiments and predictions of the resistance characteristics of a wave cancellation multihull ship concept.33rd American Towing Tank Conference,1993,103-112.
    [13]Yang C et al.Practical CFD applications to design of a wave cancellation multihull ship.23th Symp on Naval Ship Hydrodynamics France,2000.
    [14]Noblesse F,Yang C.Fourier-Kochin formulation of wave diffraction-Radiation by ships or offshore structures.Ship Technology Research,1995,42:115-139.
    [15]Noblesse F,Yang C,Chen X B,Boundary-integral representation of linear free surface potential flows.JSR,1997,41(1):10-16.
    [16]黄鼎良,小水线面双体船性能原理.北京:国防工业出版社,1993.
    [17]Lu X P,Huang Y,Shi Z K,Wave resistance of wave piercing catamarans.Journal of Hydrodynamics,Ser.B,2000(4):88-98.
    [18]陈军等.用线性兴波阻力理论计算穿浪双体船的兴波阻力.海军工程大学学报,2002,14(3):53-55.
    [19]应业炬等.穿浪双体船型优化设计方法.浙江海洋学院学报,2003,22(2):137-142.
    [20]Dawson C W,A practical computer method for solving ship-wave problems.Proc 2nd International Conference of Numerical Ship Hydrodynamics,Berkeley,U.S.A,1977,30-38.
    [21]Gadd G E.A method for computing the flow and surface wave pattern around full forms.TRANS.RINA.1976:113.
    [22]Raven H C.Nonlinear ship motion computations using the RAPID method.Proceeding of the 6th ICNSH(International Conference on Numerical Ship Hydrodynamics),1994,95-118.
    [23]Cao Y S,Lee T H,Beck R F.Computation of nonlinear waves generated by floating bodies.7th IWWWFB(International Workshop on Water Waves and Floating Bodies),1992,47-52.
    [24]Cao Y,Schultb W,Beck R.Three-dimensional,unsteady computations of nonlinear waves caused by underwater disturbances.18th ONR Symposium(Symposium on Naval Hydrodynamics),1990,417-426.
    [25]Beck R,Cao Y,Scorpio S,Schultz W.Nonlinear ship motion computations using the desingularized method.20th ONR Symposium,1994,227-246.
    [26]Beck R F,Cao Y,Lee T H.Fully nonlinear water wave computations using the Designgularized Method.6th ICNSH,1993,3-20.
    [27]Subramani A,Beck R,Scorpio S.Fully nonlinear flee-surface computations for arbitrary and complex hull forms.20th ONR Symposium,1998,47-58.
    [28]Scullen D C,Three-dimensional steady-state nonlinear free-surface flow Computation.Gazette of the Australian Mathematical Society,1996,23:80-84.
    [29]Tuck E O,Scullen D C,Lazauskas L.Wave patterns and minimum wave resistance for high-speed vessels.24th ONR Symposium.Fukuoka,JAPAN,2002,8-13.
    [30]Tuck E O,Scullen D C.A comparison of linear and nonlinear computations of waves made by slender submerged bodies,www.maths.Adelaide.edu.au/people/dscullen/Publications/tuck-scullen-01.pdf,2002.
    [31]Scullen D C.Nonlinear free-surface flow solver,www.maths.Adelaide.edu.au/people/dscullen/Publications/scullen-04a.pdf,2004,1-15.
    [32]Celebi M S.Computation of transient nonlinear ship waves using an adaptive algorithm.Journal of Fluids and Structures,2000.14:281-301.
    [33]Ohkusu M.Steady flow near the bow of a flat ship.17th IWWWFB,Pelerhouse,Cambridge,UK,2002.
    [34]Alessandrini B,Delhommeau G.A multigrid velocity-pressure-free surface elevation fully coupled solver for calculation of turbulent incompressible flow around a hull.21st ONR Symposium,1996.328-390.
    [35]Raven H,Brummelen H.A new approach to computing steady free-surface viscous flow problems.1st MARNET-CFD workshop,Barcelona,1999,1-4.
    [36]Zou Z J,Soding H.A panel method for lifting potential flows around three-dimensional surface piercing bodies.20th ONR Symposium,1994,810-821.
    [37]Lin X,Takaki M.A study on a higher-order Rankine panel method for nonlinear steady wave making problems,11th IWWWFB,Germany,1996,111-113.
    [38]李世漠.船舶非线性兴波阻力计算.武汉交通科技大学学报,1996.5:1-8.
    [39]Gao G,Ma L.A raised panel method based on NURBS for free-surface potential flows with forward speed.Journal of Hydrodynamics,2003,Ser.B(2):112-120
    [40]赵成壁.船舶曲面设计现代方法与软件系统的研究,博士论文.武汉:武汉交通科技大学,1999.
    [41]Li P-Y,Qiu Y M,Gu M T.Study of trimaran wavemaking resistance with numerical calculation and experiments.Journal of Hydrodynamics,2002,Ser.B(2):99-105.
    [42]Wyatt D C,A non-linear wave prediction methodology for surface vessels.14th IWWWFB,1999,155-158.
    [43]Rigby S G,Nicolaou D,Sproston J L,et al.,Numerical modeling of the water flow around ship hulls.JSR,2001,45(2):85-94.
    [44]Lee T H.Fully nonlinear wave computations for arbitrary floating bodies using the DELTA method.Journal of Hydrodynamics,2003,Ser.B(2):24-31.
    [45]Tao Jiang.Ship wave in shallow water.Fortschritt-Berichte VDI,Reihe 12,Nr.466,VDI Verlag,D(u|¨)sseldorf,2001,40-62.
    [46]Ertekin R C,Webster W C.Wehausen J.V.Wave caused by a moving disturbance in shallow channel of finite width.Journal of Fluid Mechanics,1986,169:275-292.
    [47]Mei C C.Numerical Methods in Water Wave diffraction and Radiation.Annual Review of Fluid Mechanic,1978,10:393-416.
    [48]Haddara M R,Xu J S.On the identification of ship coupled heave-pitch motions using neural networks.Ocean Engineering,1999,26:382-400.
    [49]许劲松,Haddara M R.根据船舶运动数据实时估测船体波浪载荷,上海交通大学学报,2003,37(8):1219-1222.
    [50]Liaqat A,Fukuhara M.Optimal estimation of parameters of dynamical systems by neural network collocation method.Computer Physics Communications,2003,150(3),215-234.
    [51]Witmer D J,Lewis J W.The BP oil tanker structural monitoring system.Marine Technology,1995,32(4):277- 296.
    [52]Weggel J R,Sorensen R M.Ship Wave Prediction for Port and Channel Design.Report Port'86:797-815
    [53]Chen X N,Sharma S D.Zero wave resistance for ships moving in shallow channels at supercritical speeds,Journal of Fluid Mechanics,1997,355:305-321.
    [54]Chen X N,Sharma S D.Zero wave resistance for ships moving in shallow channels at supercritical speeds,Part2.Improved theory and model experiment.Journal of Fluid Mechanic.2003,478:111-124.
    [55]Black J L,Mei C C,Bray M C G.Radiation and Scattering of Water Waves by Rigid Bodies.Journal of Fluid Mechanics.1971,46:151-164.
    [56]Havelock T H.The Pressure of Water Waves upon a Fixed Obstacle.In:Proceedings of the Royal Society of London.1940,Series A,963,175:409-421.
    [57]Maccamy R C R,Fuchs R A.Wave Forces on Pile:A Diffraction Theory.Tech.Mem.,69,US Army Coastal Engineering Research Center,1954.
    [58]Garrett C J R.Wave Forces on a Circular dock.Journal of Fluid Mechanics,1971,46(1):129-139.
    [59]Yeung R W.Added Mass and Damping of a Vertical Cylinder in Finite-Depth Waters.Applied Ocean Research,1981,3(3):119-133.
    [60]Malenica S,Clark P J,Molin B.Wave and Current Forces on a Vertical Cylinder Free to Surge and Sway.Applied Ocean Research.1995,17:79-90.
    [61]Hulme A.The Wave Forces Acting on a Floating Hemisphere Undergoing Forced Periodic Oscillation.Journal of Fluid Mechanics,1982,121:443-463.
    [62]Wang S.Motion of a Spherical Submarine in Waves.Ocean Engineering,1986,13:249-271.
    [63]Wu G X,Eatock Taylor R.The Exciting Force on a Submerged Spheroid in Regular Waves.Journal of Fluid Mechanics,1987,182:411-426.
    [64] Wu G X, Eatock Taylor R. On Radiation and Diffraction of Surface Waves by Submerged Spheroids. Journal Ship Research, 1989, 33: 84-92.
    [65] Linton C M. Radiation and Diffraction of Water Waves by a Submerged Sphere in Finite Depth. Ocean Engineering, 1991,18 (1/2): 61-74.
    [66] Wu G X, Witz J A, Ma Q, Brown D T. Analysis of Wave Induced Forces Acting on a Submerged Sphere in Finite Water Depth. Applied Ocean Research, 1994,16: 353-361.
    [67] Rahman M. Simulation of Diffraction of Ocean Waves by a Submerged Sphere in Finite Depth. Applied Ocean Research, 2001, 23: 305-318.
    [68] Lopes D B S, Sarmento A J N A. Hydrodynamics Coefficients of a Submerged Pulsating Sphere in Finite Depth. Ocean Engineering, 2002, 29: 1391-1398.
    [69] Yeung R W. Numerical Methods in Free Surface Flows. Ann. Rev. Fluid Mech. 1982, 4: 395-442.
    [70] Mei C C. Numerical Methods in Water Wave Diffraction and Radiation. Ann. Rev. Fluid Mech., 10, 1978: 393-416.
    [71] Mei C C. The Applied Dynamics of Ocean Surface Wave. John Wiley and Sons, Inc., New York, 1983.
    [72] Harlow F H, Welch J E. The MAC Method, a Computing Technique for Solving Viscous, Incompressible, Transient Fluid Problems Involving Free Surface. Los Almos Scientific Lab, Rep. LA-3452,1965.
    [73] Wang Y X, Su T C. Computation of Wave Breaking On Sloping Beach by VOF Method. In: Proceedings of the Third International Offshore and Polar Engineering Conference. Singapore, 1993: 6-11.
    
    [74] 邹志利,邱大洪,王永学. VOF法模拟波浪槽中二维非线性波. 水动力研究与进展,1996. Ser. A, 11(1): 93-103.
    [75] Brebbia C A, Telles J C F, Wrobel L C. Boundary Element Techniques. Berlin: Springer-Verlag, 1984.
    [76] Hess J L, Smith A M O. Calculation of Nonlifting Potential Flow about Arbitrary Three-Dimensional Bodies. Journal Ship Research, 1964 (8): 22-24.
    [77] Garrison C J. Hydrodynamic Loading of Large Offshore Structures: Three-dimensional Source Distribution Methods. Numerical Methods in Offshore Engineering. Chichester: A Wiley-Interscience Publication, 1978: 87-140.
    [78] Finkelstein A. The Initial Value Problem for Transient Water Waves. Communications on Pure and Applied Mathematics, 1957, 10: 511-522.
    [79] Cummins W E. The Impulsive Response and Ship Motions. Schiffstechnik, 1962, 9: 124-135.
    [80] Stoker J J. Water Waves, Pure and Applied Mathematics. New York: Interscience Publishers, Inc., 1958.
    [81] Ogilvie T F. Recent Progress toward the Understanding and Prediction of Ship Motion. Proceeding of the 5~(th) Symposium of Naval Hydrodynamics, Sponsored by Office of Naval Research and Skipsmodelltanken, Bregen, Norway, 1964.
    [82] Kotik J, Lurye J. Some Topics in the Theory of Coupled Ship Motions. In Proceedings, 5~(th) Symposium on Naval Hydrodynamics, Office of Naval Research, Washington, D.C., 1964.
    [83] Wehausen J V. Initial Value Problem for the Motion in an Undulating Sea of a Body with Fixed Equilibrium Position. The Journal of Engineering Mathematics. 1967,1 (1): 1-19.
    [84] Van Oortmerssen G. The Motion of a Moored Ship in Waves, NSMB Publication No.510, Netherlands Ship Model Basin, Wageningen, the Netherlands, 1979.
    [85] Chapman R B. Large Amplitude Transient Motion of Two-Dimensional Floating Bodies. Journal of Ship Research. 1979, 29 (1): 20-31.
    [86] Chapman R B. Time-Domain Method for Computing Forces and Moment Acting on Three-Dimensional Surface-Piercing Hull with Forward Speed. The 3~(rd) International Conference on Numerical Ship Hydrodynamics, Paris, 1981.
    [87] Ohmatsu S. On a Wave Making Theory of Cylinders at the Early Stage of Oscillation. Journal of the Society of Naval Architects of Japan. 1973,134: 75-84.
    [88] Zhang L, Dai Y S. Time-Domain Solutions for Hydrodynamics Forces and Moments Acting on a 3-D Moving Body in Waves. Journal of Hydrodynamics, 1993B, 5 (2): 110-113
    [89] Adachi H, Ohmatsu S. On the influence of irregular frequencies in the integral equation solutions of the time-dependent free surface problems. The Journal of Engineering Mathematics. 1979: 97-119.
    [90] Yeung R W. The transient heaving motion of floating cylinders, Journal of Engineering Mathematics. 1982,116: 97-119.
    [91] Newman J N. Transient Asymmetric Motion of a Floating Cylinder. Journal of Fluid Mechanics. 1985,157:17-33.
    [92] Korsmeyer F T. The First and Second Order Transient Free Surface Wave Radiation Problems: (PhD Thesis). USA: Department of Ocean Engineering, Massachusetts Institute of Technology, 1988.
    [93] Liapis S J. Time-domain analysis of ship motions. Report No.302, Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Axbor, Michhigan, 1986.
    [94] Beck R F, Liapis S L. Transient motions of floating bodies at zero forward speed. Journal of Ship Research, 1987, 31 (3): 164-176.
    [95] Liapis S, Beck R F. Seakeeping computation using time-domain analysis. The 4~(th) International Conference on Numerical Ship Hydrodynamics, 1985.
    [96] King B K. Time-domain analysis of wave exciting forces on ships and bodies. Report No.306, Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, Michigan, 1988.
    [97] King B W, Beck R F, Magee A R, Seakeeping calculations with forward speed using time-domain analysis. Proceeding of 17~(th) Symposium on Naval Hydrodynamics, the Hague, the Netherlands, 1988.
    [98] Zhu D X, Katory M, A time-domain prediction method of ship motions, Ocean Engineering, 1997, 25(9): 781-791.
    [99] Beck R F, Magee A R. Time-domain analysis for predicting ship motions. Proceedings Symposium on the Dynamics of University. Elsevier Publishers, Amsterdam, the Netherlands, 1990.
    [100] Lin W M, Yue D K P. Numerical Solutions for Large-Amplitude Ship Motions in the Time Domain. Proceeding 18~(th) Symposium on Naval Hydrodynamics. The University of Michigan, USA. Ann Arbor, MIT. 1990.
    [101] Fonseca N, Soares C. Time-Domain Analysis of Large-Amplitude Vertical Ship Motions and Wave Loads, Journal of Ship Research, 1998, 42 (2): 139-153.
    [102] Longuet-Higgins M S, Cokelet C D. The Deformation of Steep Surface Waves on Water: I. A Numerical Method of Computation. Proc. R. Soc., London, 1976, A350: 1-26.
    [103] Beck R F. Time-Domain Computations for Floating Bodies. Applied Ocean Research, 1994 (16): 267-282.
    [104] Cointe R. Numerical Simulation of A Wave Channel. Eng. Analysis with Boundary Elements, 1990, 7 (4); 167-177.
    [105] Dommermuth D G, Yue D K P. Numerical Simulations of Nonlinear Axisymmetric Flows with a Free Surface. Journal of Fluid Mechanics. 1987, 178: 195-219.
    [106] Grilli S T, Skourup J, Svendsen I A. An Efficient Boundary Element for Nonlinear Water Waves. Engineering Analysis with Boundary Elements, 1989, 6 (2), 97-107.
    [107] Isaacson M. Nonlinear-Wave Effects on Fixed and Floating Bodies. Journal of Fluid Mechanics. 1992,120: 267-281.
    [108] Tanizawa K. A Nonlinear Simulation Method of 3-D Body Motions in Waves. Jour. Society of Naval Arch. Japan, 1995,178,179-191.
    [109] Yeung R W, Vaidhyanathan M. Non-Linear Interaction of Water Waves with Submerged Obstacles. Inte. Jour. Num. Methods in Fluid. 1992,14:1111-1130.
    [110] Kim C H, Clement A H, Tanizawa K. Recent Research and Development of Mumerical Wave Tanks - A Review. Int. Jour. Offshore and Polar Eng., 1999, 9 (4): 241-256.
    [111] Lunde J K. On the linearized theory of wave resistance for displacement ships in steady and accelerated motion. Tran. SNAME. 1951,59:25-76.
    [112] Michell K W H. The wave resistance of ship. Philosophical Magazine. 1898, 45(5): 106-123.
    [113] Smith A M O, Giesing J P, Hess J L. Calculation of waves and wave resistance for bodies moving on or beneath the surface of the sea. Douglas Aircraft Co., Long Beach, California, Report No. 31488a, 1963:49.
    [114] Hess J L, Smith A M O, Calculation of potential flow about arbitrary bodies. Progress in Aeronautical Science, 1967, 8:1-138.
    [115] Shen H T, Farell C. Numerical calculation of the wave integrals in the linearized theory of water wave, Journal of Ship Research, 1977, 21(1):1-10.
    [116] Noblesse F. The fundamental solution in the theory of steady motion of a ship. Journal of Ship Research. 1977, 21:82-88.
    [117] Noblesse F. On the fundamental solution in the theory of steady motion of ships Journal of Ship Research. 1978, 22:212-215.
    [118] Newman JN, The evaluation of free-surface Green functions. In: Proc. 4th intl. conf. Numer. Ship Hydrodynamics. Washington D.C.: National Academy of Science, 1985, pp 4-19.
    [119] Newman JN, The approximation of free-surface Green functions. In: Wave Asymptotic. Manuscript for the Fritz Ursell Retirement Meeting. Cambridge: Cambridge University Press, 1990, pp 107-135.
    [120] Beck RF, Magee AR. Time domain analysis for predicting ship motions. In: Proc. IUTAM Symp, Dynamics of Marine Vehicles and Structure in Waves. London, 1991, pp 49-64.
    [121] 黄德波,时域Green 函数及其导数的数值计算,中国造船,1992, 4: 16-25.
    [122]叶恒奎.三维时域波动函数的一种数值处理方法,华中理工大学学报,1994,22(4):58-63.
    [123]段文洋,戴遗山.二维时域格林函数的数值计算,水动力学研究与进展A辑,1996,11(3):330-335.
    [124]Clement AH.An ordinary differential equation for the Green function of time-domain free-surface.Journal of Engineering Mathematics,1998,33:201-217.
    [125]韩凌,应用时域格林函数方法模拟有限水深中波浪对结构物的作用,博士论文,大连理工大学,2005.
    [126]戴愚志,余建星,郭海涛,时域有限水深格林函数及其导数的数值计算,船舶力学,2006,10(1):15-21.
    [127]Abramowitz M,Stegun I.Handbook of Mathematical Functions with Formulas,Graphs,and Mathematical Tables.New York:Dover Publications.1964.
    [128]Scorpio SM.Fully Nonlinear Ship-Wave Computations Using a Multipole Accelerated,Desingularized Method.PhD paper,1997.
    [129]Ogilvie T F.The Wave Generated by a Fine Ship Bow,Proceedings.9th International Symposium on Naval Hydrodynamics,1972,pp.1483-1524.
    [130]Waniewski T A,Brennen C E,Raichlen F.Bow Wave Dynamics,Journal of Ship Research,2002,46(1),pp.1-15.
    [131]Noblesse F,Hendrix D,Faul L,Slutsky J.Simple Analytical Expressions for the Height,Location,and Steepness of a Ship Bow Wave,Journal of Ship Research,2006,50(4),pp.360-370.
    [132]Magee A R,Beck R F.Vectorized computation of the time-domain Green function.Fourth Int.Workshop on Water Waves and Floating Bodies.Oystesee,Norway.1989.
    [133]Chung J M,Qiu W,Peng H.On the Evaluation of Time-domain Green Function.Ocean Engineering,2007,34(7),pp.962-969.
    [134]Ferrant P.A coupled time and frequency approach for nonlinear wave radiation.In:Eighteenth Symposium on Naval Hydrodynamics.NAS-NRC,1991,pp 67-83.
    [135]Ogilvie T F.Second-order Hydrodynamic Effects on Ocean Platforms,Int.Workshop on Ship and Platform Motions.Univ.Calif.Berkeley.1983,pp.204-265.
    [136]Journee JMJ,Experiments and Calculations on 4 Wigley Hull Forms in Head Waves,Delft University of Technology,Ship Hydromechanics Laboratory,Report 0909,May 1992.
    [137]肖越.系泊系统时域非线性计算分析.博士论文,大连理工大学.2005
    [138]Pangalila F V,Martin J.P..A method of estimating line tensions and motions of a semi-submersible based on empirical data and model basis results.OTC,1969,2:90-96.
    [139]Gault A J,Cox W R.Method for predicting geometry and loading distribution in an anchor chain from a single point mooring buoy to a buried anchorage.OTC,1973,1:309-318.
    [140]马汝建,高学仕.悬链线锚链的非线性恢复系数.中国海洋平台,1994,21:180-183.
    [141]马鉴恩,李凤来.锚泊列阵的设计研究.海洋工程,1996,14(2):52-62.
    [142]陈广莲.确定锚泊设备的直接计算法.船舶设备通讯,2004,109(1):43-50.
    [143]Smith T M,Chen M C,Radwan A M.Systematic data for the preliminary design of mooring systems.Proceedings of the fourth International Offshore Mechanics and Arctic Engineering Symposium,1985,1:403-407.
    [144]Smith R J,MacFarlane C J.Statics of a three component mooring line.Ocean Engineering.2001,28:899-914.
    [145]Chaff Y T,Varyani K S,Barltrop D N P.Semi-analytical quasi-static formulation for three2dimensional partially grounded mooring system problems.Ocean Engineering,2002,29:627-649.
    [146]余龙,谭家华.深水多成分悬链线锚泊系统优化设计及应用研究.华东船舶工业学院学报(自然科学版),2004,18(5):8-13
    [147]余龙,谭家华.基于准静定方法的多成分锚泊线优化.海洋工程,2005,23(1):69-73
    [148]陈徐均,汤雪峰等.系泊浮体布链方式优劣的理论分析.河海大学学报,2001,29(5):1-9
    [149]陈徐均,崔维成,沈庆.对称式布置锚链系统的线性化处理.海洋工程,2002,22(1):75-79
    [150]Hong S T.Frequency domain analysis for the tension in a taut mooring line.Technical Report No.SM72-1,University of Washington,1972.
    [151]Hong S T.Tension in a taut line mooring:frequency domain analysis.OTC,1974,2:389-400.
    [152]Connell G M.Analytical studies of resonance in taut-moored system.OTC,1974,2:401-416.
    [153]Skop R A,O'Hora G J.The static equilibrium configuration of cables arrays by use of the method of imaginary reaction.NRL Report No.6819,AD68519,1969.
    [154]Skop R A,Kaplon R E.The static configuration of tri-moored surface,buoy cable array acted on by current-induced force.NRL Report NO.6894,AD65814,1969.
    [155]Watson T V,Kuneman J E.Determination of the static equilibrium configuration externally redundant submerged cable arrays.OTC,1975,2:765-776.
    [156]汤小霞.波浪作用下锚泊系统动力响应的数值模拟.硕士论文,大连理工大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700