电解低钛A356合金工艺优化及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以电解加钛制备的铸造A356合金为研究对象,利用透射电镜、扫描电镜、DSC差热分析以及金相显微分析和力学性能测试等手段,对合金的微观组织及性能进行了全面分析。重点研究了Al-Ti二元合金的晶粒细化机理,电解加钛A356合金的晶粒细化、变质及热处理优化工艺以及电解低钛A356合金在铝轮毂上的应用,研究成果对高性能铝轮毂材料的研究与开发具有重要的理论意义和实际意义。
     针对Ti<0.15%的Al-Ti二元合金,建立了Al-Ti二元合金凝固模型,推导出了成分过冷的计算公式△T_C=m_lC_0(k_0-1)/k_0[1-exp(-k_0v/D_lx)]和相对晶粒度的计算公式。应用于电解低钛铝合金和熔配铝钛合金,首次发现在试验室条件下,电解低钛铝合金形核过冷度△T_n=0.5-1K,低于传统熔配加钛的Al-Ti二元合金(△T_n=0.8-1.5K),从理论上合理地解释了电解低钛铝合金的晶粒细化机理及其良好的晶粒细化作用。并结合A356合金的DSC分析,研究了电解加钛A356合金的晶粒细化机理。研究表明,电解低钛A356合金初生α-Al枝晶和二元共晶析出峰温度与析出激活能均比熔配加钛A356合金小,较好地验证了电解低钛铝合金具有较强的细化能力,也比较好地解释了晶粒细化的原因。
     首次对电解加钛A356合金熔体工艺进行了优化,研究了钛含量、加钛方式、保温时间对电解加钛A356合金晶粒细化、变质效果、衰退行为以及力学性能的影响,确定了合金具有最佳晶粒细化效果的钛含量、具有完全硅变质效果的残余锶含量临界值以及熔体保温时间。结果表明,钛含量在0.10%左右时,合金具有最佳的晶粒细化效果和综合力学性能,超过该值后,抗拉强度缓慢上升的同时,延伸率逐渐下降。随着Sr含量的增加,硅颗粒形貌明显改善,硅相由杆状、棒状转变为纤维、珊瑚状,获得完全变质的最低Sr含量是0.01%。熔体保温时间超过130min后,钛的晶粒细化作用和Sr的变质作用逐渐衰退。原因在于有效异
In this paper, the microstructures and mechanical properties of the electrolytic low titanium A356 alloys have been investigated by means of TEM, SEM, differential scanning calorimetry (DSC) analysis, metallographic microscopic analysis and the mechanical properties test. Especially, the mechanisms of the grain refinement of Al-Ti binary alloys and the optimum technics of grain refinement, modification and the heat treatment are investigated. The electrolytic low titanium A356 alloys have been tentatively applied to the car or the motorcycle wheels. The results may be help to the development and the exploitation of the high quality wheels materials.A model for the solidification of Al-Ti binary alloys with a titanium content of less than 0.15 wt pct is developed. The equations of the constitutional undercooling △TC and the relative grain size RGS have been deduced.Based on the model, the constitutional undercooling and the relative grain size of the electrolytic low-titanium aluminium alloys and the traditional Al-Ti alloys are calculated for the first time. The nucleation undercooling is about 0.5-1.0K for the new alloy and 0.8-1.5K for the traditional alloys. DSC analysis of the electrolytic low titanium A356 alloys results show that both the onset peak temperature and the activation energy of the primary aluminium dendrites and binary Al-Si eutectic boundaries of the electrolytic low titanium A356 alloys are smaller than the traditional A356 alloys. The results can properly explain why the electrolytic low titanium aluminium alloys had the excellent refining effects.The melting process of the electrolytic low titanium A356 alloys is optimized for the first time. The effects of the titanium content, titanium alloying manner and the holding time on grain refinement, modification effect, fading' behavior and
    mechanical properties are investigated. The optimum Ti content, Sr content critical value and melting holding time are confirmed. The results show that the alloys have the best grain refinement effect and combination mechanical properties when titanium content approaches 0.1%. The tensile strength of alloys increases gradually, but the ductility decreases with increasing titanium content when the titanium content exceeds 0.1%. The morphology of silicon particle improves distinctly and the shape of Si phase changes from plate-like shape into the fine fibrous coral-like when the Sr content increases. The minimum Sr content for the full modification is about 0.01%. It is also show that after the holding time of melting exceeds 130 min, the effect of grain refinement and modification fad gradually. The reason may be attributed to the solution and deposition of effect heterogeneous nucleus particles and the oxidation and the burning loss of Sr respectively.The optimum technics of the solution treatment and aging treatment are studied for the first time. By means of the DSC analysis, TEM and the mechanical properties tests, the age-hardening behavior of the electrolytic low titanium A356 alloys is investigated. It is found that the circularity of silicon particles improved but the size grew and became coarsen with the raising of solution temperature, which results in a slight effect on the tensile properties but a significant effect on the ductility. With the increasing of solution time, the morphology of silicon particles is better and better and the growth rates are rapid until 3h and then decreased to after steady exceeding 3h. The tensile properties of alloys are firstly increased rapidly and then slowly. But the ductility is firstly increased and then decreased to a steady value. With the increasing of the aging temperature and prolonging of the aging time, the tensile properties increase but the ductility decreases. DSC and TEM analysis show that the age-hardening properties are related to the precipitation sequence of alloys. With the change of he aging temperature and time, the precipitation sequence is GP zone— Pl! — P '— P , and there is no time internal between them. Both the metastable phase P;/ and P' can effectively strengthen alloys and the effects of the P' phase is more significant. The optimum heat treatment process of the electrolytic low titanium A356
    alloys is 535°CX3h+165°CX2h. Using this heat treatment, high mechanical properties can be achieved, which is o b^300MPa, 8 ^10%, respectively. The values are superior to that of the recent documents reports.The fracture mechanism of the electrolytic low titanium A356 alloys has been investigated. The crack initiation and propagation process are examined by in situ testing in a scanning electron microscope (SEM) for the first time. It is found that crack initiates first in the lamellar eutectic area and propagated along this area for the A356 alloys in cast state. After heat treatment, however, the crack is found initiate at gas/shrinkage pores because of the debonding of the Si particles from the Al matrix. The crack mainly propagate across the Al matrix firstly, part of crack may tends to propagate along the matrix/particle interface secondly. The eutectic Si particle can block the propagation of crack. The crack paths deflected to the weaker areas when encountering the Si particles.Car wheels and motorcycle wheels are produced using the electrolytic low titanium aluminium alloys for the first time. Stand test of motorcycle Al wheels is conducted. The microstructure and mechanical properties are analyzed and compared with the wheels produced by the international famous manufactures. The results show that the properties of motorcycle wheels are stable and its repeatability is good. Combination properties of the car wheels are equivalent to Benz wheels, superior to that of Audi, Buick and BMW wheels.
引文
[1] 罗启全,铝合金熔炼与铸造,第2版,广东科技出版社[M],2003:1-3
    [2] 苟护生,左良,我国铝工业发展的方针、目标及建设重点[J],轻金属,2004(7):3-5
    [3] 田弘,孙丽伟,李宏思,电解铝材料发展趋势的研究与探讨[J],淮南职业技术学院学报,2004(3):62-64
    [4] 肖春泉,对电解铝和钢铁发展的看法[J],有色金属工业,2004(6)26-29
    [5] 钟掘,提高铝材质量基础研究的进展[J],轻合金加工技术,2002(5):1-10
    [6] 邱竹贤,21世纪伊始铝电解工业的新进展[J],中国工程科学,2003(4):41-46
    [7] B. S. Murty, S. A. Kori, M. Chakraborty, Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying [J]. Internation Material Reviews, 2002, 47(3), 3-29
    [8] Backerud Johnsson, The relative importance of nucleation and growth mechanisms to control grain size in various aluminum alloys[J]. Light Metals, 1996, 27(4), 679-685
    [9] 邱竹贤,于亚藕,张明杰,在铝电解槽中生产Al-Ti合金[J],轻金属,1986(4):32-37
    [10] 车承焕,邱竹贤,电解法制取铝-钛合金[J],辽宁冶金,1987(6):47-50
    [11] 张明杰,邱竹贤,狄鸿利,在铝电解槽中生产铝基合金的几个基本问题(上)[J],轻金属,1987(1):27-31
    [12] 于亚鑫,邱竹贤,张明杰等,铝-硼及铝-钛-硼中间合金的研制(上)[J],轻金属,1988(4):31-33
    [13] 魏庆斌,狄鸿利,王信泗等,工业铝电解槽直接生产Al-Ti-B三元合金[J],有色金属,1988,36-37,35
    [14] 刘耀宽,顾松青,杨冠群,大型预焙铝电解槽直接生产铝硅钛合金试验研究[J],轻会属,2000(11):30-33
    [15] 杨冠群,杨升,杨巧芳等,电解法生产铝硅钛多元合金述评[J],铸造,1999(4):51-54
    [16] 杨冠群,杨升,电解法直接生产铝硅钛多元合金可行性分析[J],铸造,1997(1):44-46
    [17] 杨涤心,李杏瑞,电解铝硅钛合金的特性[J],热加工工艺,2004(9):56-57
    [18] 贺淑莉,刘志勇,王运涛等,一种含钛合金的制造方法[P],中国,1298965,2001.06.13
    [19] 刘忠侠,宋天福,谢敬佩等,低钛铝合金的电解生产与晶粒细化[J],中国有色金属学报,2003(10):1257-1261
    [20] 王明星,刘智勇,宋天福等,电解生产低钛铝合金工业试验及产品中钛分布的均匀性分析[J],轻金属,2003(4):41-44
    [21] 张晨光,铝合金轮毂的造型设计与结构分析,河北工业大学硕士学位论文,2000,2:1
    [22] 张屹林,闫汝辉,朱利民,汽车工业中的铝合金[J],山东内燃机,2004(6)26-31
    [23] 王祝堂,铝合金轮毂工业的发展[J],轻合金加工技术,1994(3):17-22
    [24] 郑祥健,金龙兵,王国军等,铝合金轮毂的生产和市场现状[J],轻合金加工技术,2004.Vol.32.No.7:8-11
    [25] 刘静安,汽车工业用铝材的开发应用趋势与对策(1)[J],铝加工,2002,Vol.25,No.5:1-15
    [26] 中国机械工程学会铸造分会编,铸造手册(铸造非铁合金)[M],第二版,2002:23-28
    [27] 陈忠伟,三元铝合金凝固组织控制,西北工业大学博士学位论文,2003(9):
    [28] 冯美斌,从SAE2004年会看汽车材料发展趋势[J],汽车工艺与材料,2004(6):6-12
    [29] 李友川,胡志亮,铸造铝合金轮毂热处理参数选择及其设备[J],轻合金加工技术,1997.Vol.25.No.10.:33-39
    [30] 张恒华,许珞萍,邵光杰等,AlSi7Mg合金半固态压铸件热处理强化机理研究[J],材料热处理学报。2003(6):62-65
    [31] 亓效刚,王伟民,黄重柏,Sn与Be对AlSiMg轮毂材料时效过程的影响[J],轻合金加工技术,2002(1):46-49
    [32] 瞿学良,金国宝,铸造铝合金ZALSi7MgA处理工艺的优化设计[J],江苏大学学报,2002(7):(57-71
    [33] 李华基,谭会章,祝阵超,杜详清,富镧混合稀土对ZL101A合金组织和机械性能的影响[J],中国稀土学报,1996(12):321-324
    [34] 熊玉华,铝基细化剂和变质剂的遗传性对A356.2合金级组织和性能的影响[J],铸造,2002(10):587-591
    [35] 黄纪蓉,曾建民,孙仙奇等,时效和调压浇注对ZL101A-T6合金性能的影响[J],航空精密制造技术,2003(6):28-42
    [36] 李元元,郭国文,罗宗强,高强韧铸造铝合金材料研究进展[J],特种铸造及有色合金,2000(6):45-47
    [37] 曾渝,尹志民,潘青林,超高强铝合金的研究现状及发展趋势[J],中南工业大学学报,2002(6):592-596
    [38] 李培杰,曾大本,贾均,李庆春,铝硅合金中的结构遗传及其控制[J],铸造,1999,(6):10-14
    [39] 李双寿,朱跃峰,曾大本,吴群虎等,原料组织遗传性及其在铸造铝合金中的应用[J],铸造,1999,(8):53-58
    [40] 傅高升,陈文哲,陈鸿玲,康积行,铝熔体高效净化的理论及净化处理技术的现状分析[J],材料成型技术,221-228
    [41] Hongjun Ni, Baode Sun, Haiyan Jiang, Wenjiang Ding, Effects of rotating impeller degassing on microstructure and mechanical properties of the A356 scraps[J], Materials Science and Engineering, A352 (2003) 294_299
    [42] 李隆盛,铸造合金及熔炼[M],机械工业出版社,1989
    [43] 姚书芳,毛卫民,赵爱民,钟雪友,铸造铝硅合金细化变质处理的研究进展[J],铸造,2000(9):512-515
    [44] 李双寿,唐靖林,曾大本,亚共晶铝硅合金熔体处理工艺的交互作用[J],铸造技术,2002(9):269-270
    [45] 张辉,张国英,魏国柱,铸造铝硅合金中硅相变质机制的电子理论研究[J], 稀有金属,2003(9):605-608
    [46] Lusz, Hellawella, The mechanism of silicon modification in aluminium silicon alloys: Impurity induced twinning[J], Metallurgical transaction, 1987, 18A:1721
    [47] 赵建新,朱鸣芳,金宰民,洪俊杓,Al-Si合金在凝固过程中颗粒和枝晶组织的演变[J],理化检验物理分册,2004(9):433-438
    [48] 鲁薇华,王汝耀,锶变质铝硅合金的组织、性能及其变质工艺[J],铸造,1997(9):44-49
    [49] 鲁薇华,王汝耀,杨涤心,电解Al-Si-Ti合金金相组织和性能[J],特种铸造及有色合金,1999(1):10-12
    [50] 亓效刚,陈俊华,江旭彪,锑变质共晶硅的异质形核[J],特种铸造及有色合金,2000(1):13-15
    [51] 夏青,杨留拴,刘亚民,杨涤心,Na、Sb对亚共晶Al-Si合金变质效果的影响[J],河南科技大学学报,2003(9):7-10
    [52] Alam N. M. A., Ourdjini A., Elliott R., Impurity modification of aluminium silicon eutectic alloys [J], Cast metals, 1995, 8(1):43~50
    [53] 廖恒成,丁毅,孙国雄,锶变质近共晶Al-Si合金力学性能与枝晶α-Al特征参数的相关性[J],2002(9):541-545
    [54] 朱正锋,兰晔峰,铝及合金晶粒细化研究现状及发展趋势[J],铸造设备及研究,2004(4):51-54
    [55] 蒋大鸣,张雨平,微量元素在铝合金中的作用[J],轻合金加工技术,2001(3):1-4
    [56] P. S. Mohanty, J. E. Gruzleski, Grain refinement mechanism of hypoeutectic Al-Si alloys, Acta. Metall. Mater. 1996, Vol. 4, No. 9:3749-3760
    [57] Y. C. Lee, A. K. Dahle, D. H. StJohn, J. E. C. Hutt, The effect of grain refinement and silicon content on grain formation in hypoeutectic Al-Si alloys[J], Materials Science and Engineering A259 (1999) 43-52
    [58] K. Nogita, A. K. Dahle, Effects of boron on eutectic modification of hypoeutectic Al-Si alloys[J], Scripta Materialia, 48 (2003):307-313
    [59] S. A. Kori, B. S. Murty, M. Chakraborty, Development of an efficient grain refiner for Al-7Si alloy and its modification with strontium, Materials Science and Engineering A283 (2000): 94-104
    [60] Backerud Johnsson, The relative importance of nucleation and growth mechanisms to control grain size in various aluminum alloys[J]. Light Metals, 1996, 27(4), 679-685
    [61] P. S. Mohanty, J. E. Gruzleski, Mechanism of grain refinement in aluminium[J], Acta. Metall. Mater. 1995, Vol. 43, No. 5:2001-2012
    [62] 高泽生,A356合金α(Al)的晶粒细化,特种铸造及有色合金,1999(3):49-53
    [63] C. D. Mayes, D. G. McCartney, and G. J. Tatlock, Observation on the microstructure and performance of an Al-Ti-C grain-refining master alloys[J], Materials science and engineering, A(188) 1994:283-290
    [64] Liu Xiangfa, Wang Zhenqing, Zhang Zuogui, Bian Xiufang, The relationship between microstructures and refining performances of Al-Ti-C master alloys[J], Materials Science and Engineering, A332 (2002): 70-74
    [65] A. J. Criado, J. A. Martinez, R. Calabres, Growth of eutectic silicon from primiary silicon crystals in aluminium-silicon alloys[J]. Scripta Mtaeialia, 1997, 36(1):47-54
    [66] Liao Hengcheng, Sun Yu, Sun Guoxiong, Restraining effect of strontium on the crystallization of Mg2Si phase during solidification in Al-Si-Mg casting alloys and mechanisms[J], Materials Science and Engineering, A358 (2003) 164-170
    [67] Hengcheng Liao, Guoxiong Sun, Mutual poisoning effect between Sr and B in Al-Si casting alloys[J], Scripta Materialia, 48 (2003) 1035-1039
    [68] Ruyao Wang, Weihua Lu, L. M. Hogan, Self-modification in direct electrolytic Al_Si alloys (DEASA) and its structural inheritance[J], Materials Science and Engineering, A348 (2003) 289-298
    [69] B. I. Jung, C. H. Jung, T. K. Han, Y. H. Kim, Electromagnetic stirring and Sr modification in A356 alloys[J], Journal of materials processing technology, 111(2001): 69-73
    [70] Bian Xiufang, Wang Weimin, Yun Shujuan, Qing Jingyu, Structure factors of modified liquid Al-Si alloys[J], Science and technology of advanced materials, 2(2001): 19-23
    [71] Pekguleryuz M. O., Gruzleski J. E., Condition for strontium master alloy addition to A356 alloys[J], AFS Transactions, 1988, 96:5564
    [72] 戴洪尚,刘志勇,王明星等,固溶处理对电解制备的A356合金硅颗粒的影响[J],中国有色金属学报,2004(7):1201-1205
    [73] 孙瑜,陈晋,孙国雄,铝硅合金硅相演变及其对力学性能的影响[J],特种铸造及有色合金,2001(6):1-3
    [74] S. Shivkumar, S. Ricci et al., An experimental study to optimize the heat treatment of A356alloy [J], AFS Trans. 97 (1989) 791-810
    [75] S. Shivkumar, S. Ricci et al, Effect of solution treatment parameters on tensile properties of cast alloys [J], Heat treatment, 1990, 8(1):6370.
    [76] D. L. Zhang, L. H. Zheng, D. H. Stjohn. Effect of solution treatment temperature on tensile properties of Al-7Si-0.3Mg (wt-%) alloy [J]. Material science and technology. July 1998 Vol. 14 619-625
    [77] D. L. Zhang, L. H. Zheng, D. H. Stjohn. Effect of a short solution treatment time on microstructure and mechanical properties of modified Al-7wt.%Si-0.3wt.%Mg alloy [J]. Journal of light metals 2 (2002) 27-36
    [78] E. Ogris, A. Wahlen, H. Luchinger et al. On the silicon spheroidization in Al-Si alloy [J]. Journal of light metals 2 (2002) 263-269
    [79] Kashyap K. T., Murali S., Raman K. S. et al., Casting and heat treatment variables of Al-7Si-Mg[J], Materials science and technology, 1993(9): 189-203
    [80] S. J. Andersen, H. W. Zandbergen, J. Jansen, etal. The Crystal Structure of the β″ Phase in Al-Mg-Si alloys. Acta mater. Vol. 46. No. 9, 3283-3298
    [81] C. Ravi, C. Wolverton, First-principles study of crystal structure and stability of Al-Mg-Si-(Cu) precipitates[J], Acta Materialia, 52 (2004) 4213-4227
    [82] Akler P. N., Influence of microstructure on the mechanical properties and stress corrosions susceptibility of 7075 aluminium alloys[J], Metallurgical transactions, 1972, 3(12):3191 3200
    [83] Park J. K., Ardell A. J., Affect of retrogression and reaging treatments on the microstructure of Al 7075-T651[J], Metallurgical transactions, 1984, 15 A (8):1531 1543
    [84] 阎大京,时效制度对7475和7050铝合金应力腐蚀及剥层腐蚀性能的影响[J],材料工程,1993,4(2):13-16
    [85] 吴一雷,李永伟,超高强度铝合金的发展和应用[J],航空材料学报,1994,14(1):49-55
    [86] 曾渝,尹志民,潘青林,郑子樵,刘志义,超高强铝合金的研究现状及发展趋势[J],中南工业大学学报,2002(12):592-596
    [87] 约翰.D.费豪文,物理冶金学基础[M],上海科学技术出版社,1980,7:243-246
    [88] 张国君,刘刚,丁向东,孙军,陈康华,,铝合金时效-屈服强度的实验与模型化研究[J],金属学报,2003(8):803-808
    [89] 刘刚,张国君,丁向东,孙军,陈康华,含有不同尺度量级第二相的高强铝合金断裂韧性模型[J],中国有色金属学报,2002(8):706-713
    [90] 张国君,刘刚,丁向东等,含有不同尺度量级第二相的高强铝合金拉伸延性模型[J],中国有色金属学报,2002(12):1-10
    [91] 胡赓祥,蔡珣,材料科学基础[M],第一版,上海交通大学出版社,2001,166—168
    [92] Crossley F A, Mondolfo L F. Mechanism of grain refinement in aluminum alloys[J], Trans. AIME(J, Metals), 1951(191): 1143-1146
    [93] Zhonghua Zhang, Xiufang Bian, Zhenqing Wang, Xiangfa Liu, Yan Wang, Microstructures and grain refinement performance of rapidly solidified Al-Ti-C master alloys[J], Journal of Alloys and Compounds 339 (2002) 180-188
    [94] T. Sritharan and H. Li, Influence of Titanium to Boron Ratio on the Ability to Grain Refine Aluminium-Silicon Alloys[J], Journal of Materials Processing Technology, 1997, Vol 6.3, 585-589.
    [95] Mark Easton and David Stjohn. Grain refinement of Aluminum alloys: Part Ⅰ. The nucleate and solute paradigms-A review of the literature[J], Metallurgical and Materials Transactions A. 1999, Vol. 30A, No. 6, 1613~1623
    [96] Zhi-yong LIU, Ming-xing WANG, Yong-gang WENG, Tian-fu SONG, Jing-pei XIE, Yu-ping HUO: Grain refinement effects of Al based alloys with low titanium content produced by electrolysis [J], Trans. Nonferrous Met. Soc. China, 2002, 12(6): 1121-1126
    [97] Zhiyong LIU, Mingxing WANG, Yonggang WENG, Tianfu SONG, Yuping HUO and Jingpei XIE: Crystal nucleation and growth of Al-based alloys produced by electrolysis [J], J. Mater. Sci. Technol. Vol. 19, 2003 (5), 427-430
    [98] Liu Zhiyong, Wang Mingxing, Weng Yonggang, Song Tianfu, Huo Yuping, Xie Jingpei, Effect of Silicon on Grain Refinement of Aluminum Produced by Electrolysis[J], Materials Transactions, 2003, Vol. 44, No.10
    [99] Liu Zhongxia, Wang Mingxing, Weng Yonggang, Xie Jingpei, Liu Zhiyong,, Production and mechanical properties of in-situ Ti alloying A356 alloys[J], Materials Science Forum, Vol. 475-479, 2005:321-324
    [100] 李庆春,铸件形成理论基础[M],北京,机械工业出版社,1988,105-106
    [101] Mats Johnsson. Grain refinement of aluminium studied by use of thermal analytical technique[J], Thermochimica Acta. 256, (1995): 107-121
    [102] M. A. Easton and D. H. Stjohn. A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles[J], Acta mater, 49(2001): 1867-1878
    [103] A. L. Greer, A. M. Bunn, A. Tronche etc. Modeling of inoculation of metallic melts: application to grain refinement of aluminium by Al-Ti-B[J], Acta mater. 48(2000): 2823-2835
    [104] 胡汉起,铸件凝固原理[M],北京,机械工业出版社,1991,48-80
    [105] Augis J. A., Bennett J. E., Numerical calculation of activation energy value in phase transformation of alloys by DSC method[J], J. Thermal. Anal., 1978, 13:283~289
    [106] G. K. Sigworth, M. M. Guzouski. Grain refining of hypoeutectic AI-Si alloys. AFSTransactions, 1985, 93:907-912
    [107] L. F. Momdolfo. Grain Refinement of Aluminium Alloy by Titanium and Boron Preprint of Solidification Processing[J]. Sheffield, Ld K, 1987:104-106
    [108] 王汝耀,鲁薇华,钛对AlSi7Mg0.3合金力学性能的影响[J],特种铸造及有色合金,1999年增刊第1期:16-17
    [109] G. K. Sigworth, S. Shivkumer, D. Apelian, The Influence of molten metal processing on mechanical properties of cast Al-Si-Mg alloys[J]. AFS Transaction, 1989, 97, 811-824
    [110] C. H. Caceres and J. R Griffiths, Damage by the cracking of silicon Particles in an Al-7Si-0.4Mg casting alloy[J], Acta mater., 1996, 44(1), 25-33
    [111] G. Heiberg, K. Nogita, A. K. Dahle, L. Arnberg, Columnar to equiaxed transition of eutectic in hypoeutectic aluminium-silicon alloys[J], Acta Materialia, 2002, 50: 2537-2546
    [112] 边透房,铝合金的熔体结构及其遗传性研究,山东大学博士学位论文,2001,08:81-86
    [113] Hengcheng Liao, Yu, Sun, Guoxiong Sun, Restraining effect of strontium on the crystallization of Mg_2Si phase during solidification in Al-Si-Mg casting alloys and mechanisms[J], Materials Science and Engineering, A Volume: 358, Issue: 1-2, October 15, 2003, pp. 164-170
    [114] 廖恒成,丁毅,孙国雄,Sr对Al-Si-Mg铸造合金中Mg_2Si相结晶行为影响的研究,铸造,2002(2):80-84
    [115] C. Limmaneevichitr, W. Eidhed. Fading mechanism of grain refinement of aluminum—silicon alloy with Al-Ti-B grain refiners [J]. MATERIALS SCIENCE & ENGINEERING. A349(2003)197-206
    [116] 于丽娜,刘相法,边秀房,钛化物在铝熔体中的沉淀现象[J],材料科学与工艺,2003(6):185-192
    [117] 鲁薇华,王汝耀,铝-硅合金锶变质作用衰退的研究,特种铸造及有色合金,[J],1995(2):1-5
    [118] 刘忠侠,宋天福,王明星等.电解生产低钛铝合金晶粒细化及衰退行为[J].铸造,2003(9):687—690
    [119] 范广新,王明星,刘志勇,刘忠侠等.电解加钛与熔配加钛对工业纯铝晶粒细化作用的研究[J],中国有色金属学报,2004,10(2):250-254
    [120] K. Venkateswarlu, S. K. Das, M. Chakraborty, B. S. Murty, Influence of thermo-mechanical treatment of Al-5Ti master alloy on its grain refining performance on aluminium[J], Materials Science and Engineering, 2003, A351: 237-243
    [121] 张作贵,刘相法,边秀房等,Al-Ti-B中间合金的遗传性研究与推广应用[J],铸造,2000(10):758-763
    [122] Zhangli Guo,Wei Sha,沉淀硬化的量化和沉淀物的演变[J],上海钢研,2003(3):27-37
    [123] 王明星,电解低钛铝合金工业试验及其组织与性能的研究,中科院等离子物理研究所博士论文,2002(6):36-56
    [124] 刘志勇,工业电解低钛铝基合金细化效果、细化原理及其应用研究,郑州大学博士论文,2003(5):66-86
    [125] Estey, C. M., Cockcrofl, S. L., Maijer, D. M., Constitutive behaviour of A356 during the quenching operation [J], Materials Science and Engineering: A Volume: 383, Issue: 2, October 15, 2004, pp. 245-251
    [126] Liu, D., Atkinson, H. V., Kapranos, P., Jirattiticharoean, W., Jones, H., Microstructural evolution and tensile mechanical properties of thixoformed high performance aluminium alloys [J], Materials Science and Engineering: A Volume: 361, Issue: 1-2, November 25, 2003, pp. 213-224
    [127] 徐才录,H.M.Tensi,R.Roesch.S.Spaic,梁吉,魏秉庆,吴德海,凝固条件和热处理及微量锶对一种Al-Si合金组织和性能的影响[J],金属热处理,1998年(2):1-5
    [128] 颜宽然,淬火空位对时效析出的作用[J],冶金丛刊,1994(1):28-29
    [129] D. L. Zhang, Precipitation of excess silicon during heat treatment of cast Al-7%Si-0.4Mg alloys[J], Material science forum, 1996-217-222:771-776
    [130] 孙瑜,近共晶Al-Si合金微观组织与力学性能的研究,东南大学硕士学位论文,2001(3):28-29
    [131] T. J. Konno, K. Hiraga and M. Kawasaki, Guinier-Preston (GP) zone revisited: atomic level observation by Haadf-TEM technique [J], Scripta mater. 44(2001)2303-2307
    [132] I. Durra, S. M. Allen, J. Mater. Sci. Lett. 10(1991) 323
    [133] A. K. Gupta, D. J. Lloyd, A. D. Court, Precipitation hardening in Al-Mg-Si alloys with and without excess Si[J], Materials Science and Engineering A316 (2001) 11-17
    [134] G. A. Edwrds, K. Stiller, G. L. Dunlop and M. J. Couper, The propitiation sequence in Al-Mg-Si alloys[J], Acta. Mater. Vol. 46, No. 11, pp. 3893-3904, 1998
    [135] M. Murayama and K. Hono, Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys[J], Acta. Mater. Vol. 47, No. 5, pp. 1537-1548, 199
    [136] 何立子,Al-Mg-Si系合金组织性能,东北大学博士论文,2001(9):89-112
    [137] R. X. Li, R. D. Li, Y. H. Zhao, L. Z. He et al., Age-hardening behavior of cast Al-Si base alloy[J], Materials Letters 58 (2004) 2096-2101
    [138] Matsuda, N., Akaike, J., Hongo, K., Matsuura, K., The effect of second phase on the creep deformation of 6061 Al matrix composites, Materials Science and Engineering: A Volume: 234-236, August 30, 1997, pp. 751-754
    [139] 李建国,王亮,杨文言,A356铝合金中裂纹的萌生与扩展[J],轻合金加工技术,2002(12):30-34
    [140] Wang, Q. G.; Caceres, C. H., The fracture mode in Al-Si-Mg casting alloys, Materials Science and Engineering: A Volume: 241, Issue: 1-2, January, 1998, pp. 72-82
    [141] McDowell, D. L.; Gall, K.; Horstemeyer, M. F.; Fan, J., Microstructure-based fatigue modeling of cast A356-T6 alloy, Engineering Fracture Mechanics Volume: 70, Issue: 1, January, 2003, pp. 49-80
    [142] Mocellin, A.; Brechet, Y.; Fougeres, R., Fracture of an osprey TM AlSiFe alloy: a microstructure based model for fracture of microheterogeneous materials, Acta Metallurgica Materialia Volume: 43, Issue: 3, March, 1995, pp. 1135-1140
    [143] Caceres, C. H.; Selling, B. I., Casting defects and the tensile properties of an Al-Si-Mg alloy, Materials Science and Engineering: A Volume: 220, Issue: 1-2, December 15, 1996, pp. 109-116
    [144] Davidson, C. J.; Griffiths, J. R.; Caceres, C. H., The deformation and fracture behaviour of an Al-Si-Mg casting alloy, Materials Science and Engineering: A Volume: 197, Issue: 2, July 1, 1995, pp. 171-179
    [145] Jacques Stolarz, Olivier Madelaine-Dupuich, Thierry Magnin, Microstructural factors of low cycle fatigue damage in two phaseAl-Si alloys, Materials Science and Engineering A299 (2001) 275-286
    [146] 张静武,金属塑性变形与断裂的TEM/SEM原位研究,燕山大学博士论文,2002(5):72-87
    [147] Kwai S. Chan, Peggy Johes, Qigui Wang, Fatigue crack growth and fracture paths in sand B319 and A356 aluminium alloys[J], Materials Science and Engineering A341 (2002) 18-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700