固体酸碱催化的非均相有机反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境保护压力的增大和全社会对可持续发展的广泛认同,绿色化学越来越受到各国政府、学术界、和企业的重视。绿色化学(Green chemistry)又称环境无害化学(Environmentally Benign Chemistry),环境友好化学(Environmentally Friendly Chemistry),清洁化学(Clean Chemistry)。它是利用化学原理从源头消除污染,其目标是实现高效、高选择性的化学反应,实现“零排放”,达到“原子经济性”要求。它研究的内容包括原料绿色化、溶剂的绿色化、催化剂的绿色化、产品的绿色化。其中在溶剂的绿色化中,要求弃用易燃、易挥发的有机溶剂而使用不易挥发、低毒甚至无毒的溶剂-水、全氟溶剂(氟两相)、离子液体、超临界液体以及不用溶剂(无溶剂反应)。催化剂的绿色化是指一方面利用生物酶催化剂、仿酶催化剂、水溶性有机金属配合物催化剂及多相催化体系、手性催化剂等高效催化剂,提高反应选择性和反应原子经济性。另一方面将试剂或催化剂固载或合成新型固体催化剂,让反应在非均相条件下进行,可以实现试剂或催化剂的回收。因而无溶剂反应、非均相催化是实现绿色化学的重要途径。
     无溶剂有机反应避免了大量毒害性和挥发性有机化合物的使用,不仅减少了污染,简化了反应操作和后处理过程,也缩短了反应时间,降低了生产成本。并且往往具有收率高、选择性好等优点,是目前研究的热点之一。
     另一方面,酸碱催化是有机合成中是最为常见的反应类型之一,酸碱催化剂在化工生产中占有举足轻重的作用。用非均相酸碱代替传统催化剂不仅可以减少污染,还可以增加催化剂的活性和选择性,同时通过回收(再生)并重复使用提高催化剂的使用寿命。并且,有时固体酸碱催化的反应还可以在无溶剂条件下进行。固体酸碱催化无论从经济角度考虑,还是从环境角度考虑都是有利的。固体酸碱催化已成为绿色化学研究的主要内容之一。
     我们在论文中介绍了三种固体酸和一种固体碱,主要讨论了它们在非均相催化及无溶剂反应方面的应用。
     论文的第一章介绍了绿色化学的背景及研究意义,在此基础上提出了论文主要的研究方向为非均相固体酸碱。
     论文第二章介绍了大孔磺酸树脂(NKC-9)的催化研究。第一节介绍了它的性质结构及其在有机合成上的应用。第二节介绍了首例高分子负载的固体酸通过cross-Aldol反应催化合成双苄亚甲基环酮。与文献相比,它具有分离容易、催化剂可回收使用等优点。它对芳香醛有很好的的选择性,同时它只得到双缩合产物;对脂肪醛效果不好。第三节介绍了NKC-9催化2-萘酚和醛合成苯并占吨,我们发现它对芳香醛和脂肪醛都适用,但芳香醛的结果更好些。在此基础上,我们在第四节介绍了2-萘酚、醛和酰胺(或取代脲)的三组分缩合反应,产物为酰胺烷基萘酚。我们发现,该方法不适用于甲酰胺,对其它酰胺的催化效果较好。对脲的反应情况比较特别,脲素、甲基脲都生成复杂的混合物,只对苯基脲反应较好。同时如果苯基脲中的氨基被取代,反应不能进行。与现有的方法相比,产物易于分离,催化剂可以回收并重复使用,活性没有明显降低。
     论文的第三章介绍了磺胺酸催化研究。第一节介绍了磺氨酸的结构特点及其在有机合成中的应用综述。第二节介绍了在室温无溶剂条件下催化合成双吲哚甲烷。与在溶剂中反应不同,它具有催化剂用量少、速度快、得率高等优点。并且考察了它对吲哚3-位的专一选择性问题及吲哚环的电子效应对反应的影响。第三节介绍了超声促进的无溶剂合成对称的三吲哚甲烷、三吲哚乙烷。吲哚与原甲酸三甲酯(或原乙酸三甲酯)在室温条件下反应。三吲哚甲烷的得率一般三吲哚乙烷高,并尝试解释了其原因。第四节介绍了无溶剂条件下磺胺酸催化硝基苯乙烯衍生物与吲哚和吡咯的Michael加成。吲哚与β-硝基苯乙烯在室温下反应缓慢,即使12小时也不能完全反应,而吡咯在室温条件下可在较短时间内反应完全。
     论文第四章介绍了蒙脱土K10的催化研究。第一节介绍蒙脱土的结构、性质,综述了近期蒙脱土K10在非均相催化上的应用。第二节介绍邻苯二胺与酮在K10存在下,室温无溶剂合成1,5-苯并杂卓。它对芳香酮、脂肪酮、脂肪环酮都适用,但芳香酮的得率较好。第三节研究了硝基苯乙烯与吲哚及吡咯的共轭加成,虽然吲哚与β-硝基苯乙烯在室温下12小时也可以反应完全,但加热只要十几分钟。同时我们发现除了3-甲基吲哚外,其它吲哚都专一地生成地在3-位发生亲电取代。3-甲基吲哚则发生在吲哚的2-位。催化剂可回收,得率没有明显降低。
     论文第五章介绍了固体碱-合成氟磷灰石的催化研究。讨论它对吲哚、吡咯与硝基烯Michael加成反应。与文献中已报道的第一例固体碱催化剂不同,我们用N-甲基吲哚也能得到3-位取代的产物。对此我们从催化剂的结构特点给出了可能的机理解释。
     论文第六章介绍了第一例2,2-二氯甲基苯并咪唑的合成。该反应在无溶剂条件下进行,不需要任何催化剂。反应条件温和,在室温下(有两个例子要加热)就可快速完成(<1小时)。根据实验结果,讨论了可能的机理。这类化合物具有独特的结构,有望作为潜在的具有药学活性的分子和合成原料。
The chemical industry is successful but traditionally success has come at a heavy cost to the environment. With the increasing environmental pressure and the public concern to sustainable development, green chemistry is widely recognized by government, academia and industry. Green chemistry, namely environmentally benign chemistry or clean chemistry, is the design, development, and implementation of chemical products and processes to reduce or eliminate waste at source. It further covers reducing the chemical impact of feedstocks and products on huamn health and environment. The ways to achieve clean synthesis are grouped into two categories: the innovation in catalysts and use of alterlative solvents. On the one hand, the work on catalysts greening involves the preparation and application of enzymatic, biomimetic, enantioselective and water-soluble organic metal catalysts to increase enantioselectivity and atom-economy. On the other hand, in order to recover and reuse catalysts, immobilization homogeneous catalysts and utilization of solid catalyst may be the mothod of choice. Finally, the alterlative solvents instead of flammable, volatile or toxic organic solvents have been one of the hot subject in green chemistry. The renewed ones include water, perfluorocarbon, ionic liquid, supercritical liquid and even solvent free.
     Now, solid acid/base catalysis is one of the economically and ecologically important fields in catalysis. The solid acid and base catalysts have many advantages over liquid Bronsted and Lewis acid/base catalysts. They are noncorrosive and environmentally benign, presenting fewer disposal problems. Their repeated use is possible and their separation from products is much easier. Furthermore, they can be designed to give higher activity, selectivity and longer catalyst life. Therefore, the replacement of the homogeneous catalysts with the heterogeneous ones is becoming even more important in chemical research. Solid acid-base catalysis is beneficial both from the view of economical and environmental point.
     On the other hand, solvent-free reaction avoids using toxic or volatile organic compounds. It has many advantages: reduced pollution, low costs, simplicity in process and handling. Usually, rate, yield and selectivity in sovlent-free reation may be higher than that in sovlents. It is an ideal option in solvent alteration.
     In this dissertation, we discussed several solid acids/bases in heterogeneous catalysis and solvent-free reaction.
     Firstly, the background and significance of green chemistry are introduced in the chapter I. Therefore, solid acid/base in heterogeneous catalysis was put forward as our subject under the umbrella of clean synthesis.
     In the chapter II, the application of macroporous sulphonic resin (NKC-9) was studyed. First of all, the sturcture and property of NKC-9 was introduced in section 1. Its use in organic catalysis was also given herein. In section 2, an expeditious synthesis ofα,α’-bis (substituted benzylidene)cycloalkanones via cross-Aldol condensation catalyzed by NKC-9 was described. It was the first example of supported acid in the reaction. The catalyst was recovered easily and could be reused for subsequent reactions, according with economical and environmental demands. It showed good chemoselectivity for aromatic aldehydes. Meanwhile, unlike its homogeneous counterparts, it didn't afford the mono-aldol product. We presented its catalytic application in the synthesis of benzoxanthene by the condensation of 2-naphthol and aldehydes in section 3 via tandem intermolecular and intramolecular dehydration. The method was suitable for both aromatic aldehydes and aliphatic ones, while the former gave better results. On the basis of section 3, we further applied the catalyst in multi-component reaction by introduction another substrate, ureas or Amides. Consequently, some amidoalkyl naphthols were achieved in good to excellent yields. The catalyst also showed interesting chemoselectivity. It was applicable to benzamide, acetamide and acrylamide instead of formamide. As for ureas, it was rather complicated. Urea and N-methyl urea gave complex mixutures. Forthermore, N, N'-urea such as diphenylurea kept unchanged under the same condition.
     Chapter III was mainly involved the study on sulfamic acid (SA). In the section 1, its structural characteristics and special properties were present. Then the extensive literature survey on SA in organic synthesis was made. In section 2, the synthesis of bisindoles in the presence of SA under solvent-free condition was reported. The reactions were performed under ambient temperature in most cases. By comparation to that in solvent, acceleration in rate was observed in solventless method. SA also could catalyze the synthesis of physiologically interest triindolylmethane/ethane from indoles and orthoformate/orthoacetate. The ultrasound irradiation could accelerate the reacion rate. This content was arranged in section 3. In section 4, we examined its catalytic activity in Michael addition of nitroolefins with indoles or pyrrole. The addition ofβ-nitrostyrene with indole was rather slower than that of pyrrole. It took over 12 hours for the former to complete, while the latter only needed 6 hours. The fromer would finish in half an hour under heating.
     In chapter IV, potential solid catalyst montmorillonite K10 was considered. In section 1, essential properties and recent examples prompted by K10 were given. In section 2, K10 could efficiently catalyze the conjugate additon of indole with nitroalkenes. The 3-alkylation product of indoles were obtained exclusively, an exception was that 3-methyl indole occurred at 2-position of indole.
     In chapter V, a solid base (Fluorapatite) was dicussed. Unlike acid catalysts, the Michael addition of nitroolefi was less explored in the presence of base. We also reasoned that it was bifunctional catalyst, namely there were acidic and basic sites on the surface. A plausible mechanism by base was brought forward.
     In chapter VI, the synthesis of 2,2-chloromethylbenzimidazole derivatives has been developed for the first time. The method had the advantages of mild reaction, without any solvent and catalyst. We tried to draw up the mechanism.
引文
1. (a) Anastas P. T.; Warner, J. C. Green Chemsitry: Theory and Practice; Oxford University Press, Inc.: New York, 1998; (b)汪志勇,王官武,王中夏译《绿色化学导论》,第一版,中国石化出版社,北京,2006。
    2. Wang, Y.; Zhou, M.; Xu, C.-J. Petrochem. Tech. 2003, 32, 775.
    3. Zhao, G.-S.; Yang, B.-L.; Yang X.-H. J. Chem. Eng. Chin. Univ. 2004, 18, 719.
    4. Jin, H.-B.; Xiao, F.-R.; Luo, G.-H.; Yang, C.-Y.; Tong, Z.-M. J. Fuel Chem. Technol. 2001, 29,
    251.
    5. Zhou, X.; Tang, Z.; Ding L. J. Tsinghua Univ. Sci. & Tech. 2002, 42, 629.
    6. Wang, L.-Q.; Nie, J.; Li, X.-Y.; Zhang, Z.-B.; Yin, F. Chin. J. Org. Chem. 2004, 24, 778.
    7. Zhang, X.; Li, Y.-J.; Huang, M.-Y; Jing, Y.-Y. Polym. Adv. Technol. 2002, 13, 305.
    1. Deli, J.; Lorand, T.; Szabo, D.; Foldesi, A. Pharmazie, 1984, 39, 539.
    2. Ogawa, M.; Ishii, Y.; Nakano, T.; Irifune, S. Jpn. Kohai Tokkyo JP 1988, 63192446 A2 (Chem. Abstr. 1988, 63, 238034).
    3. Gangadhara, K. K. Polymer. 1995, 36, 1903.
    4. Raj, A. A.; Raghunathan, R. Synth. Commun. 2002, 32, 3295.
    5. Raj, A. A.; Raghunathan, R.; Sridevi Kumari, M. R.; Raman, N. Bioorg. Med Chem. 2003, 11, 407.
    6. (a) Hathaway, B. A. J. Chem. Edu. 1987, 64, 367-368; (b) Nakano, T.; Irifune, S.; Umano, S.; Inada, A.; Ishii, Y.; Ogawa, M. J. Org. Chem. 1987, 52, 2239.
    7. Irie, K.; Watanabe, K. Bull. Chem. Soc. Jpn. 1980, 53, 1366.
    8. Nakano, T.; Migita, T. Chem. Lett. 1993, 12, 2157.
    9. Iranpoor, N.; Kazemi, F. Tetrahedron 1998, 54, 9475.
    10. Bao W. -L; Zhang, Y.; Taokai, M. Y. Synth. Commun. 1996, 26, 503.
    11. Huang, D. F.; Wang, J. X.; Hu, Y. L.; Chin. Chem. Lett. 2003, 14, 333.
    12. Shinji, N.; Aki, M.; Fumiko, I.; Takayoshi, Y.;Hiroshi, S.; Kiyoshi, S. J. Chem. Soc. Chem. Commun. 1990, 21, 1538.
    13. Zhang, X. Y.; Fan, X. S.; Niu, H. Y.; Wang, J. J. Green. Chem. 2003, 5, 267.
    14. Salehi, P.; Khodaei, M. M.;Zolfigol, M. A.; Keyvan, A. Monatsh. Chem. 2002, 133, 1291.
    15. Wang, L. M.; Sheng, J.; Tian, H.; Han, J.; Fan, Z.; Qian, C.T. Synthesis 2004, 3060.
    16. Yang, L.; Lu, J.; Bai, Y.-J. Chin. J. Org. Chem. 2003, 23, 659.
    17. Das, B.; Thirupathi, P.; Mahender, I.;Reddy, K. R. J. Mol. Cata. A: Chem 2006, 247, 182.
    18. Sabitha, G.; Reddy, G. S. K.; Reddy, K. B.; Yadav, J. S. Synthesis 2004, 263.
    19. Bhagat, S.; Sharma, R.; Chakraborti, A. K. J. Mol. Cata. A: Chem 2006, 260, 235.
    20. Yadav, J. S.; Reddy, B. V. S.; Nagaraju, A.; Sarma, j. A. R. P. Synth. Commun. 2002, 32, 893.
    21. Zheng, M.; Wang, L.; Shao, J.; Zhong, Q. Synth.Commun. 1997, 27, 351.
    22. Lancaster, M. Green Chemistry:An Introductory Text, Royal Society of Chemistry, Cambridge, 2002, p. 87.
    23. Matlack, A. S. Introduction to Green Chemistry, Marcel Dekker, New York-Basel, 2001. p.114, 191.
    24. Benaglia, M.; Puglisi,A.; Cozzi, F. Chem. Rev. 2003, 103, 3401.
    25. McNamara, C. A.; Dixon, M. J.; Bradley, M. Chem. Rev. 2002, 102, 3275.
    26. Gogoi, P. Synlett 2005, 2263.
    27. Harmer, M. A.; Sun, Q. Appl. Catal. A-Gen. 2001, 221, 45.
    28. Yadav,G. D.; Lande, S. V. Org. Proc. Res. Dev. 2005, 9, 288.
    29. Joseph, J. K.;Jain, S. L.; Sain, B. J. Mol. Catal. A-Chem. 2006, 247, 99.
    30. Kreher, U. P.; Rosamilia, A. E.; Raston, C.L.;Scott, J. L.; Strauss, C. R. Org. Lett. 2003, 5, 3107.
    31. Guilford, W. J.; Shaw, K. J.; Dallas, J. L.;Koovakkat,S.; Lee, W.; Liang,A.; Light, D. R.; McCarrick, M. A.; Whitlow, M.; Ye, B.; Morrissey, M. M. J. Med. Chem. 1999, 42, 5415.
    32. Le Gall, E.; Texier-Boullet, F.; Hamelin, J. Synth. Commun. 1999, 29, 3651.
    33. Sharma, M. M. React. Funct. Polym. 1995, 26, 3.
    34. Chakrabarti, A.; Sharma, M. M. React. Polym. 1993, 20, 1.
    35. Hopkin, S. E.; Muir, M.; Theocharis, C. R. J. Chem. Soc. Perkin Trans. 2 1991, 1131.
    
    36. Hu, X. Y.; Fan, X. S.; Zhang, X. Y.; Wang, J. J. J. Chem. Res. Synop. 2004, 10, 684.
    37. Nasser, I.; Foad, K. Tetrahedron 1998, 54, 9475.
    
    1. Rajitha, B.; Kumar, B. S.; Reddy, Y. T.; Reddy, P. N.; Sreenivasulu, N. Tetrahedron Lett. 2005,46, 8691.
    2. Khosropour, A. R.; Khodaei, M. M.; Moghannian, H. Synlett. 2005, 955.
    3. Sarma, R. J.; Baruah, J. B. Dyes Pigment, 2005, 61, 91and reference cited therein.
    4. (a) Vosgrone, T.; Meixner, A. J. J. Lumin. 2004, 107,13; (b) Pevenage, D.; Van der Auweraer, M.; De Schryver, F. C. Langmuir 1999, 15, 8465; (c) Cvetkovic, A.; Straathof, A. J. J.; Krishna, R.; van der Wielen, L. A. M.; Langmuir 2005,21, 1475; (d) Dare-Doyen, S.; Doizi, D.; Guilbaud, P.; Djedaini-Pilard, F.; Perly, B.; Millie, P. J. Phys. Chem. B. 2003, 107, 13803; (e) Saki, N.; Dinc, T.; Akkaya, E. U. Tetrahedron 2006, 62, 2721; (f) Griffiths, J.; Lee, W. J. Dyes Pigment. 2003, 57, 107.
    5. (a) Sirkeeioglu, O.; Talinli, N.; Akar, A.; J. Chem. Res. S. 1995, 502; (b) Ahmad, M.; King, T. A.; Ko, Do-K.; Cha, B. H.; Lee, J. J. Phys. D: Appl. Phys. 2002, 35, 1473; (c) Pohlers, G.; Scaiano, J. C. Chem. Mater. 1997, 9, 3222.
    6. Knight, C. G.; Stephens, T. Biochem. J. 1989, 258, 683.
    7. (a) Hepworth, J. D.; Gabbutt, C. D.; Heron, B. M. in Comprehensive Hetetocycle Chemistry II., Katritzky, A. R.; Rees, C. W.; Scriven E. F. V.Eds., Pergamon, Oxford, 1996, pp.359; (b) McWilliams, K.; Kelly, J. W. J. Org. Chem. 1996, 61, 7408.
    8. (a) Henkel, B.; Zeng, W.; Bayer, E. Tetrahedron Lett. 1997, 38, 3511; (b) Somlai, C.; Hegyes, P.; Fenyo, R.; Toth, G. K.; Penke, B.; Voelter, W. Z. Naturforsch. B 2001, 56, 526.
    9. (a) Nowick, J. S.; Ballester, P.; Ebmeyer, F.; Rebek, J. J. Am. Chem. Soc. 1990, 112, 8902; (b) Park, T. K.; Feng, Q.; Rebek, J. J. Am. Chem. Soc. 1992, 114, 4529; (c) Shimizu, K. D.; Dewey, T. M.; Rebek, J. J. Am. Chem. Soc. 1994, 116, 5145; (d) Rojas, C. M.; Rebek, J. J. Am. Chem. Soc. 1998, 120, 5120.
    10. (a) Bekaert, A.; Andrieux, J.; Plat, M. Tetrahedron Lett. 1992, 33, 2805; (b) Buehler, C. A.; Cooper, D. E.; Scrudder, E. O. J. Org. Chem. 1943, 8, 316.
    11. (a) Vazquez, R.; de la Fuente, M. C; Castedo, L.; Dom?nguez, D. Synlett. 1994, 433; (b) Ishibashi, H.; Takagaki, K.; Imada, N.; Ikeda, M. Synlett. 1994, 49.
    12. (a) Knight, D. W.; Little, P. B. Synlett. 1998, 1141; (b) Knight, D. W.; Little, P. B. J. Chem. Soc. Perkin Trans. 1, 2001, 1771.
    13. (a) Jha, A.; Beal, J. Tetrahedron Lett. 2004, 45, 8999-9001; (b) Kuo, C-W.; Fang, J.-M. Synth. Commun. 2001, 31, 877.
    14. (a) Shi, J.; Zhang, X.; Neckars, D. C. J. Org. Chem. 1992, 57, 4418; (b) Xuang, N. D., Buu-Hoi, N. P. J. Chem. Soc. 1952, 3741.
    15.(a) Das, B.; Ravikanth, B.; Ramu, R.; Laxminarayana, K.; Rao, B. V. J. Mol. Catal. A-Chem. 2006, 255, 74; (b) Pasha, M. A.; Jayashankara, V. P. Bioorg. Med. Chem. Lett. 2007, 17, 621; (c) Ding F. Q.; An, L. T.; Zou, J. P. Chin. J Chem. 2007, in press.
    16. Dilthey, W.; Quint, F.; Heinen, J. J. Prakt. Chem. 1939, 152, 49-98.
    17. Papini, P.; Cimmarusti, R. Gazz. Chim. Ital. 1947, 77, 142.
    18. Sen, R. N.; Sarkar, N. J. Am. Chem. Soc. 1925, 47, 1079.
    19. Ota, K.; Kito, T. Bull. Chem. Soc. Jpn. 1976, 49, 1167.
    20. Ko, S. K.; Yao, C. F. Tetrahedron Lett. 2006, 47, 8827.
    21. Fricke, R.; Hosslick, H.; Lischke, G.; Richter, M. Chem. Rev. 2000, 100, 2303.
    22. Van Allan, J. A.; Giannini, D. D.; Whitesides T. H. J. Org. Chem. 1982, 47, 820.
    23. Ohishi, T.; Kojima, T.; Matsuoka, T.; Shiro, M.; Kotsuki, H. Tetrahedron Lett. 2001, 42, 2493.
    24. (a) Bennett, D. J.; Dean, F. M.; Herbin, G. A.; Matkin, D A.; Price, A. W.; Robinson, M. L. J. Chem. Soc. Perkin Trans. 1 1980, 1978; (b) Dilthey, W. J. Prakt. Chem. 1939, 152, 96.
    25.丁飞青,硕士论文,2007。
    26. Higginbottom, E. J. Chem. Soc. 1960, 1286.
    27. Buu-Hoi, N. P. Chim. Ther. 1972, 7, 83.
    28. Poupelin, J.-P. Eur. J. Med. Chem. Chim. Ther. 1978, 13, 67.
    29. Dat, X. Bull. Soc. Chim. Fr. 1952, 797.
    1. Wilson, K.; Adams, D. J.; Rothenberg, G.; Clark, J. H. J. Mol. Catal. A-Chem. 2000, 159, 309.
    2. Clark, J. H. Accounts Chem. Res. 2002, 35, 791.
    3. Sartori, G.; Maggi, R. Chem. Rev. 2006, 106, 1077.
    4. Okuhara, T. Chem. Rev. 2002, 102, 3641.
    5.Clark, J. H.; Rhodes, C. N. Clean Synthesis Using Porous Inorganic Solid Catalysts and Supported Reagents, 1st ed.; The Royal Society of Chemistry: Cambridge, UK, 2000.
    6.祝介平,陈小川,陈锦春,王茜《多组分反应》:《现代有机合成化学进展》(吴毓林,麻生明,戴立信主编),第一版,化学工业出版社,2005,北京。
    7. Domling, A. Chem. Rev. 2006, 106, 17.
    8. Khodaei, M. M.; Khosropour, A. R.; Moghanian, H. Synlett 2006, 916.
    9. Das, B.; Laxminarayana, K.; Ravikanth, B.; Rao, B. R. J. Mol. Catal. A-Chem. 2007, 261, 180.
    10. Patil, S. B.; Singh, P. R.; Surpur, M. P.; Samant, S. D. Ultrason. Sonochem. 2006, doi:10.1016 /j.ultsonch.2006.09.006.
    11. Sharma, M. M. React. Funct. Polym. 1995, 26, 3.
    12. Chakrabarti, A.; Sharma, M. M. React. Polym. 1993, 20, 1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700