水介质中的胶束催化氯甲基化和苄基卤氧化反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在有机合成中,芳环化合物的氯甲基化和将苄基卤氧化成芳醛或芳酮是一类极其重要的反应。研究和开发出简单、经济、环境友好的新方法无论在实践还是理论方面都具有重要的意义。
     本课题主要研究了在水介质中实施芳环化合物的氯甲基化和苄基卤的氧化反应,以期开发出对环境友好的氯甲基化和氧化反应的新方法,具体的研究内容包括以下几个方面。
     在实施2-溴乙基苯氯甲基化反应的胶束体系中加入少量的电解质,研究了电解质对胶束催化反应的影响规律。结果表明,在表面活性剂的胶束溶液中,电解质的加入能引起临界胶束浓度(CMC)的下降和2-溴乙基苯增溶量的增大。在外加电解质的胶束中进行氯甲基化反应能显著提高2-溴乙基苯的转化率和单氯甲基化产物的选择性。通过比较阴、阳离子和非离子表面活性剂对胶束催化反应的效果,研究了胶束催化氯甲基化反应的机理及外加电解质与三种表面活性剂的协同机制。
     为适应工业化生产的需要,在反应底物远远超过胶束的最大增溶量的两相体系中实施了芳环化合物的氯甲基化反应。考察了阳离子表面活性剂的结构对反应的影响规律。进一步研究了胶束催化氯甲基化反应的机理。实验结果表明,胶束催化是实现芳环化合物氯甲基化的有效方法。氯甲基化反应由亲电取代反应和亲核取代反应组成,亲核取代反应是反应的速率控制步骤,羟甲基碳正离子(~+CH_2OH);是真正有效的亲电试剂。阳离子表面活性剂,特别是含有较长疏水链的阳离子表面活性剂是最为有效的催化剂。在两相胶束催化体系中,芳环化合物的单氯甲基化产物的选择性得到显著的改善,反应的区域选择性由表面活性剂的本质决定。在最佳的反应条件下,异丙苯氯甲基化反应的转化率为89.8%,单氯甲基化选择性为97.5%,para/ortho选择性可达到8.28。
     发明了一种在氢氧化钾(KOH)水溶液中相转移催化苄基卤的硝酸钾(KN03)氧化的新方法。研究了氧化反应机理和考察了各种因素对氧化反应的影响。研究发现,相转移催化剂能够高效的催化苄基卤的KN03氧化,并能高产率的得到氧化产品。氧化反应由亲核取代反应和α-消除反应组成,α-消除反应是反应的速率控制步骤。含有较长疏水碳链的相转移催化剂是较为有效的催化剂。
     发展了一种TEMPO/KNO_2催化分子氧氧化苄基卤成醛或酮的新方法。考察了各种因素对氧化反应的影响,研究了氧化反应的机理。研究表明TEMPO/KNO_2只能在水介质中高效地催化分子氧将苄基卤氧化成芳醛或芳酮,并高产率的得到氧化产品。氧化反应由苄基卤的水解反应和水解产生的苄基醇的氧化反应组成,苄基卤的水解反应是反应的速率控制步骤。
In organic synthesis, chloromethylation of aromatic compounds and oxidation of benzylic halides to aromatic aldehydes or aromatic ketones are extremely important reactions. Therefore, the development of a simple, economic, and eco-friendly method is of great significance in both in practice and in theory.
     The main objective of this dissertation is to perform the chloromethylation reaction of aromatic compounds and the oxidation reaction of benzylic halides in aqueous media with a view to develop new environment-feiendly methods, and the specific research contents include the following aspects.
     A small amount of electrolyte was added into the micellar catalysis system in which chloromethylation reaction of 2-bromoethylbenzene (BEB) was carried out, and the effect of electrolyte on the catalytic reaction was investigated. The decrease in critical micelle concentration (CMC) and the increase in solubilization of BEB in the micelles formed by surfactant and electrolyte were observed. The chloromethylation reaction of BEB exhibited higher conversion and higher selectivity in mono-chloromethylation in the surfactant micelles containing electrolyte than in the single surfactant micelle. The catalysis effects of anionic, cataioic and non-ionic surfactants were compared; the mechanism of chloromethylation reaction and the synergistic mechanism between electrolyte and three types of surfactants were discussed.
     For the purpose of industrutial production, the chloromethylation reaction of aromatic compounds was performed successfully by micellar catalysis in oil/water biphasic system at high reactant loadings that exceeded the maximum solubilization capacity of micellar solutions. The effects of the structures of cationic surfactants on the reaction were compared. The mechanism of chloromethylation reaction and the mechanism of micellar catalysis were further investigated. The results show that the micellar catalysis is an effective way to realize the chloromethylation. The chloromethylation reaction consists of electrophilic substitution reaction and nucleophilic substitution reaction, the nucleophilic substitution is the rate-controlling step and the hydroxymethyl cation (~+CH20H) is the really effective electrophile. Cationic surfactants, especially those containing longer hydrophobic carbon chain, are more effective. Selectivity for mono-chloromethylation was remarkably improved and regioselectivity was found to be dependent on the nature of the surfactant. Under the optimal reaction conditions, chloromethylation of isopropylbenzene could obtain 97.5% selectivity in mono-chloromethylation and 8.28 para/ortho selectivity ratio at 89.8%
     conversion.
     A new procedure of phase transfer catalyzed oxidation of benzylic halides to aldehydes or ketones with potassium nitrate (KNO_3) in aqueous potassium hydroxide (KOH) solution has been developed. The oxidation mechism and the effects of different factors on the oxidation reaction were examined. The results show that the phase transfer catalysis is an effective way to realize the oxidation of benzylic halides to aldehydes or ketones with KNO_3 in high yield. The oxidation reaction consists of nucleophilic substitution reaction and a-elimination reaction which is the rate-determining step. Phase transfer catalyst having longer hydrophobic carbon chain, is more effective catalyst.
     A new method by which benzylic halides are directly oxidized to aldehydes and ketones with molecularr oxygen (O_2) in the presence of catalytic amounts of TEMPO (2,2,6,6-tetramethylpiperidyl-l-oxy) and potassium nitrite (KNO_2) has been developed. The oxidation mechism and the effects of different factors on the oxidation reaction were investigated. The experimental results show that, only in aqueous media, TEMPO/KNO_2 can catalyze the oxidation of benzylic halides to aldehydes or ketones with O_2 in high yield. The oxidation reaction was composed of hydrolysis reaction of benzylic halides and oxidation reaction of the resulting benzylic alcohols. The hydrolysis of benzylic halides is the rate-determining step.
引文
[1]Sheldon R A, Arends I, Hanefeld U. Geen chemistry and catalysis. Wiley-VCH:New York, 2007.
    [2]胡常伟,李贤均.绿色化学原理及应用.北京:中国石化出版社,2002.
    [3]Trost B M. The atom economy-A search for synthetic efficiency. Science,1991,254 (5037):1471~1477.
    [4]Noyori R. Supercritical fluids:introduction. Chem. Rev.1999,99 (2):353~354.
    [5]Jessop P G. Homogeneous catalysis in supercritical fluids. Chem. Rev.1999,99 (2): 475~494.
    [6]Baiker A. Supercritical fluids in heterogeneous catalysis. Chem. Rev.1999,99 (2): 453-474.
    [7]Villa C, Mariani E, Loupy A, Grippo C, Grossi G C, Bargagna A. Solvent-free reactions as green chemistry procedures for the synthesis of cosmetic fatty esters. Green Chem.2003, 5 (5):623~626.
    [8]Metzger J O. Solvent-free organic syntheses. Angew. Chem. Int. Ed.1998,37 (21): 2975~2978.
    [9]Tanaka K, Toda F. Solvent-free organic synthesis. Chem. Rev.2000,100 (3):1025~1074.
    [10]Zulfigar F, Kitazume T. One-pot aza-Diels-Alder reactions in ionic liquids. Green Chem. 2000,2 (4):137~139.
    [11]Song C E, Roh E J, Shim W H, Choi J H. Scandium(III) triflate immobilised in ionic liquids:a novel and recyclable catalytic system for Friedel-Crafts alkylation of aromatic compounds with alkenes. Chem. Commun.2000, (17):1695~1696.
    [12]Dupont J, Desouza R F, Suarez P A Z. Ionic liquid (molten salt) phase organometallic catalysts. Chem. Rev.2002,102 (10):3667~3692.
    [13]Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev.1999,99 (8):2071~2084.
    [14]Lindstrom U M. Stereoselective organic reactions in water. Chem. Rev.2002,102 (8): 2751~2772.
    [15]Siskin M, Katritzky A R. Reactivity of organic compounds in superheated water:general background. Chem. Rev.2001,101 (4):825-836.
    [16]Katritzky A R, Nichols D A, Siskin M, Murugan R, Balasubramanian M. Reactions in high-temperature aqueous media. Chem. Rev.2001,101 (4):837~892.
    [17]Rideout D C, Breslow R. Hydrophobic acceleration of Diels-Alder reactions. J. Am. Chem. Soc.1980,102 (26):7816~7817.
    [18]Lu W, Chan T H. Indium-mediated organometallic reactions in aqueous media. Stereoselectivity in the crotylation of sulfonimines bearing a proximal chelating group. J. Org. Chem.2001,66 (10):3467~3473.
    [19]Breslow R, Maitra U, Rideout D. Selective Diels-Alder reactions in aqueous solutions and suspensions. Tetrahedron Lett.1983,24 (18):1901~1904.
    [20]Li C J, Chan T H. Organic syntheses using indium-mediated and catalyzed reactions in aqueous media. Tetrahedron 1999,55 (37):11149~11176.
    [21]Li C J. Organic reactions in aqueous medium-with a focus on carbon-carbon bond formation. Chem. Rev.1993,93 (6):2023-2035.
    [22]赵刚.绿色有机催化.北京:中国石化出版社,2005.
    [23]Grieco P A. Organic synthesis in water. Blackie Academia and Professional:London, 1998.
    [24]Yorimitsu H, Nakamura T, Shinokubo H, Oshima K. Triethylborane-mediated atom transfer radical cyclization reaction in water. J. Org. Chem.1998,63 (23):8604~8605.
    [25]Kita Y, Nambu H, Ramesh N G, Anilkumar G, Matsugi M. A novel and efficient methodology for the C-C forming radical cyclization of hydrophobic substrates in water. Org. Lett.2001,3 (8):1157~1160.
    [26]Miyabe H, Ueda M, Naito T. N-Sulfonylimines as an excellent acceptor for intermolecular radical reactions. Chem. Commun.2000, (20):2059~2060.
    [27]Jang D O, Cho D H. N-Ethylpiperidine hypophosphite mediated intermolecular radical carbon-carbon bond forming in water. Synlett.2002,2002 (9):1523~1525.
    [28]Luche J L, Allavena C. Ultrasound in organic synthesis 16. Optimisation of the conjugate additions to a, β-unsaturated carbonyl compounds in aqueous media. Tetrahedron Lett. 1988,29 (42):5369~5372.
    [29]Suarez R M, Sestelo J P, Sarandeses L A. Diastereoselective conjugate addition to chiral, α, β-unsaturated carbonyl systems in aqueous media:an enantioselective entry to a-and y-hydroxy acids and a-amino acids. Chem. Eur. J.2003,9 (17):4179~4187.
    [30]Kobayashi S, Nagayama S, Busujima T. Lewis acid catalysts stable in water. Correlation between catalytic activity in water and hydrolysis constants and exchange rate constants for substitution of inner-sphere water ligands. J. Am. Chem. Soc 1998,120 (32): 8287-8288.
    [31]Otto S, Engberts J B F N. Lewis-acid catalysis of a Diels-Alder reaction in water. Tetrahedron Lett.1995,36 (15):2645~2648.
    [32]Bezuidenhoudt B C B, Castle G H, Ley S V. Dispiroketals in synthesis (Part 12): Functionalised dispiroketals as new chiral auxiliaries; the synthesis of dihydroxylated dispiroketals in optically pure form. Tetrahedron Lett.1994,35 (40):7447~7450.
    [33]Krishna P R, Kannan V, Sharma G V M, Ramana R M H V. Diastereoselective Baylis-Hillman reaction:use of sugar derived aldehydes as chiral electrophiles. Synlett. 2003,2003 (6):888~890.
    [34]Aggarwal V K, Dean D K, Mereu A, Williams R. Rate acceleration of the Baylis-Hillman reaction in polar solvents (water and formamide). Dominant role of hydrogen bonding, not hydrophobic effects, is implicated. J. Org. Chem.2002,67 (2): 510~514.
    [35]Cordova A, Notz W, Barbas C F. Direct organocatalytic aldol reactions in buffered aqueous media. Chem. Commun.2002, (24):3024~3025.
    [36]Peng Y Y, Ding Q P, Li Z, Wang P G, Cheng J P. Proline catalyzed aldol reactions in aqueous micelles:an environmentally friendly reaction system. Tetrahedron Lett.2003, 44 (19):3871~3875.
    [37]Brown S P, Goodwin N C, MacMillan D W C. The first enantioselective organocatalytic Mukaiyama-Michael reaction:a direct method for the synthesis of enantioenriched y-butenolide architecture. J. Am. Chem. Soc.2003,125 (5):1192~1194.
    [38]Torii H, Nakadai M, Ishihara K, Saito S, Yamamoto H. Asymmetric direct aldol reaction assisted by water and a proline-derived tetrazole catalyst. Angew. Chem. Int. Ed.2004, 43 (15):1983~1986.
    [39]Li C J, Chan T H. Comprehensive organic reactions in aqueous media.2nd. Ed.; Wiley-VCH:New York,2007.
    [40]俞凌翀.有机化学中的人名反应.北京:科学出版社,1984.
    [41]Olah G A, Tolgyesi W S. In Friedel-Crafts and related reactions. Interscience Publishers: New York,1964.
    [42]Sekine Y, Boekelheide V. A study of the synthesis and properties of [26](l,2,3,4,5,6)cyclophane (superphane). J. Am. Chem. Soc.1981,103 (7):1777~1785.
    [43]Witiak D T, Loper J T, Ananthan S, Almerico A M, Verhoef V L, Filppi J A. Mono and bis(bioreductive) alkylating agents:synthesis and antitumor activities in a B16 melanoma model. J. Med. Chem.1989,32 (7):1636~1642.
    [44]Tashiro M, Tsuge A, Sawada T, Makishima T, Horie S, Arimura T, Mataka S, Yamato T. Metacyclophanes and related compounds.26. Tetrahydroxy[2.n.2.n] metacy-clophanes. Preparation, reactions, and spectra. J. Org. Chem.,1990,55 (8):2404~2409.
    [45]Miller D D, Hamada A, Clark M T, Adejare A, Patil P N, Shams G, Romstedt K J, Kim S U, Intrasuksri U. Synthesis and. alpha.2-adrenoceptor effects of substituted catecholimidazoline and catecholimidazole analogs in human platelets. J. Med. Chem. 1990,33 (4):1138-1144.
    [46]Pu S, Xu J, Shen L, Xiao Q, Yang T, Liu G. Synthesis, structure and fluorescence of a novel diarylethene. Tetrahedron Lett.2005,46 (5):871~875.
    [47]Ito K, Ohba Y, Shinagawa E, Nakayama S, Takahashi S, Honda K, Nagafuji H, Suzuki A, Sone T. Syntheses and properties of tetraaza-, diaza-, tetraoxa-, and dioxa-metacy-clophanes. J. Heterocycl. Chem.2000,37 (6):1479~1489.
    [48]申东升.芳香烃氯甲基化反应综述.化学研究与应用,1999,11(3):229~234.
    [49]Belenkii L I, Volkenshtein Y B, Karmanova I B. New data on the chloromethylation of aromatic and heteroaromatic compounds. Russ. Chem. Bull.1977,46 (9):891~903.
    [50]Lake R, Corson B. Notes:chloromethylation of 1,2,4-trimethylbenzene. J. Org. Chem. 1959,24(11):1823-1825.
    [51]Johns W F. Chloromethylation of estrone methyl ether. J. Org. Chem.1965,30 (11): 3993~3994.
    [52]Wood J H, Perry M A, Tung C C. The bis-chloromethylation of aromatic compounds. J. Am. Chem. Soc.1950,72 (7):2989~2911.
    [53]Burckhalter J H, Seiwald R J, Scarborough H C. The amino-and chloro-methylation of uracil. J. Am. Chem. Soc.1960,82 (4):991~994.
    [54]Lestina G, Cressman H. Notes-the synthesis of 2-chloromethyl-5-alkyl-hydroquinone dimthyl ethers by a controlled chloromethylation. J. Org. Chem.1960,25 (8): 1453~1454.
    [55]Arnold R T, Barnes R. The chloromethylation of tetralin. A synthesis of p-5-tetralylpropionic acid. J. Am. Chem. Soc.1943,65 (12):2393~2395.
    [56]Shacklett C D, Smith H A. The application of the chloromethylation reaction to the synthesis of certain polymethylbenzenes. J. Am. Chem. Soc.1951,73 (2):766~768.
    [57]Ogata Y. Okano M. Kinetics of the chloromethylation of mesitylene in aqueous acetic acid. J. Am. Chem. Soc.1956,78 (20):5423~5425.
    [58]Rabjohn N. The chloromethylation of toluene and conversion of p-xylyl chloride to terephthaloyl chloride. J. Am. Chem. Soc.1954,76 (21):5479~5481.
    [59]Burckhalter J H, Leib R I. Amino-and chloromethylation of 8-quinolinol. Mechanism of preponderant ortho substitution in phenols under Mannich conditions. J. Org. Chem. 1961,26 (10):4078-4083.
    [60]Wightman R H, Laycock D E, Avdovich H W. Chloromethylation of ortho-disubstituted benzenes. A simple preparation of some useful a-isomers of indan, tetralin, and benzosuberane. J. Org. Chem.1978,43 (11):2167~2170.
    [61]Lyushin M M, Bakus P Y, Budzhema K. Synthesis of benzo-1,4-dioxane in the presence of interphase catalysts. Chem. Heterocycl. Compd.1983,19 (8):832~833.
    [62]吴恢庆,戴立信,陈因奇.对甲氧基苯乙腈的改进研究.化学反应工程与工艺,2005,21(2):181~185.
    [63]Wang Q, Wilson C, Blake A J, Collinson S R, Tasker P A, Schroder M. The one-pot halmethylation of 5-substituted salicylaldehydes as convenient precursors for the preparation of heteroditopic ligands for the binding for metal salts. Tetrahedron Lett. 2006,47 (50):8983-8987.
    [64]McCarthy J R, Huffman J C. The chloromethylation of l-bromo-2-methoxy-naphthalene. A revised structure for the product. J. Org. Chem.1984,49 (25):4995-4997.
    [65]Otsuka H, Takedya H. Synthesis and use of dimethyl 1,5-naphthalene-dicarboxlyates and interm-ediates therefrom. JP Patent 05117202,1993.
    [66]朱磊,曹德榕,高春梅.9,10-二羟甲基蒽的单醚化反应.有机化学,2006,26(6):848~851.
    [67]Mirviss S B. Chloromethylation process. US Patent 4901903,1985.
    [68]Fuson R C, MaKeever C H. Chloromethylation of aryl ketones. J. Am. Chem. Soc.1940, 62 (4):784~785
    [69]Chichester C O, Stadtman F H, Mackinney G. On the product of the Maillard reaction. J. Am. Chem. Soc.1952,74 (13):3417~3418.
    [70]Stempnevskaya I A, Tashmukhamedova A K. Snthesis of derivatives of dibenzo-18-crown-6 with a chloromethyl group in the side chain. Chem. Nat. Compd.1982,18 (5): 635~636.
    [71]Ikan R, Fatal Y. Synthesis in indole series. Chloromethylation and chlorosulfonation of l-acetyl-5-bromoindoline. J. Chem. Eng. Data,1971,16 (1):125~126.
    [72]Barker R H, Collman J P, Marshall R L. Reactions of metal chelates. VII. Dimethylaminomethylation and chloromethylation of metal acetylacetonates. J. Org. Chem.1964,29 (11):3216~3220.
    [73]Gawron O. The chloromethylation of veratrole. J. Am. Chem. Soc.1949,71 (2): 744~744.
    [74]Pisanenko D A, Smirnov-Zamkov Y I. chloromethylation of benzyltoluenes with chlorodimethyl ether. Russ. J. Appl. Chem.2004,77 (3):513~514.
    [75]Hamada F, Ito S, Narita M, Nashirozawa N. Selective chloromethylation of cavitand at the upper rim and induced fit type complexation with metal cations by new cavitands: aza-crow-modified cavitands. Tetrahedron Lett.1999,40 (8):1527~1530.
    [76]Taylor L D, Simon M S. Carcinogenicity of bis(chloromethyl) ether and chloromethyl methyl ether. Comments. J. Phys. Chem.1974,78 (26):2696.
    [77]Tou J C, Kallos G J. Kinetic study of the stabilities of chloromethyl methyl ether and bis(chloromethyl) ether in humid air. Anal. Chem.1974,46 (12):1866~1869.
    [78]Pinnell R P, Khune G D, Khatri N A, Manatt S L. Concerning the chloromethylation of alkylbenzenes and polystyrenes by chloromethyl methyl ether. Tetrahedron lett.1984,25 (33):3511~3514.
    [79]Rameshbabu K, Kim Y, Kwon T, Yoo J, Kim E. Facile one-pot synthesis of a photo patternable anthracene polymer. Tetrahedron Lett.2007,48 (27):4755~4760.
    [80]Jones G D. chloromethylation of polystyrene. Ind. Eng. Chem.1952,44 (11): 2686~2693.
    [81]Tashiro M, Nago H. Reaction of dibenzo cyclohepten with bischloromethyl ether. Chem. Express.1991,6(3):181~185.
    [82]Tashiro M, Nago H. The chloromethylation of dibenzo cyclohepten with bischloro-methyl ether. J. Chem. Res. Synop.1990, (9):296~297.
    [83]Button G D. Regulatory concerns regarding ion exchange resins in harmaceuticals. React. Polym.1995,24 (2):91~97.
    [84]Greig J A, Sherrington D C. Molecular sieve behaviour in polymeric based resins with bound nucleophilic reagents. Eur. Polym. J.1979,15 (9):867~871.
    [85]Naik H A, Grail P T, Maxkenzie P D, Pexrsons L W. Chemical modification of polyarylene ether/sulphone polymers:preparation and properties of materials aminated on the main chain. Polymer,1991,33 (1):140~145.
    [86]Almi M, Arduini A, Casnati A, Pochini A, Ungaro R. Chloromethylation of calixarenes and synthesis of new water soluble macrocyclic hosts. Tetrahedron,1989,45 (7): 2177~2179.
    [87]Huang Z T, Wang G Q, Yang L M. Synthesis of acetyl-substituted heterocyclic enamines and their reaction with diethyl zodicarboxylate. Synth. Commun.1995,25 (8): 1339~1351.
    [88]杨占坤,卢志云,谢明贵.阿利新蓝的合成.化学研究与应用,2002,14(2):222~223.
    [89]申艳玲,杨云峰,高保娇;朱勇.以1,4-二氯甲氧基丁烷为氯甲基化试剂合成线性氯甲基化聚苯乙烯.高分子学报,2007,(6):559~565.
    [90]申艳玲,杨云峰,高保娇,李刚.制备氯甲基聚苯乙烯交联微球的新方法.高等学校化学学报,2007,28(3):580-583.
    [91]Glaenzer B I, Csuk R. Reaction of pyranoid aldnolactones with chloromethyl trimethylsilane-derived reagents. Carbohydr. Res.1991,220 (11):79~92.
    [92]McKillop A, Madidabadi F A, Long D A. A simple and inexpensive procedure for chloromethylation of certain aromatic compounds. Tetrahedron Lett.1983,24 (18): 1933~1936.
    [93]Itsuno S, Uchikoshi K, Ito K. Novel method for halomethylation of cross-linked polystyrenes. J. Am. Chem. Soc.1990,112 (22):8187~8188.
    [94]Moulay S, Mehdi N. Halomethylation of polystyrene and subsequent pyridination via a hemolytic pathway. Chinese J. Ploym. Sci.2006,24 (6):627~635.
    [95]Xu F J, Zhao J P, Kang E T, Neoh K G. Surface functionalization of polyimide films via chloromethylation and surface-initiated atom transfer radical polymerization. Ind. Eng. Chem. Res.2007,46 (14):4866~4873.
    [96]Yoshida K, Horie T. Synthesis of trimellitic anhydride and pyromellitic anhydride. Sekiyu Gakkaishi,1973,16 (8):20~22.
    [97]Hirao I. Matsuura T. Ota K. Synthesis and application of organic acids. III. Synthesis of benzenepolycarboxylic acids from m-Xylene. Yuki Gosei Kagaku Kyoukaishi,1965,23 (2):248~253.
    [98]Fuson R. C, McKeever C H. Chloromethylation of aromatic compounds in organic reactions. John Wiley and Sons:New York,1942.
    [99]Moshchinskaya N K, Chizh G K, Olifer V S. The chloromethylation of a serial aryl hydrocarbon. US Patent 405880,1974.
    [100]Petrova R A, Berezin B D, Izv V, Uchebn Z K. Khim.Tekhnol.1986,29 (9):55~57.
    [101]Wolf G. Preparation of polycyclic aromatic hydrocarbons as potential carcinogens. J. Am. Chem. Soc.1953,75 (11):2673~2678.
    [102]葛洪玉,唐汉方,马卫兴.极性有机酸催化合成4,4-二(氯甲基)联苯研究.淮海工学院学报(自然科学版),2006,15(2):41~43.
    [103]Kishida T, Ieda N, Yamauchi T, Komura K, Sugi, Y. Strong organic acids as efficient catalysts for the chloromethylation of m-xylene:the synthesis of l,3-bis(chloromethyl)-4,6-dimethylbenzene. Ind. Eng. Chem. Res.2009,48 (4):1831~1839.
    [104]Zwanenburg D J, Haan H D, Wynberg H. The synthesis of 4,6-dihydrothieno[3,4-b] thiophene. J. Org. Chem.1966,31 (10):3363~3365.
    [105]Brown H C, Nelson K L. An interpretation of meta orientation in the alkylation of toluene. The relative reactivity and isomer distribution in the chloromethylation and mercuration of benzene and toluene. J. Am. Chem. Soc.1953,75 (24):6292~6299.
    [106]Davydov D V, Vinogradov S A, Beletskaya I P. Catakytic activity of trivalent lanthanide salts in the chloromethylation of aromatic hydrocarbons. Russ. Chem. Bull.1990,39 (3):627~628.
    [107]Barker P L, Bahia C.4-Chloromethylation of 1-methyl-2-pyrryl ketones. Tetrahedron, 1990,46 (8):2691~2694.
    [108]Taylor L D, Davis R B. The chloromethylation of 5-nitrosalicylaldehyde. J. Org. Chem. 1963,28 (6):1713.
    [109]Thomas P J, Pews R G. Process for preparing 3-chloromethylbenzo-cyclobutene. US Patent 5099083,1991.
    [110]Weber H, Bier K. Process of preparing chloromethylated aromatic material. EP Patent 327255,1986.
    [111]Stephen D. Process for the production of chloromethyl phenethyl bromide. EP Patent 345478,1989.
    [112]明田耕一,西罔敏雄.2-氯甲基-4-硝基苯乙醚的合成.日本公开特许,昭6032750,1988.
    [113]明田耕一,西罔敏雄.2-氯甲基-4-硝基苯乙醚的制备.日本公开特许,昭6032751,1988.
    [114]Kobayashi S. Rare earth trifluoromethanesulfonates as water-tolerant Lewis acid catalysts in organic synthesis. Synlett.1994,1994 (9):689~701.
    [115]Barrett A G M, Braddock D C. Scandium(III) triflates as recyclable catalysts for the direct acetylation of alcohols with acetic acid. Chem. Commun.1997, (4):351-352.
    [116]Waller F J, Barett A G M, Braffock D C, Ramprasad D. Lanthanide(III) triflates as recyclable catalysts for atom economic aromatic nitration. Chem. Commun.1997, (6): 613~614.
    [117]Waller F J, Barett A G M, Braffock D C, Ramprasad D. Hafnium(IV) and zirconium(IV) triflates as superior recyclable catalysts for the atom economic nitration of o-nitrotoluene. Tetrahedron Lett.1998,39 (12):1641~1642.
    [118]Davydov D V, Vinogradov S A, Beletskaya I P. Catakytic activity of trivalent lanthanide salts in the chloromethylation of aromatic hydrocarbons. Russ. Chem. Bull.1990,39 (3):627~628.
    [119]Kishida T, Yamauchi T; Kubota Y, Sugi Y. Rare-earth metal triflates as versatile catalysts for the chloromethylation of aromatic hydrocarbons. Green Chem.2004, (6): 57~62.
    [120]Kishida T, Yamauchi T, Komura K, Kubota Y, Sugi Y. The chloromethylation of biphenyls catalyzed by group 3 and 4 metal triflates. J. Mol. Catal. A:Chem.2006,246 (12):268~275.
    [121]Wasseracheid P, Keim W. Ionic liquids-new "solutions" for transition metal catalysis. Angew. Chem. Int. Ed.2000,39 (21):3772~3789.
    [122]Yeung K S, Farkas M E, Qiu Z, Yang Z. Friedel-Crafts acylation of indoles in acidic imidazolium chloroaluminate ionic liquid at room temperature. Tetrahedron Lett.2002, 43 (34):5793~5795.
    [123]Gordon C M. New development in catalysis using ionic liquids. Appl. Catal. A:Gen. 2001,222 (1-2):101~107.
    [124]Sheldon R. Catalytic reactions in ionic liquids. Chem. Commun.2001, (24): 2399-2407.
    [125]乔煜,邓全友.氯铝酸温室离子液体介质中Blanc氯甲基化反应的研究.化学学报,2003,61(1):133~136.
    [126]Wang Y, Shang Z C, Wu T X. [emim]BF4-promoted chloromethylation of aromatic hydrocarbons. Synth. Commun.2006,36 (20):3053~3059.
    [127]张赛丹.离子液体催化乙苯、邻二甲苯及苯甲醚氯甲基化反应研究.广东:广东工业大学,2007.
    [128]Adams F S, Chloromethylation process. US patent 3723548,1973.
    [129]牟莉娟,蒋文伟,夏素兰.1,3-苯并二噁茂的微胶束催化氯甲基化新技术.应用化学,2000,17(5):563~565.
    [130]刘启发,高保娇,杨云峰,安富强.胶束催化作用下实现聚苯乙烯的氯甲基化.高等学校化学学报,2006,27(2):380~385.
    [131]Jones R G, Benfield R E, Swain A C, Webb S J, Went M J. Chloromethylation of poly(methylphenylsilane). Polymer,1995,36 (2):393~398.
    [132]Okada Y, Kaneko M, Nishimura J. Chloromethylation of syn-[2.n] metacyclophanes and application toward multi-bridged cyclophane synthesis. Tetrahedron Lett.2001,42 (1):25~27.
    [133]Ogata Y, Okano M. Kinetics of the chloromethylation of mesitylene in aqueous acetic acid. J. Am. Chem. Soc.1956,78 (20):5423~5425.
    [134]Gerisch M, Krumper J R, Bergman R G, Tilley T D. Rhodium (Ⅲ) and rhodium (II) complexes of novel bis(oxazoline) pincer ligands. Organometallics,2003,22 (1): 47~58.
    [135]Podkoscienly W, Podgorski M. The Chloromethylation of diphenylmethane with the reagent cyclohexanev. EP patent 0151878,1981.
    [136]Fuller T J, Narang R S, Smith T W, Lucadavid J, Crandall R K. Process for haloalkylation of high performance polymers. EP Patent 0826700 (A2),1998.
    [137]Pevzner L M. Synthesis and phosphorylation of 4-functionalized 2-tert-butyl-3-chloromethylations. Russ. J. Gen. Chem.2002,72 (7):1085~1089.
    [138]Takeya H, Octsuka H. Production process for 1,4-naphthalene-dicarboxylic acid or l-hydroxymet-hyl-4-napthoic acid. JP Patent 05163198,1993.
    [139]Vesely V, Schwarz F. Method of preparation of the alkylbenzylchlorides. CS patent 215315,1984.
    [140]Abramo J, Chapin E C. Chloromethylation of β-chloroethylbenzene and the preparation of p-vinylbenzyl alcohol. J. Org. Chem.1960,26 (8):2671~2673
    [141]Kachurin O L, Zaraiskii A P, Velichko L L, Zaraiskaya N A, Matvienko N M, Okhrimenko Z A. Phase-transfer catalysis in reactions of electrophilic aromatic substitution. Russ. Chem. Bull.1995,44 (10):1815~1821.
    [142]Selva M, Trotta F, Tundo P. Improved selectivity in chloromethylation of alkylbenzenes in presence of quaternary ammonia salts. Synthesis,1991,1991 (11): 1003~1004.
    [143]申东升,林原斌.3,4-亚甲二氧基正丙基苯的氯甲基化反应.合成化学,1997,5(2):202~204.
    [144]王明慧,吴坚平,杨立荣.相转移催化法合成2-氯-3-氯甲基-噻吩及噻康唑.应用化学,2006,23(1):106~108.
    [145]Bui C T, Maeji N J, Rasoul F, Bray A M. A simple method for the generation of chloromethyl polystyrene on the Multipin~(TM) solid support. Tetrahedron Lett.1999,40 (29):5383-5386.
    [146]Sadhu K M, Matteson D S. (Chloromethylation)lithium in an efficient conversion of carbonyl compounds to chlorohydrins or oxiranes. Tetrahedron Lett.1986,27 (7): 796~798.
    [147]Gu H, Xu W M, Kinstle T H. Efficient synthesis of 8,11-dimethylene-bicyclo[5.3.1] undecan-2-one. Tetrahedron Lett.2005,46 (38):6449~6451.
    [148]Onishi T, Nakano T, Hirose N, Nakazawa M, Izawa K. Practical synthesis of a-aminoalkyl-a'-chloromethylketone derivatives. Part 2:chloromethylation of N-imine- protected amino acid estefs. Tetrahedron Lett.2001, 42 (34):5887-5890.
    [149]Sheng Q, Stover H D H. A new route to (chloromethyl)styrene polymers. Macromolecules,1997,30 (21):6712~6714.
    [150]Pines S H, Czaja R F, Abramson N L. Synthesis of p-methylthiobenzyl chloride. A case of isomer control in an electrophilic substitution. J. Org. Chem.1975,40 (13): 1920~1923.
    [151]Ferguson L. The synthesis of aromatic aldehydes. Chem. Rev.1946,38 (2):227~254.
    [152]Blazzevic N, Kolban D, Belin B, Sunjic V, Kajfez F. Hexamethylenetetramine, a versatile reagent in organic synthesis. Synthesis,1979 (3):161~176.
    [153]刘小帆,申东升,欧阳星星,杨广照,管小艳.对烷基苯甲醛的合成.石油化工,2004,33(10):968~971.
    [154]郑鹏武.基于钒过氧化合物和叔胺氧化物的双重亲核和氧化作用新反应的研究.天津:天津大学,2004.
    [155]Furniss B S, Hannaford A J, Smith P W G, TatchellA R. Textbook of practical organic chemistry. Thames Polytechnic:London,1988.
    [156]Weber E, Csoregh I, Stensland B. A novel clathrate desige:selective inclusion of uncharged molecules via the binaphthyl hinge and appended coordinating group. J. Am. Chem. Soc.1984,106 (11):3297~3306.
    [157]Gelling O J, Feringa B L, Oxidative demethylation in monooxygenase model systems competing pathways for binuclear and helical multinuclear copper(I) complexes. J. Am. Chem. Soc.1990,112 (21):7599~7604.
    [158]Tang J T, Zhu J L, Shen Z X, Zhang Y W. Efficient and convenient oxidation of organic halides to carbonyl compounds by H_2O_2 in ethanol. Tetrahedron Lett.2007,48 (11): 1919~1921.
    [159]Hass H B, Myron L B, The reaction of benzyl halides with the sodium salt of 2-nitropropane. A general synthesis of substituted benzaldehydes. J. Am. Chem. Soc. 1949,71 (5):1767~1769.
    [160]Syper L, Meochowskl J. A convenient oxidation of halomethylarenes and alcohols to aldehydes with dimethyl selenoxide and potassium benzeneselenite. Synthsis,1984, 1984 (9):747~752.
    [161]Klanderman B H. Aldehyde synthesis. A study of the preparation of 9,10-anthracene-dicarboxaldehyde and other aromatic dialdehydes. J. Org. Chem.1966,31 (8): 2618-2620.
    [162]Krohnke F. Syntheses using pyridinium salts(IV). Angew. Chem. Int. Ed.1963,2 (7): 380~393.
    [163]Barbry D, Champagne P. Fast synthesis of aromatic aldehydes from benzylic bromides without solvent under microwave irradiation. Tetrahedron Lett.1996,37 (43): 7725~7726.
    [164]Mukaiyamn S, Inanaoa J, Yamaguchi M.4-Dimethylaminopyridine N-oxide as an efficient oxidizing agent for alkyl halides. Bull. Chem. Soc. Jpn.1981,54 (7): 2221~2222.
    [165]Chandrasekhar S, Sridhar M. A bifunctional approach towards the mild oxidation of organic halides:2-dimethylamino-N,N-dimethylaniline N-oxide. Tetrahedron Lett. 2000,41 (28):5423~5425.
    [166]Griffith W P, Jolliffe J M, Ley S V, Springhorn K F, Tiffin P D. Oxidation of activated halides to aldehydes and ketons by N-methylmorpholine-N-oxide. Synth. Commun. 1992,22(13):1967~1971.
    [167]Franzen V, Otto S. Eine neue methode zur darstellung von carbonylverbindungen. Chem. Ber.1961,94 (5):1360~1363.
    [168]Godfrey A G, Ganem B. Ready oxidation of halides to aldehydes using trimethylamine N-oxide in dimethylsulfoxide. Tetrahedron Lett.1990,31 (34):4825~4826.
    [169]Frechet J M, Darling G, Farrall M J, Polymer Preprint,1980,21:270~272.
    [170]陈家威,吴玉民,大孔型氧化三甲胺树脂——一个改进的固相氧化剂.离子交换与树脂,1991,7(4):254~260.
    [171]Griffith P, Jolliffe J M, Ley S V, Williams D J. A new ruthenium(VI)oxidant: preparation, X-ray crystal structure, and properties of (Ph_4P)[RuO_2(OAc)Cl_2]·2H_2O. J. Chem. Soc, Chem. Commun.1990, (18):1219~1221.
    [172]Epstein W W, Sweat F W. Dimethyl sulfoxide oxidations. Chem. Rev.1967,67 (3): 247~260.
    [173]Kornblum J W, Powers O J. A new and selective method of oxidation. J. Am. Chem. Soc.1957,79 (24):6562~6563.
    [174]Kornblum J W, Powers O J. A new and selective method of oxidation:the conversion of alkyl halides and alkyl tosylates to aldehydes. J. Am. Chem. Soc.1959,81 (15): 4113~4114.
    [175]Helms A, Heiler D, Melendon G. Electron transfer in bis-porphyrin donor-acceptor compounds with polyphenylene spacera show a weak distance dependence. J. Am. Chem. Soc.1992,114 (15):6227-6238.
    [176]Charles F, Wilcox J, Karl A.'H NMR study of two tetradehydrocyclodecabiphenylenes. J. Org. Chem.1986,51 (7):1088-1094.
    [177]Xu G, Wu J P, Ai X A, Yang L R. Microwave-assisted Kornblum oxidation of organic halides. Chin. Chem. Lett.2007,18 (6):643-646.
    [178]Wilcox C F, Lassila K R, VanDuyne G, Lu H, Clardy J. Synthesis and properties of cycloocta[def]biphenylene-1,4-dione. J. Org. Chem.1989,54 (9):2190~2197.
    [179]Kornblum N, Frazier H W. A new and convenient synthesis of glyoxals, glyoxalate esters, and a-Diketones. J. Am. Chem. Soc.1966,88 (4):865~866.
    [180]McKillop A, Ford M E. An improved procedure for the conversion of benzyl halides into benzaldehydes. Synth. Commun.1974,4 (1)145~50.
    [181]Khodaei M M, Khosropour A R, Jowkar M. Bi(NO_3)_3-5H_2O-TBAF as an efficient reagent for in situ oxidation:dihydropyrimidinone formation from benzyl halides. Synthesis 2005,2005 (8):1301~1304.
    [182]Sibi M P, Shankaran K, Alo B I, Hahn W R, Snieckus V. Overriding normal Friedel-Craft regiochemistry in cycliacylation. Regiospecific carbodesilylation and Parham cyclization routes to 7-methoxy-l-indanols. Tetrahedron Lett.1987,28 (26): 2933-2936.
    [183]Firouzabadi H, Seddighi N, Emottaghineiad M. Barium permanganate, Ba(MnO_4)_2, a versatile and mild oxidizing agent for use under aprotic and non-aqueous conditions. Tetrahedron,1990,46 (19):6869-6878.
    [184]Goswami S, Jana S, Dey S, Adak A K. A simple and convenient manganese dioxide oxidation of benzyl halides to aromatic aldehydes under neutral condition. Chem. Lett. 2005,34 (2):194~195.
    [185]Cardillo G, Orena M, Sandri S. Chromate ion as a synthetically useful nucleophile:a novel synthesis of aldehydes from alkyl halides. J. Chem. Soc, Chem. Comm.1976, (6):190~191.
    [186]黄志真,黄宪.聚乙二醇催化下的伯卤代烃的选择氧化反应.化学试剂,1986,8(1):18~19.
    [187]Kumpf W, Martinetz D. Z. Chem.1984,24 (5):102~105.
    [188]Kraus G A, Kroiski M. Synthesis of a precursor to quassimarin. J. Org. Chem.1986,51 (17):3347~3350.
    [189]Cardillo G, Orena M, Sandri S. Polymer supported reagents. Chromic acid on anion exchange resin synthesis of aldehydes and ketones from allylic and benzylic halides. Tetrahedron Lett.1976,17 (44):3985~3986.
    [190]Yadav G D, Haldavanekar B V. Selectivity engineering with polymer-supported reagents:oxidation of benzyl chloride to benzaldehyde. React. Funct. Polym.1997,32 (2):187~194.
    [191]Alzpurum J M, Juarist M, Lecea B. Regents and synthetic methods-40:halosilane-chromium trioxide as efficient oxidizing reagents. Tetrahedron,1985,41 (14): 2903-2911.
    [192]Khurana J M, Sahoo P K, Titue S S. Ultrasound assisted oxidation of benzylic halides with sodium hypochlorite. Synth. Commun.1990,20 (9):1357~1361.
    [193]Sikdar A P, Chetri A B, Baishya G, Das P J. Solid phase oxidation of alcohols and benzyl halides to carbonyls using bromate exchange resin. Synth. Commun.2003,33 (18):3147-3151.
    [194]Zhdankin V V, Stang P J. Recent developments in the chemistry of polyvalent iodine compounds. Chem. Rev.2002,102 (7):2523~2584.
    [195]Wirth T. Hypervalent iodine chemistry in synthesis:scope and new directions. Angew. Chem. Int. Ed.2005,44 (24):3656-3665.
    [196]Das S, Panigrahi A K, Maikap G C. NaIO_4-DMF:a novel reagent for the oxidation of organic halides to carbonyl compounds. Tetrahedron Lett.2003,44 (7):1375-1377.
    [197]Moorthy J N, Singhal N, Senapati K. Oxidation with IBX:benzyl halides to carbonyl compounds, and the one-pot conversion of olefins to 1,2-diketones. Tetrahedron Lett. 2006,47(11):1757-1761.
    [198]Ferraboschi P, Nasr M, Azadani E. Reactions of pericdate under homogeneous and phase-transfer conditions:examples of new oxidations of unusual groups. Synth. Commun.1986,16 (1):43~50.
    [199]Olah G A, Welch J. Synthetic methods and reactions:37~1, selective organic oxidation with iodine pentafluoride in 1,1,2-trichlorotrifluoroethane solution. Synthesis,1977 1977 (6):419~421.
    [200]Hashemi M M, Rahimi A, Ahmadibeni Y. Microw-expedited synthesis of aromatic aldehydes and ketones from alkyl halides without solvent using wet montmorillonite K 10 supported iodic acid as oxidant. Acta Chim. Slov.2004,51 (2):333~336.
    [201]Li C B, Zheng P W, Li J, Zhang H, Cui Y, Shao Q Y, Ji X, Zhang J, Zhang P Y, Xu Y L. The dual roles of oxo diper oxo-vanadate both as a nucleophile and an oxidant in the green oxidation of benzylalcohols or benzyl halides to aldehydes and ketones. Angew. Chem. Int. Ed.2003,42 (41):5063~5066.
    [202]Yadav G D, Mistry C K. A new model of capsule membrane transfer catalysis for oxidation of benzyl chloride to benzaldehyde with hydrogen peroxide. J. Mol. Catal. Chem.A:1995,102(2):187-194.
    [203]Shi M, Feng Y S. Oxidation of benzyl chlorides and bromides to benzoic acids with 30%hydrogen peroxide in the presence of Na_2WO_4, Na_2VO_4, or Na_2MoO_4 under organic solvent-free conditions. J. Org. Chem.2001,66 (9):3235-3237.
    [204]Zhan B. Z. Thompson A. Recent developments in the aerobic oxidation of alcohols. Tetrahedron,2004,60 (13):2917~2935.
    [205]Hashemi M M, Beni Y A. Copper(I) chloride/kieselguhr:a versatile catalyst for oxidation of alkyl halides and alkyl tosylates to the carbonyl compounds. J. Chem. Research (S),1999 (9):434~435.
    [206]Goswami S, Mahapatra A K. Aromatic aldehydes from benzylbromides via cobalt(I) mediated benzyl radicals in the presence of aerial oxygen:a mild oxidation reaction in neutral condition. Tetrahedron Lett.1998,39 (14):1981~1984.
    [207]Itoh A, Kodama T, Inagaki S, Masaki Y. Photooxidation of arylmethyl bromides with mesoporous silica FSM-16. Org. Lett.2000,2 (16):2455~2457.
    [208]Peyman S, Irai M B. Tetrakis(pyridine)silver(II)peroxodisulfate, [Ag(py)_4]S_2O_8, a reagent for the oxidative transformations. Bull. Chem. Soc. Jpn.1992,65 (10): 2878~2880.
    [209]Bressan M, Forti L. Ruthenium-catalyzed oxidation of alkylaromatics by mono-persulfate with preferential oxidative fission of the benzene ring. J. Mol. Catal.1993, 84 (1):59~66.
    [210]Paquette L A, Klobucar W D, Snow R A. Halothiation as a method for oxidation of primary halides and terminal olefins to aldehydes, Synth. Commun.1976,6 (8): 575~581.
    [211]Katritzky A K. Heterocycles in organic synthsis. part25.~1 Reagents for the conversion of halides into aldehydes and ketones. J. Chem. Soc. Perkin,1979:2493~2496.
    [212]Bergeron R J, Hoffman P G. Mide oxidation of alkyl halides. J. Org. Chem.1979,44 (11):1835~1839.
    [213]Trost B M, Liu G J. Dehydrogenation of amines:An approach to imines and aldehydes. J. Org. Chem.1981,46 (22):4617~4620.
    [214]Yamashita K, Chiba M, Ishida H, Ohkubo K. Micellar promoted photoreduction of ethylenediaminetetraacetato cobaltate(III) by 1-benzyl-1,4-dihydronicotinamide. J. Chem. Soc, Perkin Trans,1991,2:367~372.
    [215]Siswanto C, Battal T, Schuss O E, Rathman J F. Synthesis of alkylphenyl ethers in aqueous surfactant solutions by micellar phase-transfer catalysis.1. Single-phase systems. Langmuir,1997,13 (23):6047~6052.
    [216]Ouarti N, Marques A, Blagoeva I, Ruasse M F. Optimization of micellar catalysis of nucleophilic substitutions in buffered cetyltrimethylammonium salt solutions.1. buffers for the 9-10 pH range. Langmuir,2000,16 (5):2157~2163.
    [217]Van den Broeke L J P, De Bruijn V G, Heijinen J H M, Keurentjes J T F. The oxidation technology with micellar catalysis for epoxidation of propylene. Int. Eng. Chem. Res. 2001,40 (23):5240-5245.
    [218]Diego-Castro M J, Hailes H. Novel application of chiral micellar media to the Diels-Alder reaction. Chem. Commun.1998, (15):1549~1550.
    [219]De Souza E F, Ionescu L G. Micellar-catalyzed reactions of a phosphate ester:effect of the dielectric constant of the medium. Colloid Surface A,1999,149 (1-3):609~615.
    [220]沈吉静,赵振国,马季铭.阳离子表面活性剂溴代十六烷基吡啶胶束对2,4-二硝基氯苯水解反应的影响.高等学校化学学报,1997,18(9):1527~1533.
    [221]Rosso F D, Bartoletti A, Profio P D, Germani R, Savelli G, Blasko A, Bunton C A. Hydrolysis of 2,4-dinitrophenyl phosphate in normal and reverse micelles. Chem. Soc. Perkin Trans.1995, (2):673~678.
    [222]阮科,赵振国,马季铭.胶束催化假相模型.化学通报,2000,63(12):18~25.
    [223]Khan M N, Fui C T. Kinetic study on the effects of mixed nonionic-cataionic micelles on the rate of alkaline hydrolysis of N-hydroxyphthalimide. J. Mol. Liq.2009,147 (3): 170~177.
    [224]Alvarez P, Bassetti M, Gimeno J, Mancini G. Hydration of terminal alkynes to aldehydes in aqueous micellar solutions by ruthenium (II) catalysis; first anti-Markovnikov addition of water to propargylic alcohols. Tetrahedron Lett.2001,42 (48):8467~8470.
    [225]Ghezzi L, Robinson B H, Secco F, Tine M R, Venturini M. Binding of Pd(II) to pada in water/micellar system:complex formation, kinetics in water and DTAC solution. Colloid Surface A,2007,292 (2-3):139~137.
    [226]Schomacker R, Robinson B H, Fletcher P D I. Interation of enzymes with surfactants in adueous solution and in water-in-oil. J. Chem. Soc. Faraday Trans.1988, (84): 4203~4206.
    [227]Qiu L G, Jiang X, Gu L N, Hu G. Gemini metallomicellar catalysis:hydrolysis of p-nitrophenyl picolinate catalyzed by Cu(II) and Ni(II) complexes of macrocyclic ligands in Gemini surfactant micelles. J. Mol. Catal. A:Chem.2007,277 (1-2):15~20.
    [228]Nath S, Ghosh S K, Panigrahi S, Pal T. Phto-induced decolorization of dimethyl- methylene blue with selenious acid:a novel method to examine selective monomer-dimer distribution of the dye in micelle. Spectrochimica Acta Part A,2005, 61 (4):2145~2151.
    [229]Jiang W D, Xu B, Lin Q, Li J Z, Fu H Y, Zeng X C, Chen H. Cleavage of phosphate diesters mediated by Zn(II) complex in gemini surfactant micelles. J. Colloid and Interface Sci.2007,311 (2):530~536.
    [230]Broxton T J, Christie J R, Chung R T. Micellar catalysis of organic reactions.23. Effect of micellar orientation of the substrate on the magnitude of micellar catalysis. J. Org. Chem.1988,53" (13):3081~3084.
    [231]张永敏.手性胶束中的有机合成.合成化学,1994,2(1):68~72.
    [232]何玉萼,张菊仙.胶束催化2,4-硝基氯苯碱水解反应动力学研究.化学研究与应用,2000,12(2):234~236.
    [233]Han X M, Balakrishnan V K, Buncel E. Alkaline degradation of the organophosphorous pesticide fenitrothion as mediated by cationic C12, C14, C_(16), and C_(18) surfactants. Langmuir,2007,23 (12):6519~6525.
    [234]Bunton C A, Buzzaccarin F D, Hamed F H. Dephosphorylation in cationic micelles and microemulsions. Effects of added alcohols. J. Org. Chem,1983,48 (15):2457~2459.
    [235]Nozaki K, Yoshida M, Takaya H. Reaction rate enhancement by addition of anionic surfactant SDS in the ruthenium catalyzed hydrogen transfer from a 1,4-diol to 4-phenyl-3-buten-2-one. J. Organomet. Chem.1994,473(1-2):253~256.
    [236]Huang X, Dong Z Y, Liu J Q, Mao S Z, Xu J Y, Luo G M, Shen J C. Selenium-mediated micellar catalysis:an efficient enzyme model for glutathione peroxidase-like catalysis. Langmuir,2007,23 (3):1518~1522.
    [237]Liu R H, Liang X M, Dong C Y, Hu X Q. Transition-metal-free:a highly efficient catalytic aerobic alcohol oxidation process. J. Am. Chem. Soc.2004,126 (13): 4112~4113.
    [238]Herrerias C I, Zhang T Y, Li C J. Catalytic oxidation of alcohols to carbonyl compounds by oxygen under solvent-free and transition-metal-free conditions. Tetrahedron Lett. 2006,47(1-2):13~17.
    [239]Wang X L, Liu R H, Jin Y, Liang X M. TEMPO/HCl/NaNO_2 catalyst:a transition-metal-free approach to efficient aerobic oxidation of alcohols to aldehydes and ketones. Chem. Eur. J.2008,14 (19):2679~2685.
    [240]Liu H J, Pan Y H, Tan C H. Sodium nitrite (NaNO_2) catalysed iodo-cyclisation of alkenes and alkynes using molecular oxygen. Tetrahedron Lett.2008,49 (48): 4424~4426.
    [241]Adam W, Saha-Moller C R, Ganeshpure P A. Synthetic application of nonmetal catalysts for homogeneous oxidations. Chem. Rev.2001,101 (11):3499-3548.
    [242]Jiang N, Ragauskas A J. TEMPO-catalyzed oxidation of benzylic alcohols to aldehydes with the H_2O_2/HBr/ionic liquid [bmim]PF6 system. Tetrahedron Lett.2005,46 (19): 3323~3326.
    [243]Buysch H J, Hoffmann E G, Jansen U, Ooms P, Schenke B U. Process for the preparation of benzyl alcohol. US patent 5728897,1998.
    [244]Beste G W, Hammett L P. Rate and mechanism in the reactions of benzyl chloride with water, hydroxyl ion and acetate ion. J. Am. Chem. Soc.1940,62 (9):2481~2487.
    [1]Zarras P, Vogl O. Polycationic salts as bile acid sequestering agents. Prog. Polym. Sci. 1999,24 (4):485~516.
    [2]Masao T, Hisanori S, Hiroko F. Substituted styrene derivative. JP Patent 2001081066, 2001.
    [3]Nishikubo T, Tizawa T, Kobayashi K, Okawara M. Facile synthesis of p-chloromethylated styrene by elimination reaction of p-(2-bromethyl) benzyl chloride using potassium hydroxide as a base under phase transfer catalysis. Tetrahedron Lett.1981,22 (39): 3873-3874.
    [4]LeCarre E, Lewis N, Ribas C, Wells A. Convent preparation of functionalised polymer-based resins via an economical preparation of chloromethylated polystyrene resins (Merrifield type). Org. Process Res. Dev.2000,4 (6):606~610.
    [5]McNamara C A, Dixon M C, Bradley M. Recoverable catalysts and reagents using recyclable polystyrene-based supports. Chem. Rev.2002,102 (10):3275-3300.
    [6]Tanimoto S, Miyake T, Okano M. A convenient preparation of p-chloromethyl-styrene and its reactions. Synth. Commun.1974,4 (4):193~197.
    [7]Stephen D. Process for the production of chloromethyl phenethyl bromide. EP Patent 0345478,1989.
    [8]Montheard J P, Camps M, Chatzopoulos M. A new convenient synthesis of ortho-, meta-and para-chloromethylstyrenes. Makromol. Chem.1985,186 (12):2513~2518.
    [9]Selva M, Trotta F, Tundo P. Improved selectivity in the chloromethylation of alkylbenzenes in the presence of quaternary ammonium salts. Synthesis,1991,1991 (11): 1003~1004.
    [10]Olah G A, Bruce M R. Onium ions.19. Chloromethylhalonium ions. J. Am. Chem. Soc. 1979,101 (16):4765~4766.
    [11]Siswanto C, Battal T, Schuss O E, Rathman J F. Synthesis of alkylphenyl ethers in aqueous surfactant solutions by micellar phase-transfer catalysis.1. Single-phase systems. Langmuir 1997,13 (23):6047~6052.
    [12]Balakrishnan V K, Buncel E, Vanlood G W. Micellar catalyzed degradation of fenitrothion, an organophosphorus pesticide, in solution and soils. Environ. Sci. Technol. 2005,39 (15):5824~5830.
    [13]Buhling A, Kamer P C J, Van Leeuwen P W N M. Rhodium catalysed hydroformylation of higher alkenes using amphiphilic ligands. J. Mol. Catal. A:Chem.1995,98 (2): 69~80.
    [14]Pandey E, Upadhyay S K. Effect of micellar aggregates on the kinetics of oxidation of a-amonoacids by chloramine-T in perchloric acid medium. Colloids Surf. A: Physicochem. Eng. Aspects,2005,269 (1-3):7-15.
    [15]WeL G K V, Wijnen J W, Engberts J B F N. Solvent effects on a Diels-Alder reaction involving a cationic diene:consequences of the absence of hydrogen-bond interactions for accelerations in aqueous media. J. Org. Chem.1996,61 (25):9001-9005.
    [16]Siswanto C, Rathma J F. Selective N-alkylation of aniline by micellar catalysis. J. Colloid Interface Sci.1997,196 (1):99~102.
    [17]Qiu L G, Xie A J, Shen Y H. Micellar-catalyzed alkaline hydrolysis of 2,4-dinitrochlorobenzene in a cationic gemini surfactant. Colloids Surf. A:Physicochem. Eng. Aspects,2005,260 (1-3):251~254.
    [18]Hafez M A H, Kenawy I M M, Akl M A, Lashein R R. Preconcentration and separation of total mercury in environmental samples using chenically modified chloromethylated polystyrene-PAN (ion-exchanger) and its determination by cold vapour atomic absorption spectrometry. Talanta,2001,53 (4):749~760.
    [19]Burgo P D, Junquera E, Aicart E. Mixed micellization of a nonionic-cationic surfactant system constituted by n-octyl-β-D-glucopyranoside/dodecyl-trimethylammonium bromide/H_2O. An electrochemical, thermodynamic, and spectroscopic study. Langmuir, 2004,20 (5):1587~1596.
    [20]Le Gall M, Lelie'vre J, Loppinet-Serani A, Letellier P. Thermodynamics and kinetics in micellar media. Reduction of the hydroxide ion with 1,3,5-trinitrobenzene in aqueous solutions of a neutral nonionic surfactant. Effect of the concentration of background electrolyte. J. Phys. Chem. B 2003,107 (33):8454-8461.
    [21]Van den Broeke L J P, De Bruijn V G, Heijinen J H M. Keurentjes J T F. Micellar catalysis for epoxidation reactions. Int. Eng. Chem. Res.2001,40 (23):5240~5245.
    [22]Ouarti N, Marques A, Blagoeva I, Ruasse M F. Optimization of micellar catalysis of nucleophilic substitutions in buffered cetyltrimethylammonium salt solutions.1. buffers for the 9-10 pH range. Langmuir,2000,16 (5):2157~2163.
    [23]Kishida T, Yamauchi T, Komura K, Kubota Y, Sugi Y. The chloromethylation of biphenyls catalyzed by group 3 and 4 metal triflates. J. Mol. Catal. A:Chem.2006,246 (1-2):268~275.
    [24]Maijgren B, Odberg L. Surface temsion data from slight deformations of the surface. The ring method. J. Colloid Interface Sci.1982,88 (1):197-203.
    [25]赵振国.胶束催化与微乳催化.北京:化学工业出版社,2006,10,13,44,75.
    [26]朱步瑶,赵振国.界面化学基础.北京:化学工业出版社,1996,84~93.
    [27]赵小芳,何云飞,尚亚卓,韩霞,刘洪来.电解质和乙醇对DNA和Gemini:表面活性剂相互作用的影响.物理化学学报,2009,25(5):853~858.
    [28]Funasaki N, Hada S. Surface tension of aqueous solutions of surfactant mixtures. The composition of mixed micelles. J. Phys. Chem.1979,83 (19):2471~2475.
    [29]GuT R, Zhu B Y, Li W L, Ma J M, Dai L R, Cheng H M. Surface Chemistry. Science Press, Beijing,1999.
    [30]赵剑曦.四乙基溴化铵对离子型表面活性剂胶束化行为的影响.福州大学学报(自然科学版),1998,26(4):91~95.
    [31]巩育军,薛元英.对硝基苯酚丙酸酯水解反应的CTAB胶团催化.催化学报,2000,21(1):7-10.
    [32]Chung J J, Lee S W, Chol J H. Salt effects on the critical micelle concentration and counterion binding of cetylpyridinium bromide micelles. Bull. Korean Chem. Soc.1991, 12 (4):411~413.
    [33]Pal T, De S, Jana N R, Pradhan N, Mandal R, Pal A. Organized media as redox catalysts. Langmuir 1998,14 (17):4724~4730.
    [34]Pattabiraman M, Kaanumalle L S, Ramamurthy V. Photoproduct selectivity in reactions involving singlet and triplet excited states within bile salt micelles. Langmuir,2006,22 (5):2185~2192.
    [35]Yu X, Scheller D, Rademacher O, Wolff T. Selectivity in the photodimerization of 6-alkylcoumarins. J. Org. Chem.2003,68 (19):7386~7399.
    [36]Ramesh V, Ramamurthy V. Control of regiochemistry in photodimerization through micellar preorientational effect:2-substituted napthalenes. J. Org. Chem.1984,49 (3): 536~539.
    [37]Moss R A, Lee Y S, Lukas T J. Micellar stereoselectivity. Cleavage of diastereomeric substrates by functional surfactant micelles. J. Am. Chem. Soc.1979,101 (9): 2499~2501.
    [1]Abramo J G, Chapin E C. Chloromethylation of β-chloroethylbenzene and the preparation of p-vinylbenzyl alcohol. J. Org. Chem.1961,26 (8):2671~2673.
    [2]Royals E E, Prasad R N. Synthesis of 2-methyl-5-t-tutylacylbenzenes. J. Am. Chem. Soc. 1955,77 (6):1696-1697.
    [3]Wright M E, Toplikar E G, Svejda S A. Details concerning the chloromethylation of soluble high-molecular-weight polystyrene using dimethoxymethane, thionyl chloride, and a Lewis acid:a full catalysis. Macromolecules,1991,24 (21):5879~5880.
    [4]Huang Z T, Wang G Q, Yang L M, Loy Y X. The selective chloromethylation of 25, 27-dihydroxy-26,28-dimethoxycalix{4}arene and nucleophilic substitution therefrom. Synth. Commun.1995,25 (8):1109~1118.
    [5]Mcnamara C A, Dixon M J, Bradley M. Recoverable catalysts and reagents using recyclable polystyrene-based supports. Chem. Rev.2002,102 (10):3275~3300.
    [6]Belen'kii L I, Vol'kenshtein Yu B, Karmanova I B. New data on the chloromethylation of aromatic and heteroaromatic compounds. Russ. Chem. Rev.1977,46 (9):1698~1719.
    [7]Pinell R P, Khune G D, Khatri N A, Manatt S L. Concerning the chloromethylation of alkylbenzenes and polystyrenes by chloromethyl methyl ether. Tetrahedron Lett.1984,25 (33):3511~3514.
    [8]DeHaan F P, Djaputra M, Grinstaff M W, Kaufman C R, Keithly J C, Kumar A, Kuwayama M K, Macknet K D, Na J, Patel B R, Pinkerton M J, Tidwell J H, Villahermosa R M. Electrophilic aromatic substitution.13.1 Kinetics and spectroscopy of the chloromethylation of benzene and toluene with methoxyacetyl chloride or chloromethyl methyl ether and aluminum chloride in nitromethane or tin tetrachloride in dichloromethane. The methoxymethyl cation as a remarkably selective common electrophile. J. Org. Chem.1997,62 (9):2694~2703.
    [9]Selva M, Trotta F, Tundo P. Improved selectivity in the chloromethylation of alkylbenzenes in the presence of quaternary ammonium salts. Synthesis,1991, (11): 1003~1004.
    [10]McKillop A, Madjdabadi F A, Long D A. A simple and inexpensive procedure for chloromethylation of certain aromatic compounds. Tetrahedron Lett.1983,24 (18): 1933~1936.
    [11]Formentin P, Garcia H. Ionic liquids as exceedingly convenient solvents for the Feiedel-Crafts monoalkylation of electron-rich arenes with paraformaldehyde using HCl as catalyst. Catal. Lett.2002,78 (1-4):115-118.
    [12]Wang Y, Shang Z C, Wu T X. [emim]BF4-promoted chloromethylation of aromatic hydrocarbons. Synth. Commun.2006,36 (20):3053-3059.
    [13]Maudling D R, Lotts K D, Robinson S A. New procedure for making 2-(chloromethyl)-4-nitrotoluene. J. Org. Chem.1983,48 (17):2938-2939.
    [14]Olah G A, Beal D A, Olah J A. Aromatic substitution. XXXVIII. Chloromethylation of benzene and alkylbenzenes with bis(chloromethyl) ether,1,4-bis(chloromethoxy) butane, 1-chloro-4-chloromethoxybutane, and formaldehyde derivatives. J. Org. Chem.1975,41 (9):1627-1631.
    [15]Warshawsky A, Deshe A. Process for the production of halomethylating agents which are of low volatility, US Patent 4568700,1986.
    [16]Gerisch M, Krumper J R, Bergman R G, Tilley T D. Rhodium(Ⅲ) and rhodium(Ⅱ) complexes of novel bis(oxazoline) pincer ligands. Organometallics,2003,22 (1):47-58.
    [17]Kachurin O L, Zaraiskii A P, Velichko L L, Zaraiskaya N A, Matvienko N M, Okhrimenko Z A. Phase-transfer catalysis in reactions of electrophilic aromatic substitution. Russ. Chem. Bull.1995,44 (10):1815-1821.
    [18]Kishida T, Yamauchi T, Kubotab Y, Sugi Y. Rare-earth metal triflates as versatile catalysts for the chloromethylation of aromatic hydrocarbons. Green Chem.2004, (6): 57-62.
    [19]刘启发,于亚明,高保娇.胶束催化及其在有机合成中的应用.中北大学学报(自然科学版),2006,27(5):442~447.
    [20]Siswanto C, Battal T, Schuss O E, Rathman J F. Synthesis of alkylphenyl ethers in aqueous solutions by micellar phase-transfer catalysis.1. Single-phase system. Langmuir, 1997,13 (23):6047~6052.
    [21]Pattabiraman M, Kaanumalle L S, Ramamurthy V. Photoproduct selectivity in reactions involving singlet and triplet excited states witnin bile salt micelles. Langmuir,2006,22 (5):2185~2192.
    [22]赵振国.胶束催化与微乳催化.北京:化学工业出版社,2006.
    [23]Pal T, De(ne Das) S, Jana N R, Pradhan N, Mandal R, Pal A. Organized media as redox catalysts. Langmuir,1998,14 (17):4724~4730.
    [24]Natalia S, Eric J, Sandra P, Esther S, Albert R, Lioubov K M. Palladium nanoparticles stabilized in block-copolymer micelles for highly selective 2-butyne-1,4-diol partial hydrogenation. Appl. Catal. A:Gen.2005,280 (2):141~147.
    [25]Miyagawa C C, Kupka J, Schumpe A. Rhodium-catalyzed hydroformylation of 1-octene in micro-emulsions and micellar media. J. Mol. Catal. A:Chem.234 (1-2):9-17.
    [26]Battal T, Siswanto C, Rathman J. Synthesis of alkylphenyl ethers in aqueous surfactant solutions by micellar phase-transfer catalysis.2. Two-phase system. Langmuir,1997,13 (23):6053~6057.
    [27]Samant B S, Saraf Y P, Bhagwat S S. Chlorination of aromatic compounds in micellar media:regioselectivity. J. Colloid Interface Sci.2006,302 (1):207~213.
    [28]Blagoeva I B, Toteva M M, Quarti N, Ruasse M F. Changes in the relative contribution of specific and general base catalysis in cationic micelles. The cyclization of substituted ethl hydantoates. J. Org. Chem.2001,66 (6):2123~2130.
    [29]Maria P D, Fontana A, Gasbarri C, Siani G. The effect of cationic and zwitterionic micelles on the keto-enol interconversion of 2-phenylacetylfuran and 2-phenylacetylthiophene. Tetrahedron,2005,61 (30):7176~7183.
    [30]Durand A. Synthesis of amphiphilic polysaccharides by micellar catalysis. J. Mol. Catal. A:Chem.2006,256 (1-2):284~289.
    [31]Harustiak M, Hronec M, Ilavsky J, Witek S. Micellar catalysis in the CoBr2 catalyzed oxidation of p-xylene in water. Catal. Lett.1988,1 (11):391~393.
    [32]Fernandes M L M, Krieger N, Baron A M, Zamora P P, Ramos L P, Mitchell D A. Hydrolysis and synthesis reactions catalyzed by thermomyces lanuginosa lipase in the AOT/Isooctane reversed micellar system. J. Mol. Catal. B:Enzym.2004,30 (1):43~49..
    [33]Siswanto C, Rathman J F. Selective N-alkylation of aniline by micellar catalysis. J. Colloid Interface Sci.1997,196 (1):99~102.
    [34]Liu Q, Lu M, Li Y, Li J. Effect of organic electrolyte on chloromethylation of 2-bromoethylbenzene in micellar catalytic system. J. Mol. Catal. A:Chem.2007,277 (1-2):113~118.
    [35]Gao B, Liu Q, Jiang L. Studies on performing chloromethylation reaction for polystyrene by micellar catalysis in aqueous surfactant solutions. Chem. Eng. Process 2008,47 (5): 852~858.
    [36]Kishida T, Yamauchi T, Komura K, Kubota Y, Sugi Y. The chloromethylation of biphenyls catalyzed by group 3 and 4 metal triflates. J. Mol. Catal. A:Chem.2006,246 (1-2):268~275.
    [37]黄枢,谢如刚,田宝芝,秦圣英.有机合成试剂制备手册.北京:科学出版社,2005,261~262.
    [38]Zhu BY, Zhao Z G. Fundamentals of Interfacial Chemistry (in Chinese). Beijing Chemical Industry Press,1996,84~93.
    [39]Ogata Y, Okano M. Kinetics of the chloromethylation of mesitylene in aqueous acetic acid. J. Am. Chem. Soc.1956,78 (20):5423~5425.
    [40]Olah G A, Yu S H. Protonated chloromethyl alcohol and chloromethyl ethers. Proof for the intermediacy of the elusive chloromethyl alcohol. J. Am. Chem. Soc.1975,97 (8): 2293~2295.
    [41]Nazarov I N, Semenovsky A V. Bromomethylation of aromatic hydrocarbons. Russ. Chem. Bull.1957,6 (2):225-228.
    [42]Wang F, Liu H, Cun L F, Zhu J, Deng J G, Jiang Y Z. Asymmetric transfer hydrogenation of ketones catalyzed by hydrophobic metal-amido complexes in aqueous micelles and vesicles. J. Org. Chem.2005,70 (23):9424~9429.
    [43]Tascioglu S. Micellar solutions as reaction media. Tetrahedron,1961,52 (34): 11113~11152.
    [44]Yu X, Dieter S, Otto R, Thomas W. Selectivity in the photodimerization of 6-alkylcoumarins. J. Org. Chem.2003,68 (19):7386~7399.
    [45]Trevor J B, John R C, Roland P T C. Micellar catalysis of organic reactions.23. Effects of micellar orienation of the substrate on the magnitude of micellar catalysis. J. Org. Chem.1988,53 (13):3081-3084.
    [46]Dwars T, Paetzold E, Oehme G. Reactions in micellar systems. Angew. Chem. Int. Ed. 2005,44 (44):7174~7199.
    [47]Eriksson J C, Gillerg G. NMR-studies of the solubilization of aromatic compouns in cetyltrimethylammonium bromide solution Ⅱ. Acta. Chem. Scand.1966,20:2019~2027.
    [47]林元,李干佐,杨博,王金龙,郝树萱,陈芳.NMR法研究胶束的增溶作用.波谱学杂志,1990,7(3):297-304.
    [48]林元,李干佐,陈庆平.NMR法研究短链芳烃及其衍生物在胶束中的增溶作用.波谱学杂志,1987,4(2):99~105.
    [49]Berezin I V, Martinek K, Yatsimirskii A K. Physicochemical foundation of micellar catalysis. Russ. Chem. Rev.1973,42 (10):787~802.
    [50]Freeman S K. Isomer distribution of some chloromethylated alkylbenzenes. J. Org. Chem. 1961,26(1):212~214.
    [1]Yadav G D, Haldavanekar B V. Selectivity engineering with polymer-supported reagents: oxidation of benzyl chloride to benzaldehyde, React. Funct. Polym.1997,32 (2): 187~194.
    [2]Tang J T, Zhu J L, Shen Z X, Zhang Y W. Efficient and convenient oxidation of organic halides to carbonyl compounds by H_2O_2 in ethanol. Tetrahedron Lett.2007,48 (11): 1919~1921.
    [3]Angyal S J, Morris P J, Tetaz J R, Wilson J G. The Sommelet reaction. Part III. The choice of solvent and the effect of substituents. J. Chem. Soc.1950,2141~2145.
    [4]Hass H B, Myron L B, The reaction of benzyl halides with the sodium salt of 2-nitropropane. A general synthesis of substituted benzaldehydes. J. Am. Chem. Soc.1949, 71 (5):1767~1769.
    [5]McKillop A, Ford M E. An improved procedure for the conversion of benzyl halides into benzaldehydes. Synth. Commun.1974,4 (1):45~50.
    [6]Krohnke P F. Syntheses using pyridinium salt (IV). Angew. Chem. Int. Ed.1963,2 (7): 380~393.
    [7]Kornblum J W, Powers O J. A new and selective method of oxidation:the conversion of alkyl halides and alkyl tosylates to aldehydes. J. Am. Chem. Soc.1959,81 (15): 4113~4114.
    [8]Chandrasekhar S, Sridhar M. A bifunctional approach towards the mild oxidation of organic halides:2-dimethylamino-N,N-dimethylaniline N-oxide. Tetrahedron Lett.2000, 41 (28):5423~5425.
    [9]Godfrey A G, Ganem B. Ready oxidation of halides to aldehydes using trimethylamine N-oxide in dimethylsulfoxide. Tetrahedron Lett.1990,31 (34):4825~4826.
    [10]Griffith W P, Jolliffe J M, Ley S V, Springhorn K F, Tiffin P D. Oxidation of activated halides to aldehydes and ketons by N-methylmorpholine-N-oxide. Synth. Commun.1992, 22(13):1967~1971.
    [11]Barbry D, Champagne P. Fast synthesis of aromatic aldehydes from benzylic bromides without solvent under microwave irradiation. Tetrahedron Lett.1996,37 (43): 7725~7726.
    [12]Das S, Panigrahi A K, Maikap G C. NalO_4-DMF:a novel reagent for the oxidation of organic halides to carbonyl compounds. Tetrahedron Lett.2003,44 (7):1375~1377.
    [13]Syper L, Meochowski J. A convenient oxidation of halomethylarenes and alcohols to aldehydes with dimethyl selenoxide and potassium benzeneselenite. Synthesis,1984, (9): 747~751.
    [14]Li C B, Zheng P W, Li J, Zhang H, Cui Y, Shao Q Y, Ji X, Zhang J, Zhang P Y, Xu Y L. The dual roles of oxo diper oxo-vanadate both as a nucleophile and an oxidant in the green oxidation of benzylalcohols or benzyl halides to aldehydes and ketones. Angew. Chem. Int. Ed.2003,42 (41):5063~5066.
    [15]Moorthy J N, Singhal N, Senapati K. Oxidation with IBX:benzyl halides to carbonyl compounds, and the one-pot conversion of olefins to 1,2-diketones. Tetrahedron Lett. 2006,47(11):1757~1761.
    [16]Itoh A, Kodama T, Inagaki S, Masaki Y. Photooxidation of arylmethyl bromides with mesoporous silica FSM-16. Org. Lett.2000,2 (16):2455~2457.
    [17]Khodaei M M, Khosropour A R, Jowkar M. Bi(NO_3)_3·5H_2O-TBAF as an efficient reagent for in situ oxidation:dihydropyrimidinone formation from benzyl halides. Synthesis 2005,2005 (8):1301~1304.
    [18]Li C J, Chan T H. Organic reactions in aqueous media. Wiley:New York,1997.
    [19]Grieco P A. Organic synthesis in water. Blackie Academic and Professional:London, 1998.
    [20]Cornils B, Hermann W A. Aqueous-phase organometallic catalysis. Wiley-VCH: Weinheim,2004.
    [21]Stark C M, Liotta C L. Phase-transfer catalysis principles and techniques. Academic Press:New York,1978.
    [22]Jones A R. Quaternary ammonium salts:their use in phase-transfer catalysis (best synthetic methods). Academic Press:New York,2001.
    [23]Kaczmarczyk E, Janus E, Milchert E. Epoxidation of 1,4-bis(allyloxy)butane by hydrogen peroxide using phase transfer catalysis. J. Mol. Catal. A:Chem.2006,244 (1-2),173~178.
    [24]Regen S L, Nigam A, Besse J J. Triphase catalysis:insolubilized hexamethyl-phosphoramide as a solide solvent. Tetrahedron Lett.1978,19 (31):2757~2760.
    [25]Liaw D J, Ping C. Synthesis and characterization of aromatic and brominated polycarbonates by two phase-transfer-catalyzed polycondensation of bisphenols with trichloromethyl chloroformate. J. Appl. Polym. Sci.1997,35 (12):2453~2460.
    [26]Pllipauskas D R. Comments on "kinetic study for synthesizing dibenzyl phthalate via solide-liquid phase-transfer catalysis. Ind. Eng. Chem. Res.1999,38 (10):4130~4132.
    [27]Ooi T, Kameda M, Fujii J I, Maruoka K. Catalytic asymmetric synthesis of a nitrogen analogue of dialkyl tartrate by direct Mannich reaction under phase-transfer conditions. Org. Lett.2004,6 (14):2397~2399.
    [28]Dominguez X, Lopez I, Franco R. Notes-simple preparation of a very active Raney mickel catalyst. J. Org. Chem.1961,26 (5):1625-1625.
    [29]Kornblum N, Frazier H W.A new and convenient synthesis of glyoxals, glyoxalate esters, and a-Diketones. J. Am. Chem. Soc.1966,88 (4):865~866.
    [30]Khodaei M M, Khosropour A R, Jowkar M. Bi(NO_3)_3-5H_2O-TBAF as an efficient reagent for in situ oxidation:dihydropyrimidinone formation from benzyl halides. Synthesis 2005, (8):1301~1304.
    [31]Weber W P, Gokel G W. Phase transfer catalysis in organic synthesis, reactivity and structure concepts in organic chemistry. Springer-Verlag:Berlin, Heidelberg,1977.
    [32]Landini D, Maia A. Phase transfer catalysis (PTC):search for alternative organic solvents, even environmentally benign. J. Mol. Catal. A:Chem.2003,204 (5):235~243.
    [33]Wang L M, Tseng Y H. Phase transfer catalytic reaction of n-bromobutane and sodium sulfide in a two-phase solution and its kinetics. J. Mol. Catal. A:Chem.2003,203 (1-2): 79~93.
    [34]Shi M, Feng Y S. Oxidation of brnzyl chlorides and bromides to benzoic acids with 30%hydrogen peroxide in in the presence of Na_2WO_4, Na_2VO_4, or Na_2MoO_4 under organic solvent-free conditions. J. Org. Chem.2001,66 (9):3235~3237.
    [1]Ferguson L. The synthesis of aromatic aldehydes. Chem. Rev.1946,38 (2):227-254.
    [2]Firouzabadi H, Seddighi N, Emottaghineiad M. Barium permanganate, Ba(MnO_4)_2, a versatile and mild oxidizing agent for use under aprotic and non-aqueous conditions. Tetrahedron,1990,46 (19):6869~6878.
    [3]Cardillo G, Orena M, Sandri S. Chromate ion as a synthetically useful nucleophile:a novel synthesis of aldehydes from alkyl halides. J. Chem. Soc, Chem. Comm.1976, (6): 190~191.
    [4]Kraus G A, Kroiski M. Synthesis of a precursor to quassimarin. J. Org. Chem.1986,51 (17):3347~3350.
    [5]Angyal S J, Morris P J, Tetaz J R, Wilson J G. The Sommelet reaction. Part III. The choice of solvent and the effect of substituents. J. Chem. Soc.1950,2141~2145.
    [6]Hass H B, Myron L B. The reaction of benzyl halides with the sodium salt of 2-nitropropane. A general synthesis of substituted benzaldehydes. J. Am. Chem. Soc.1949, 71 (5):1767~1769.
    [7]Krohnke P F. Syntheses using pyridinium salt (IV). Angew. Chem. Int. Ed.1963,2 (7): 380~393.
    [8]Kornblum J W, Powers O J. A new and selective method of oxidation:the conversion of alkyl halides and alkyl tosylates to aldehydes. J. Am. Chem. Soc.1959,81 (15): 4113~4114.
    [9]Mukaiyama S, Inanaga J, Yamaguchi M.4-Dimethylaminopyridine N-oxide as an efficient oxidizing agent for alkyl halides. Bull. Chem. Soc. Jpn.1981,54 (7):2221~2222.
    [10]Godfrey A G, Ganem B. Ready oxidation of halides to aldehydes using trimethylamine N-oxide in dimethylsulfoxide. Tetrahedron Lett.1990,31 (34):4825~4826.
    [11]Chandrasekhar S, Sridhar M. A bifunctional approach towards the mild oxidation of organic halides:2-dimethylamino-N, N-dimethylaniline N-oxide. Tetrahedron Lett.2000, 41 (28):5423~5425.
    [12]Griffith W P, Jolliffe J M, Ley S V, Springhorn K F, Tiffin P D. Oxidation of activated halides to aldehydes and ketones by N-methylmorpholine-N-oxide. Synth. Commun. 1992,22 (13):1967~1971.
    [13]Das S, Panigrahi A K, Maikap G C. NalO_4-DMF:a novel reagent for the oxidation of organic halides to carbonyl compounds. Tetrahedron Lett.2003,44 (7):1375~1377.
    [14]Syper L, Mlochowski J. A convenient oxidation of halomethylarenes and alcohols to aldehydes with dimethyl selenoxide and potassium benzeneselenite. Synthesis 1984, (9): 747~752.
    [15]Moorthy J N, Singhal N, Senapati K. Oxidations with IBX:benzyl halides to carbonyl compounds, and the one-pot conversion of olefins to 1,2-diketones. Tetrahedron Lett. 2006,47(11):1757~1761.
    [16]Goswami S, Jana S, Dey S, Adak A K. A simple and convenient manganese dioxide oxidation of benzyl halides to aromatic aldehydes under neutral condition. Chem. Lett. 2005,34 (2):194~195.
    [17]Brown R E, Hansen H V, Lustgarten D M, Stanaback R J, Meltzer R I. Aza steroids. V. Introduction of 11-hydroxy and 11-amino groups. J. Org. Chem.1968,33 (11): 4180~4184.
    [18]McKillop A, Ford M E. An improved procedure for the conversion of benzyl halides into benzaldehydes. Synth. Commun.1974,4 (1):45~50.
    [19]Khodaei M M, Khosropour A R, Mahbubeh J. Bi(NO_3)_3-5H_2O-TBAF as an efficient reagent for in situ oxidation:dihydropyrimidinone formation from benzyl halides. Synthesis 2005, (8):1301~1304.
    [20]Liu Q, Lu M, Sun F, Li J, Zhao Y. Oxidation of benzyl halides to aldehydes and ketones with potassium nitrate catalyzed by phase transfer catalyst in aqueous media. Synth. Commun.2008,38 (23):4188~4197.
    [21]Yadav G D, Mistry C K. A new model of capsule membrane phase transfer catalysis for oxidation of benzyl chloride to benzaldehyde with hydrogen peroxide. J. Mol. Catal. A: Chem.1995,102 (2):67~71.
    [22]Kumar R, Bhaumik A. Triphase, solvent-free catalysis over the TS-1/H_2O_2 system in selective oxidation reactions. Micropor. Mesopor. Mater.1998,21 (4):497~504.
    [23]Tang J T, Zhu J L, Shen Z X, Zhang Y W. Efficient and convenient oxidation of organic halides to carbonyl compounds by H_2O_2 in ethanol. Tetrahedron Lett.2007,48 (11): 1919~1921.
    [24]Li C, Zheng P, Li J, Zheng H, Cui Y, Shao Q, Ji X, Zhang J, Zhao P, Xu Y. The dual roles of oxodiperoxovanadate both as a nucleophile and an oxidant in the green oxidation of benzyl alcohols or benzyl halides to aldehydes and ketones. Angew. Chem. Int. Ed.2003, 42 (41):5063~5066.
    [25]Goswami S, Mahapatra A K. Aromatic aldehydes from benzylbromides via Cobalt(I) mediated benzyl radicals in the presence of aerial oxygen:a mild oxidation reaction in neutral condition. Tetrahedron Lett.1998,39 (14):1981~1984.
    [26]Hashemi M M, Beni Y A. Copper (Ⅰ) chloride/kieselguhr:a versatile catalyst for oxidation of alkyl halides and alkyl tosylates to the carbonyl compounds. J. Chem. Res. (s) 1999, (9):434~435.
    [27]Itoh A, Kodama T, Inagaki S, Masaki Y. Photooxidation of arylmethyl bromides with mesoporous silica FSM-16. Org. Lett.2000,2 (16):2455~2457.
    [28]Sheldon R A, Arends I, Hanefeld U. Green chemistry and catalysis. Wiley-VCH:New York,2004.
    [29]Liu H J, Pan Y H, Tan C H. Sodium nitrite (NaNO_2) catalysed iodo-cyclisation of alkenes and alkynes using molecular oxygen. Tetrahedron Lett.2008,49 (48):4424~4426.
    [30]Herrerias C I, Zhang T Y, Li C J. Catalytic oxidation of alcohols to carbonyl compounds by oxygen under solvent-free and transition-metal-free conditions. Tetrahedron Lett. 2006,47(1):13-17.
    [31]Wang X L, Liu R H, Jin Y, Liang X M. TEMPO/HCl/NaNO_2 catalyst:a transition-metal-free approach to efficient aerobic oxidation of alcohols to aldehydes and ketones. Chem. Eur. J.2008,14 (19):2679~2685.
    [32]Liu R H, Liang X M, Dong C Y, Hu X Q. Transition-metal-free:a highly efficient catalytic aerobic alcohol oxidation process. J. Am. Chem. Soc.2004,126 (13): 4112~4113.
    [33]Buysch H J, Hoffmann E G, Jansen U, Ooms P, Schenke B U. Process for the preparation of benzyl alcohol. US patent 5728897,1998.
    [34]Beste G W, Hammett L P. Rate and mechanism in the reactions of benzyl chloride with water, hydroxyl ion and acetate ion. J. Am. Chem. Soc.1940,62 (9):2481~2487.
    [35]Abramo J, Chapin E C. Chloromethylation of (3-chloroethylbenzene and the preparation of p-vinylbenzyl alcohol. J. Org. Chem.1961,26 (8):2671~2673.
    [36]Furniss B S, Hannaford A J, Smith P W G, TatchellA R. Textbook of practical organic chemistry 5~(th) ed. Thames Polytechnic:London,1988,865.
    [37]Vieira G A B, Lemos T L C, de Mattos M C, de Oliveira C F, Melo V M M,de Gonzalo G, Fernandez V G, Gotor V. Chemoenzymatic synthesis of optically active mugetanol isomers:use of lipases and oxidoreductases in fragrance chemistry. Tetrahedron: Asymmetry,2009,20 (2):214~219.
    [38]Ishii Y, Nakayama K, Takeno M, Sakaguchi S, Iwahama T, Nishiyama Y. Novel catalysis by N-hydroxyphthalimide in the oxidation of organic substrates by molecular oxygen. J. Org. Chem.1995,60 (13):3934~39.35.
    [39]Stamier J S, Singel D J, Loscalzo J. Biochemistry of nitric oxide and its redox-activated formes. Science 1992,258; 1898~1902.
    [40]Wang P G, Xian M, Tang X, Wu X, Wen Z, Cai T, Janczuk A J. Nitric oxide donors: chemical activities and biological applications. Chem. Rev.2002,102 (4):1091-1134.
    [41]Adam W, Saha-Moller C R, Ganeshpure P A. Synthetic application of nonmetal catalysts for homogeneous oxidations. Chem. Rev.2001,101 (11),3499-3548.
    [42]Dijksman A, Arends I W C E, Sheldon R A. Efficient ruthenium-TEMPO-catalysed aerobic oxidation of aliphatic alcohols into aldehydes and ketones. Chem. Commun. 1999, (16):1591~1592.
    [43]Jiang N, Ragauskas A J. TEMPO-catalyzed oxidation of benzylic alcohols to aldehydes with the H_2O_2/HBr/ionic liquid [bmim]PF6 system. Tetrahedron Lett.2005,46 (19): 3323~3326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700