具有潜在生物活性新型骨架分子的合成方法学研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要围绕具有潜在抗肿瘤活性的羟肟酸类组蛋白去乙酰化酶抑制剂的设计与合成来展开,包括:Beckmann重排反应及其应用的方法学研究,基于茚酮骨架的羟肟酸类衍生物的设计与合成以及苯并噻唑衍生物的合成方法学研究三个方面的研究内容。
     一、在Beckmann重排反应的方法学研究方面:
     我们发展了三个有效催化Beckmann重排的反应体系,包括:10mol%BF3·Et2O、2 mol% TsCl/2 mol% ZnCl2、5 mol% NBS/5 mol% PPh3。以上三个催化体系均可以高效催化酮肟的Beckmann重排反应。
     同时,我们对有机小分子催化Beckmann重排的反应机理进行了深入细致的研究。研究发现Yamamoto等人提出的新型催化机理与我们的实验结果存在矛盾。为此,我们认为有机小分子催化Beckmann重排反应依然遵循经典的酸催化重排机理,而有机小分子则是通过与酮肟反应,现场释放等当量的酸而发挥催化作用。因此,有机小分子只是作为反应的引发剂而非真正的催化剂。我们进一步研究发现酸催化剂的酸性强弱对Beckmann重排有显著的影响,酸性越强,重排反应越易于发生。
     另外,我们发展了磺酰氯参与的基于酮肟Beckmann重排的“一锅法”制备N-酰亚胺苯并三氮唑类化合物的高效合成方法。该合成方法具有反应条件温和,操作简便,原料廉价易得,反应收率高,底物适用范围较广等特点。
     二、在基于茚酮骨架的羟肟酸类化合物的设计与合成方面:
     我们以6-溴-1-茚酮为原料,经6-7步反应,分别以18%,9%和9%的总收率合成得到羟肟酸类目标化合物Rac-Ⅰ-60a, Rac-Ⅰ-60b和Rac-Ⅰ-60c。以6-溴-1-茚酮为原料,应用aldol缩合反应在茚酮2位衍生化,经NaBH4还原后,以Heck反应构建肉桂基并发生双键异构化,合成得到茚酮衍生物Ⅲ-34a等重要中间体,并分别以0.6%,0.4%和1.0%的总收率,经9-10步反应,合成得到了一系列基于茚酮骨架目标化合物Ⅲ-40 a,Ⅲ-40b和Ⅲ-40c。
     目前,该两类化合物的药理学活性测试正在进行之中。
     三、在苯并噻唑衍生物的合成方法学研究方面:
     我们发现用mCPBA来氧化2-(N-乙基-2-苯并噻唑)-乙酸甲酯所得产物的结构与文献报道结果不一致。在此基础上,我们发展了温和、高效、可控的选择性氧化方法。通过选用mCPBA和DDQ两种不同的氧化剂,我们实现了同一底物的选择性氧化生成结构完全不同的两类化合物。最后,我们以2-氨基-6-硝基苯并噻唑为起始原料,经4步反应,以6.5%的总收率合成得到关键中间体2-(N-甲基-6-胺基-2-苯并噻唑)-乙酸乙酯,为后续合成目标化合物奠定基础。
This dissertation mainly focused on the design and synthesis of potential anti-tumor active small-molecule hydroxamic acid histone deacetylase inhibitors (HDACi). The primary coverage includes three aspects of studies:Beckmann rearrangement and its application; Design and synthesis of indanone-based hydroxamic acid derivatives; Synthetic methodologies for benzothiazole derivatives.
     1. Beckmann rearrangement and its application:
     Three highly efficient catalytic systems for Beckmann rearrangement of ketoximes were developed, which includes 10 mol%BF3·Et2O,2 mol%TsCl/2 mol%ZnCl2 and 5 mol% NBS/5 mol%PPh3.
     Meanwhile, we examined the mechanism of Beckmann rearrangement catalyzed by small organic molecule intensively, and found that newly proposed mechanism by Yamamoto is contradictive to our experiments. As a consequent, we proposed that the Beckmann rearrangement catalyzed by small organic molecules still obeyed the classical well-recognized acid-catalyzed mechanism. Notably, small organic molecule was proposed to react with ketoxime and followed by releasing in-situ equal equivalent of acid, which acts the real catalyst to play the catalytic role. Therefore, small organic molecule actually is the initiator instead of the catalyst. Further study indicated that the degree of acidity of acid-catalysts affected the Beckmann rearrangement significantly. The more acidic, the easier the rearrangement proceeds.
     In addition, we have developed a facile one-pot strategy for synthesis of N-imidoylbenzotriazoles via sulfonyl chloride mediated Beckmann rearrangement of ketoximes. There are some merits of this newly developed synthetic method, such as easy manipulation, easily available starting materials, high yield and generality of the substrate and so on.
     2. Design and synthesis of indanone-based hydroxamic acid derivatives:
     Three hydroxamic acid target compounds Rac-Ⅰ-60a, Rac-Ⅰ-60b and Rac-Ⅰ-60c were prepared via 6 or 7 steps with 6-bromo-l-indanone as starting material with overall yield 18%, 9%and 9%, respectively. In addition, Aldol condensation at position 2 of 6-bromo-l-indanone, then reduction with NaBH4, followed by constructing cinnamyl moiety via Heck reaction and subsequent Pd-mediated isomerization of double bond, afforded the key indanone-based intermediatesⅢ-34a. Finally, another series of target compoundsⅢ-40a,Ⅲ-40b andⅢ-40c were accomplished via 9-10 steps with the overall yield 0.6%,0.4%and 1.0%, respectively.
     The bioassays of biological activities of these two types of target compounds are ongoing.
     3. Synthetic methodologies for benzothiazole derivatives:
     We found that the mCPBA oxidation of methyl 2-(N-ethyl-2,3-dihydrobenzothiazol-2-yl) acetate gave corresponding product with different structure when compared to that of reported one. On this basis, a facile, mild and highly controllable oxidation method was developed. Two different compounds were obtained when the same substrate were oxidized with different reagents, mCPBA or DDQ. Lastly, the key intermediate ethyl 2-(6-amino-N-methyl-2, 3-dihydrobenzo-thiazol-2-yl)-acetate was synthesized via 4 steps with the overall yield 6.5% using 2-amine-6-nitrobenzothiazole as a starting material.
引文
[1]郭鹏.常见恶性肿瘤诊治策略.成都:四川大学出版社,2009,359-373.
    [2]Varmus, H. The New Era in Cancer Research. Science,2006,312:1162-1165.
    [3]Baylin, S. B. DNA Methylation:Tying It All Together:Epigenetics, Genetics, Cell Cycle, and Cancer. Science,1997,277(5334):1948-1949.
    [4]Mai, A.; Altucci, L. Epi-drugs to fight cancer:From chemistry to cancer treatment, the road ahead. Int. J. Biochem. Cell Biol.,2009,41:199-213.
    [5]Esterller, M. CpG island hypermethylation and tumor suppressor genes:a booming present, a brighter future. Oncogenge,2002,21(35):5427-5440.
    [6]Monneret, C. Histone deacetylase inhibitors. Euro. J. Med. Chem.,2005,40:1-13
    [7]朱冰,孙方霖译,表观遗传学.北京:科学出版社,2009,36-47.
    [8]Roth, S. Y.; Denu, J. M.; Allis, C. D. Histone acetyltransferases. Annu. Rev. Biochem., 2001,70:81-120.
    [9]Marks, P. A.; Millery, T.; Richony, V. M. Histone deacetylases. Cur. Opin. pharm.,2003, 3:344-351.
    [10]Minucci, S.; Pelicci, P. G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer,2006,6:38-51.
    [11]Altuccia, L.; Minuccib, S. Epigenetic therapies in haematological malignancies: Searching for true targets. Euro. J. Cancer,2009,45:1137-1145.
    [12]Mottet, D.; Castronovo, V. Histone deacetylases:target enzymes for cancer therapy. Clin. Exp. Metastasis,2008,25:183-189.
    [13]Zhu, W.-G.; Otterson, G. A. The Interaction of Histone Deacetylase Inhibitors and DNA Methyltransferase Inhibitors in the Treatment of Human Cancer Cells. Curr. Med. Chem. Anti-Cancer Agents,2003,3:187-199.
    [14]Kristensen, L. S.; Nielsen, H. M.; Hansen, L. L. Epigenetics and cancer treatment. Euro. J. Pharm.,2009,625:131-142.
    [15]Fang, M. Z.; Wang, Y.; Ai, N.; Hou, Z.; Sun, Y.; Lu, H.; Welsh, W.; Yang, C. S. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res.,2003,63(22):7563-7570.
    [16]McLaughlin, F.; Thangue, N. B. L. Histone deacetylase inhibitors open new doors in cancer therapy. Biochem. Pharm.,2004,68:1139-1144.
    [17]Mottet, D.; Castronovo, V. Histone deacetylases:target enzymes for cancer therapy. Clin. Exp. Metastasis,2008,25:183-189.
    [18]Ruijter, A. J. M. D.; Gennip, A. H. V.; Caron, H. N.; Kemp, S.; Kuilenburg, A. B. P. V. Histone deacetylases (HDACs):characterization of the classical HDAC family. Biochem. J.,2003,370:737-749.
    [19]Kelly, W. K.; O'Connor, O. A.; Marks, P. A. Histone deacetylase inhibitors:from target to clinical trials. Exp. Opin. Investig. Drugs,2002,11(12):1695-1713.
    [20]Bolden, J. E.; Peart, M. J.; Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Disc.,2006,5:769-784.
    [21]Haberland, M.; Montgomery, R. L.; Olson, E. N. The many roles of histone deacetylases in development and physiology:implications for disease and therapy. Nat. Rev. Genet., 2009,10:32-42.
    [22]Morrison, B. E.; Majdzadeh, N.; Mello, S. R. D. Histone deacetylases:Focus on the nervous system. Cell. Mol. Life Sci.,2007,64:2258-226.
    [23]Echaniz-Laguna, A.; Bousiges, O.; Loeffler, J.-P.; Boutillier, A.-L. Histone Deacetylase Inhibitors:Therapeutic Agents and Research Tools for Deciphering Motor Neuron Diseases. Curr. Med. Chem.,2008,15:1263-1273.
    [24]Butler, R.; Bates, G. P. Histone deacetylase inhibitors as therapeutics for polyglutamine Disorders. Nat. Rev. Neurosci.,2006,7:784-796.
    [25]Kazantsev, A. G.; Thompson, L. M. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat. Rev.Drug Disc.,2008,7:854-868.
    [26]Lawless, M. W.; Norris, S.; O'Byrne, K. J.; Gray, S. G. Targeting histone deacetylases for the treatment of disease. J. Cell. Mol. Med.,2009,13(5):826-852.
    [27]Moradei, O.; Maroun, C. R.; Paquin, I.; Vaisburg, A. Histone Deacetylase Inhibitors: Latest Developments, Trends and Prospects. Curr. Med. Chem. Anti-Cancer Agents, 2005,5:529-560.
    [28]Gennaro, E. D.; Bruzzese, F.; Caraglia, M.; Abruzzese, A.; Budillon, A. Acetylation of proteins as novel target for antitumor therapy. Amino Acids,2004,26:435-441.
    [29]Buchwald, M.; Kramer, O. H.; Heinzel, T. HDACi-Targets beyond chromatin. Cancer Lett.,2009,280:160-167.
    [30]Spange, S.; Wagner, T.; Heinzel, T.; Kramer, O. H. Acetylation of non-histone proteins modulates cellular signalling at multiple Levels. Int. J. Bioche. Cell Biol.,2009,41: 185-198.
    [31]Yu, X.; Guo, Z. S.; Marcu, M. G.; Neckers, L.; Nguyen, D. M.; Chen, G. A.; Schrump, D. S. Modulation of p53, ErbB1, ErbB2, and Raf-1 Expression in Lung Cancer Cells by Depsipeptide FR901228. J. Natl. Cancer Inst.,2002,94(7):504-513.
    [32]Luo, J.; Su, F.; Chen, D.; Shiloh, A.; Gu, W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature,2000,408:377-381.
    [33]Johnstone, R. W.; Licht, J. D. Histone deacetylase inhibitors in cancer therapy:Is transcription the primary target? cancer cell,2003,4:13-18.
    [34]Okamoto, H.; Fujioka, Y.; Takahashi, A.; Takahashi, T.; Taniguchi, T; Ishikawa, Y; Yokoyama, M. Trichostatin A, an Inhibitor of Histone Deacetylase, Inhibits Smooth Muscle Cell Proliferation via Induction of p21WAFI. J. Atheroscler. Thromb.,2006,13(4): 183-191.
    [35]Marks, P. A. The Mechanism of the Anti-Tumor Activity of the Histone Deacetylase Inhibitor, Suberoylanilide Hydroxamic Acid (SAHA). Cell Cycle,2004,3(5):534-535.
    [36]Marks, P. A. Discovery and development of SAHA as an anticancer agent. Oncogene, 2007,26:1351-1356.
    [37]Gui, C. Y.; Ngo, L.; Xu, W. S.; Richon, V. M.; Marks, P. A. Histone deacetylase (HDAC) inhibitor activation of p21WAFI involves changes in promoter-associated proteins, including HDAC1. Proc. Natl. Acad. Sci.,2004,101(5):1241-1246.
    [38]Richon, V. M.; Sandhoff, T. W.; Rifkind, R. A.; Marks, P. A. Histone deacetylase inhibitor selectively induces p21WAFI expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci.,2000,97(18):10014-10019.
    [39]Rosato, R. R.; Almenara, J. A.; Grant, S. The Histone Deacetylase Inhibitor MS-275 Promotes Differentiation or Apoptosis in Human Leukemia Cells through a Process Regulated by Generation of Reactive Oxygen Species and Induction of p21CIP1/WAF11 Cancer Res.,2003,63:3637-3645.
    [40]Chen, J. S.; Faller, D. V. Histone Deacetylase Inhibition-Mediated Post-Translational Elevation of p27KIPI Protein Levels Is Required for G1 Arrest in Fibroblasts. J. Cellu. Phys.,2005,202:87-99.
    [41]Johnstone, R. W. Histone-deacetylase inhibitors:novel drugs for the treatment of cancer. Nat. Rev. Drug Disc.,2002,1:287-299.
    [42]Neckers, L. Heat shock protein 90:The cancer chaperone. J. Biosci.,2007,32:517-530.
    [43]Scroggins, B. T.; Robzyk, K.; Wang, D.; Marcu, M. G.; Tsutsumi, S.; Beebe, K.; Cotter, R. J.; Felts, S.; Toft, D.; Karnitz, L.; Rosen, N.; Neckers, L. An Acetylation Site in the Middle Domain of Hsp90 Regulates Chaperone Function. Mol. Cell,2007,25:151-159.
    [44]Whitesell, L.; Lindquist, S. L. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer, 2005,5:761-772.
    [45]Wang, Y.; Wang, S.; Zhang, X.; Zhao, M.; Hou, C.; Xu, Y.; Du, Z.; Yu, X. FK228 inhibits Hsp90 chaperone function in K562 cells via hyperacetylation of Hsp70. Biochem. Biophys. Res. Commun.,2007,356:998-1003.
    [46]Giommarelli, C.; Zuco, V.; Favini, E.; Pisano C.; Piaz, F. D.; Tommasi, N. D.; Zunino, F. The enhancement of antiproliferative and proapoptotic activity of HDAC inhibitors by curcumin is mediated by Hsp90 inhibition. Cell Mol. Life Sci.,2010,67:995-1004.
    [47]Kovacs, J. J.; Murphy, P. J. M.; Gaillard, S.; Zhao, X.; Wu, J. T.; Nicchitta, C. V.; Yoshida, M.; Toft, D. O.; Pratt, W. B.; Yao, T. P. HDAC6 Regulates Hsp90 Acetylation and Chaperone-Dependent Activation of Glucocorticoid Receptor. Mol. Cell,2005,18: 601-607.
    [48]Bali, P.; Pranpat, M.; Bradner, J.; Balasis, M.; Fiskus, W.; Guo, F.; Rocha, K.; Kumaraswamy, S.; Boyapalle, S.; Atadja, P.; Seto, E.; Bhalla, K. Inhibition of Histone Deacetylase 6 Acetylates and Disrupts the Chaperone Function of Heat Shock Protein 90. J. Biolog. Chem.,2005,280(29):26729-26734.
    [49]Yang, X. J.; Seto, E. Lysine Acetylation:Codified Crosstalk with Other Posttranslational Modifications. Mol. Cell,2008,31:449-461
    [50]Yu, X.-D.; Wang, S.-Y.; Chen, G. A.; Hou, C.-M.; Zhao, M.; Hong, J. A.; Nguyen, D. M.; Schrump, D. S. Apoptosis Induced by Depsipeptide FK228 Coincides with Inhibition of Survival Signaling in Lung Cancer Cells. Cancer J.,2007,13(2):105-113.
    [51]Frew, A. J.; Johnstone, R. W.; Bolden, J. E. Enhancing the apoptotic and therapeutic effects of HDAC inhibitors. Cancer Lett.,2009,280:125-133.
    [52]Bremer, E.; Dam, G.; Kroesen, B. J.; Leij, L.; Helfrich, W. Targeted induction of apoptosis for cancer therapy:current progress and Prospects. Trends Mol. Med.,2006, 12(8):382-393.
    [53]Nebbioso, A.; Clarke, N.; Voltz, E.; Germain, E.; Ambrosino, C.; Bontempo, P.; Alvarez, R.; Schiavone, E. M.; Ferrara, F.; Bresciani, F.; Weisz, A.; Lera, A. R.; Gronemeyer, H.; Altucci, L. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat. Med.,2005,11(1):77-84.
    [54]Insinga, A.; Monestiroli, S.; Ronzoni, S.; Gelmetti, V.; Marchesi, F.; Viale, A.; Altucci, L.; Nervi, C.; Minucci, S.; Pelicci, P. G. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat. Med., 2005,11(1):71-76.
    [55]Ruefli, A. A.; Ausserlechner, M. J.; Bernhard, D.; Sutton, V. R.; Tainton, K. M.; Kofler, R.; Smyth, M. J.; Johnstone, R. W. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc. Natl. Acad. Sci.,2001,98(19):10833-10838.
    [56]Rosato, R. R.; Almenara, J. A.; Dai, Y.; Grant, S. Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol. Cancer Ther.,2003,2(12): 1273-1284.
    [57]Witt, O.; Deubzer, H. E.; Lodrini, M.; Milde, T.; Oehme, I. Targeting Histone Deacetylases in Neuroblastoma. Curr. Pharm. Design,2009,15:436-447.
    [58]Morrissey, C.; O'Neill, A.; Spengler, B.; Christoffel, V.; Fitzpatrick, J. M.; Watson, R. W. G. Apigenin Drives the Production of Reactive Oxygen Species and Initiates a Mitochondrial Mediated Cell Death Pathway in Prostate Epithelial Cells. Prostate,2005, 63:131-142.
    [59]Marks, P. A.; Jiang, X. Histone Deacetylase Inhibitors in Programmed Cell Death and Cancer Therapy. Cell Cycle,2005,4(4):549-551.
    [60]Shao, Y.; Gao, Z.; Marks, P. A.; Jiang, X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc. Natl. Acad. Sci.,2004,101(52):18030-18035.
    [61]Roos, W.; Baumgartner, M.; Kaina, B. Apoptosis triggered by DNA damage O6-metfhylguanine in human lymphocytes requires DNA replication and is mediated by p53 and Fas/CD95/Apo-1. Oncogene,2004,23:359-367.
    [62]Butler, L. M.; Zhou, X.; Xu, W. S.; Scher, H. I.; Rifkind, R. A.; Marks, P. A.; Richon, V. M. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc. Natl. Acad. Sci., 2002,99(18):11700-11705.
    [63]Ungerstedt, J. S.; Sowa, Y.; Xu, W. S.; Shao, Y.; Dokmanovic, M.; Perez, G.; Ngo, L.; Holmgren, A.; Jiang, X.; Marks, P. A. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc. Natl. Acad. Sci.,2005,102(3): 673-678.
    [64]Marks, P. A.; Breslow, R. Dimethyl sulfoxide to vorinostat:development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotch.,2007,25(1):84-90.
    [65]Marks, P. A.; Dokmanovic, M. Histone deacetylase inhibitors:discovery and development as anticancer agents. Exp. Opin. Investig Drugs,2005,14(12):1497-1511.
    [66]Feng, R.; Oton, A.; Mapara, M. Y.; Anderson, G.; Belani, C.; Lentzsch, S. The histone deacetylase inhibitor, PXD101, potentiates bortezomib-induced anti-multiple myeloma effect by induction of oxidative stress and DNA damage. Br. J. Haematol.,2007,139: 385-397.
    [67]Park, J. H.; Kim, S. H.; Choi, M. C.; Lee, J.; Oh, D. Y.; Im, S. A.; Bang, Y. J.; Kim, T. Y. Class II histone deacetylases play pivotal roles in heat shock protein 90-mediated proteasomal degradation of vascular endothelial growth factor receptors. Biochem. Biophys. Res. Commun.,2008,368:318-322.
    [68]Marks, P. A.; Richon, V. M.; Miller, T.; Kelly, W. K. Histone Deacetylase inhibitors. Adv. Cancer Res.,2004,91:137-168.
    [69]Liu, T.; Kuljaca, S.; Tee, A.; Marshall, G. M. Histone deacetylase inhibitors: Multifunctional anticancer agents. Cancer Treat. Rev.,2006,32:157-165.
    [70]Heider U, Kaiser M, Sterz J, Zavrski I, Jakob C., Fleissner C, Eucker J, Possinger K, Sezer O. Histone deacetylase inhibitors reduce VEGF production and induce growth suppression and apoptosis in human mantle cell lymphoma. Eur. J. Haematol.,2006,76: 42-50.
    [71]Finnin, M. S.; Donigian, J. R.; Cohen, A.; Richon, V. M.; Rifkind, R. A.; Marks, P. A.; Breslow, R.; Pavletich, N. P. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature,1999,401:188-193.
    [72]Vannini, A.; Volpari, C.; Filocamo, G.; Casavola, E. C.; Brunetti, M.; Renzoni, D.; Chakravarty, P.; Paolini, C.; Francesco, R. D.; Gallinari, P.; Steinkuhler, C.; Marco, S. D. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc. Natl. Acad. Sci.,2004,101(42): 15064-15069.
    [73]Somoza, J. R.; Skene, R. J.; Katz, B. A.; Mol, C.; Ho, J. D.; Jennings, A. J.; Luong, C.; Arvai, A.; Buggy, J. J.; Chi, E.; Tang, J.; Sang, B. C.; Verner, E.; Wynands, R.; Leahy, E. M.; Dougan, D. R.; Snell, G.; Navre, M.; Knuth, M. W.; Swanson, R. V.; McRee, D. E.; Tari, L. W. Structural Snapshots of Human HDAC8 Provide Insights into the Class I Histone Deacetylases. Structure,2004,12:1325-1334.
    [74]Nielsen, T. K.; Hildmann, C.; Dickmanns, A.; Schwienhorst, A.; Ficner, R. Crystal Structure of a Bacterial Class 2 Histone Deacetylase Homologue. J. Mol. Biol.,2005, 354(1):107-120.
    [75]Bottomley, M. J.; Surdo, P. L.; Giovine, P. D.; Cirillo, A.; Scarpelli, R.; Ferrigno, F.; Jones, P.; Neddermann, P.; Francesco, R. D.; Steinkuhler, C.; Gallinari, P.; Carfi, A. Structural and Functional Analysis of the Human HDAC4 Catalytic Domain Reveals a Regulatory Structural Zinc-binding Domain. J. Biol. Chem.,2008,283:26694-26704.
    [76]Schuetz, A.; Min, J.; Allali-Hassani, A.; Schapira, M.; Shuen, M.; Loppnau, P.; Mazitschek, R.; Kwiatkowski, N. P.; Lewis, T. A.; Maglathin, R. L.; McLean, T. H.; Bochkarev, A.; Plotnikov, A. N.; Vedadi, M.; Arrowsmith C. H. Human HDAC7 Harbors a Class Ⅱa Histone Deacetylase-specific Zinc Binding Motif and Cryptic Deacetylase Activity. J. Biol. Chem.,2008,283:11355-11363.
    [77]Dowling, D. P.; Gantt, S. L.; Gattis, S. G.; Fierke, C. A.; Christianson, D. W. Structural Studies of Human Histone Deacetylase 8 and Its Site-Specific Variants Complexed with Substrate and Inhibitors. Biochemistry,2008,47:13554-13563.
    [78]Mai, A.; Massa, S.; Rotili, D.; Cerbara, I.; Valente, S.; Pezzi, R.; Simeoni, S.; Ragno, R. Histone Deacetylation in Epigenetics:An AttractiveTarget for AnticancerTherapy. Med. Res. Rev.,2005,25(3):261-309.
    [79]Glaser, K. B. HDAC inhibitors:Clinical update and mechanism-based potential. Biochem. Pharm.,2007,74:659-671.
    [80]Rasheed, W. K.; Johnstone, R. W.; Prince, H. M. Histone deacetylase inhibitors in cancer therapy. Exp. Opin. Investig. Drugs,2007,16(5):659-678.
    [81]Paris, M.; Porcelloni, M.; Binaschi, M.; Fattori, D. Histone Deacetylase Inhibitors:From Bench to Clinic. J. Med. Chem.,2008,51(6):1505-1529.
    [82]Price, S.; Dyke, H. J. Histone deacetylase inhibitors:an analysis of recent patenting activity. Exp. Opin. Ther. Patents,2007,17(7):745-765.
    [83]Bonfils, C.; Walkinshaw, D. R.; Besterman, J. M.; Yang, X. J.; Li, Z. Pharmacological inhibition of histone deacetylases for the treatment of cancer, neurodegenerative disorders and inflammatory diseases. Exp. Opin. Drug Discov.,2008,3(9):1041-1065.
    [84]Drummond, D. C.; Noble, C. O.; Kirpotin, D. B.; Guo, Z.; Scott, G. K.; Benz, C. C. Clinical Development of Histone Deacetylase inhibitors as anticancer agents. Annu. Rev. Pharmacol. Toxicol.,2005,45:495-528.
    [85]Miller, T. A.; Witter, D. J.; Belvedere, S. Histone Deacetylase Inhibitors. J. Med. Chem., 2003,46(24):5097-511.
    [86]Butler, K. V.; Kozikowski, A. P. Chemical Origins of Isoform Selectivity in Histone Deacetylase Inhibitors. Curr. Pharm. Design,2008,14:505-528.
    [87]Moradei, O. M.; Mallais, T. C.; Frechette, S.; Paquin, I.; Tessier, P. E.; Leit, S. M.; Fournel, M.; Bonfils, C.; Trachy-Bourget, M. C.; Liu, J. H.; Yan, T. P.; Lu, A. H.; Rahil, J.; Wang, J.; Lefebvre, S.; Li, Z. M.; Vaisburg, A. F.; Besterinan, J. M. Novel Aminophenyl Benzamide-Type Histone Deacetylase Inhibitors with Enhanced Potency and Selectivity. J. Med. Chem.,2007,50:5543-5546.
    [88]Witter, D. J.; Harrington, P.; Wilson, K. J.; Chenard, M.; Fleming, J. C.; Haines, B.; Kral, A. M.; Secrist, J. P.; Miller, T. A. Optimization of biaryl Selective HDAC1& 2 Inhibitors (SHI-1:2). Bioorg. Med. Chem. Lett.,2008,18:726-731.
    [89]Methot, J. L.; Chakravarty, P. K.; Chenard, M.; Close, J.; Cruz, J. C.; Dahlberg, W. K.; Fleming, J.; Hamblett, C. L.; Hamill, J. E.; Harrington, P.; Harsch, A.; Heidebrecht, R.; Hughes, B.; Jung, J.; Kenific, C. M.; Kral, A. M.; Meinke, P. T.; Middleton, R. E.; Ozerova, N.;Sloman,D.L.;Stanton,M.G.;Szewczak,A.A.;Tyagarajan,S.;Witter, D.J.;Secrist,J.P.;Miller,T.A.Exploration of the internal cavity of histone deacetylase (HDAC)with selective HDACl/HDAC2 inhibitors(SHI-1:2).Bioorg.Med.Chem. Lett.,2008,18:973-978.
    [90]Zhou,N.;Moradei,O.;Raeppel,S.;Leit,S.;Frechette,S.;Gaudette,F.;Paquin,I.; Bernstein,N.;Bouchain,G.;Vaisburg,A.;Jin,Z.;Gillespie,J.;Wang,J.;Fournel,M.; Yan,P.T.;Trachy-Bourget,M.-C.;Kalita,A.;Lu,A.;Rahil,J.;MacLeod,A.R.;Li,Z.; Besterman,J.M.;Delorme,D.Discovery of N-(2-Aminophenyl)-4-[(4-pyridin-3-ylpyrimidin-2-ylamino)methyl]benzamide(MGCD0103),an Orally Active Histone Deacetylase inhibitor.J.Med. Chem.,2008,51:4072-4075.
    [91]Hu,E.;Dul,E.;Sung,C.-M.;Chen,Z.;Kirkpatrick,R.;Zhang,G.-F.;Johanson,K.;Liu, R.;Lago,A.;Hofmann,G.;Macarron,R.;de losFrailes,M.;Perez,P.;Krawiec,J.; Winkler,J.;Jaye,M.Identification of novel isoform-selective inhibitors within class Ⅰ histone deacetylases.J.Pharmacol.Exp.Ther.,2003,307(2):720-728.
    [92]Perez-Balado,C;Nebbioso,A.;Rodriguez-Grana,P.;Minichiello,A.;Miceli,M.; Altucci,L.;de Lera,A.R.Bispyridinium Dienes:Histone Deacetylase Inhibitors with Selective Activities.J.Med. Chem.,2007,50:2497-2505.
    [93]Suzuki,T.;Nagano,Y.;Kouketsu,A.;Matsuura,A.;Maruyama,S.;Kurotaki,M.; Nakagawa,H.;Miyata,N.Novel inhibitors of human histone deacetylases:design, ynthesis,enzyme inhibition,and cancer cell growth inhibition of SAHA-based non-hydroxamates.J.Med. Chem.,2005,48:1019-1032.
    [94]Dehmel,F.;Weinbrenner,S.;Julius,H.;Ciossek,T.;Maier,T.;Stengel,T.;Fettis,K.; Burkhardt,C.;Wieland,H.;Beckers,T.Trithiocarbonates as a Npvel Class of HDAC Inhibitors:SAR Studies,Isoenzyme Selectivity,and Pharmacological Profiles.J. Med. Chem.,2008,51(13):3985-4001.
    [95]Wada,K.C.;Frey,R.R.;Ji,Z.;Curtin,M.L.;Garland,R.B.;Holms,J.H.;Li,J.;Pease, L.J.;Guo,J.;Glaser,K.B.;Marcotte,P.A.;Richardson,P.L.;Murphy,S.S.;Bouska,J. J.;Tapang,P.;Magoc,T.J.;Albert,D.H.;Davidsen,S.K.;Michaelides,M.R.α-Keto amides as inhibitors of histone deacetylase.Bioorg.Med.Chem.Lett.,2003,13(19): 3331-3335.
    [96]Suzuki,N.;Suzuki,T.;Ota,Y.;Nakano,T.;Kurihara,M.;Okuda,H.;Yamori,T.; Tsumoto,H.;Nakagawa,H.;Miyata,N.Design,Synthesis,and Biological Activity of Boronic Acid-Based Histone Deacetylase Inhibitor.J. Med. Chem.,2009,52(9): 2909-2922.
    [97]Davis,D.;Kim,H.M.;Ramphal,J.Y;Spencer,J.R.;Tai,V W.F.;Verner,E.J.Silanol Derivatives as Inhibitors of Histone Deacetylase.W02006069096,2006.
    [98]Kelly,W.K.;Marks,P.A.Drug Insight:histone deacetylase inhibitors-development of the new targeted anticancer agent suberoylanilide hydroxamic acid.Nat.Clin.Prac. Oncol.,2005,2(3):150-157.
    [99]Itoh,Y.;Suzuki,T.;Miyata,N.Isoform-Selective Histone Deacetylase Inhibitors.Curr. Pharm.Design,2008,14:529-544.
    [100]Belvedere, S.; Witter, D. J.; Yan, Y.; Secrist, P.; Richon, V.; Miller, T. A. Aminosuberoyl hydroxamic acids (ASHAs):a potent new class of HDAC inhibitors. Bioorg. Med. Chem. Lett.,2007,17:3969-3971.
    [101]Belvedere, S.; Methot, J. L.; Miller, T. A.; Witter, D. J.; Yan, J. Histone Deacetylase Inhibitors. WO2006017215,2006.
    [102]Miller, T. A.; Witter, D. J.; Belvedere, S. Diamine and Iminodiacetic Acid Hydroxamic Acid Derivatives. WO2005053610,2005.
    [103]Dai, Y.; Guo, Y.; Curtin, M. L.; Li, J.; Pease, L. J.; Guo, J.; Marcotte, P. A.; Glaser, K. B.; Davidsen, S. K.; Michaelides, M. R. A Novel Series of Histone Deacetylase Inhibitors Incorporating Hetero Aromatic Ring Systems as Connection Units. Bioorg. Med. Chem. Lett.,2003,13:3817-3820.
    [104]Cho, J. W.; Lim, S. C.; Maeng, C. Y.; Hwang, S. G.; Bae, S. J.; Kim, E. A. Oxazole Hydroxamic Acid Derivatives and Use Thereof. WO2006075888,2006.
    [105]Kozikowski, A. P.; Tapadar, S.; Luchini, D. N.; Kim, K. H.; Billadeau, D. D. Use of the Nitrile Oxide Cycloaddition (NOC) Reaction for Molecular Probe Generation:A New Class of Enzyme Selective Histone Deacetylase Inhibitors (HDACIs) Showing Picomolar Activity at HDAC6. J. Med. Chem.,2008,51:4370-4373.
    [106]Kozikowski, A. P.; Dritschilo, A.; Jung, M.; Petukhov, P.; Chen, B. Histone Deacetylase Inhibitors and Methods of Use Thereof. WO2005007091,2005.
    [107]Scopes, D. I. C. Substituted Phenylurea Derivatives as HDAC Inhibitors. WO2004067480,2004.
    [108]Marson, C. M.; Savy, P.; Rioja, A. S.; Mahadevan, T.; Mikol, C.; Veerupillai, A.; Nsubuga, E.; Chahwan, A.; Joel, S. P. Aromatic sulfide inhibitors of histone deacetylase based on arylsulfinyl-2,4-hexadienoic acid hydroxamides. J. Med. Chem.,2006,49: 800-805.
    [109]Mai, A.; Massa, S.; Rotili, D.; Simeoni, S.; Ragno, R.; Botta, G.; Nebbioso, A.; Miceli, M.; Altucci, L.; Brosch, G. Synthesis and Biological Properties of Novel, Uracil-Containing Histone Deacetylase Inhibitors. J. Med. Chem.,2006,49:6046-6056.
    [110]Glenn, M. P.; Kahnberg, P.; Boyle, G. M.; Hansford, K. A.; Hans, D.; Martyn, A. C.; Parsons, P. G.; Fairlie, D. P. Antiproliferative and Phenotype-Transforming Antitumor Agents Derived from Cysteine. J. Med. Chem.,2004,47:2984-2994.
    [111]Rossi, C.; Porcelloni, M.; D'Andrea, P.; Fattori, D.; Marastoni, E. Hydroxamates as Histone Deacetylase Inhibitors and Pharmaceutical Formulations Containing Them. WO2006097460,2006.
    [112]Guidi, A.; Dimoulas, T.; Giannotti, D.; Harmat, N. N-Hydroxamides ω-Substituted with Tricyclic Groups as Histone Deacetylase Inhibitors, Their Preparation and Use in Pharmaceutical Formulations. WO2006097449,2006.
    [113]Chen, Y.; Lopez-Sanchez, M.; Savoy, D. N.; Billadeau, D. D.; Dow, G. S.; Kozikowski, A. P. A Series of Potent and Selective, Triazolylphenyl-Based Histone Deacetylases Inhibitors with Activity against Pancreatic Cancer Cells and Plasmodium falciparum. J. Med. Chem.,2008,51(12):3437-3448.
    [114]He,R.;Chen,Y.;Chen,Y.;Ougolkov,A.V.;Zhang,J.-S.;Savoy,D.N.;Billadeau, D. D.; Kozikowski, A. P. Synthesis and Bilogical Evaluation of Triazol-4-ylphenyl-Bearing Histone Deacetylase Inhibitors as Anticancer Agents.J. Med. Chem.,2010,53(3):1347-1356.
    [115]Chen,P.C.;Patil,V.;Guerrant,W.;Green,P.;Oyelere,A.K.Synthesis and structure-activity relationship of histone deacetylase(HDAC)inhibitors with triazole-linked cap group.Bioory.Med. Chem.,2008,16:4839-4853.
    [116]Patil,V.;Guerrant,W.;Chen,P.C.;Gryder,B.;Benicewicz,D.B.;Khan,S.I.; Tekwani,B.L.;Oyelere,A.K.Antimalarial and antileishmanial activities of histone deacetylase inhibitors with triazole-linked cap group.Bioorg.Med.Chem.,2010,18: 415-425.
    [117]Maiso,P.;Carvajal-Vergara,X.;Ocio,E.M.Lopez-Porez,R.;Mateo,G.;Gutierrez,N.; Atadja,P.;Pandiella,A.;Miguel,J.F.S.The Histone Deacetylase Inhibitor LBH589 Is a Potent Antimyeloma Agent that Overcomes Drug Resistance.Cancer Res.,2006,66: 5781-5789.
    [118]Remiszewski,S.W.;Sambucetti,L.C.;Bajr,K.W.;Bontempo,J.;Cesarz,D.; Chandramouli,N.;Chen,R.;Cheung,M.;Kennon,S.C.;Dean,K.;Diamantidis,G.; France,D.;Green,M.A.;Howell,K.L.;Kashi,R.;Kwon,P.;Lassota,P.;Martin,M. S.;Mou,Y.;Perez,L.B.;Sharma,S.;Smith,T.;Sorensen,E.;Taplin,F.;Trogani,N.; Versace,R.;Walker,H.;Engler,S.W.;Wood,A.;Wu,A.;Atadja,P.N-Hydroxy-3-phenyl-2-propenamides as Novel Inhibitors of Human Histone Deacetylase with in Vivo Antitumor Activity:Discovery of(2E)-N-Hydroxy-3-[4-[[(2-hydroxyethyl)[2-(1H-indol-3-yl)ethyl]amino]methyl]-phenyl]-2-propenamide(NVP-LAQ824).J.Med. Chem.,2003,46:4609-4624.
    [119]Finn,P.W.;Bandara,M.;Butcher,C.;Finn,A.;Hollinshead,R.;Khan,N.;Law,N.; Murthy,S.;Romero,R.;Watkins,C.Novel Sulfonamide Derivatives as Inhibitors of Histone Deacetylase.Helv.Chim.Acta,2005,88:1630-1657.
    [120]Kim,D.K.;Lee,J.Y.;Kim,J.S.;Ryu,J.H.;Choi,J.Y.;Lee,J.W.;Im,G.J.;Kim,T. K.;Seo,J.W.;Park,H.J.;Yoo,J.;Park,J.H.;Kim,T.Y.;Bang,Y.J.Synthesis and Biological Evaluation of 3-(4-Substituted.phenyl)-N-hydroxy-2-propenamides,a New Class of Histone Deacetylase Inhibitors.J.Med. Chem.,2003,46:5745-5751.
    [121]Kim,D.-K.;Lee,J.Y.;Lee,N.K.;Kim,J.-S.;Lee,J.W.;Lee,S.H.;Choi,J.-Y.;Ryu, J.-H.;Kim,N.H.;Im,G.-J.;Kim,T.-K.;Seo,J.W.;Bang,Y.-J.α,β-Unsaturated Hydroxamic Acid Derivatives and Their Use as Histone Deacetylase inhibitors. WO2003087066,2003.
    [122]Urano,Y.;Satoh,S.;Ishibashi,N.;Kamijo,K.Hydroxamic acid Derivative as Histone Deacetylase(HDAC)Inhibitors.W02004063169,2004.
    [123]Bressi,J.C.;Brown,J.W.;Cao,S.X.;Gangloff,A.R.;Jennings,A.J.;Stafford,J.A.; Vu,P.H.;Xiao,X.-Y. Histone Deacetylase Inhibitors.W02004082638,2004.
    [124]Bressi,J.C.;Cao,S.X.;Gangloff,A.R.;Jennings,A.J.;Stafford,J.A. N-Hydroxy-3-(3-(1H-imidazol-2-yl)-phenyl)-acrylamide Derivatives and Related Compounds as Histone Deacetylase (HDAC) Inhibitors for the Treatment of Cancer. WO2005065681,2005.
    [125]Shinji, C.; Nakamura, T.; Maeda, S.; Yoshida, M.; Hashimoto, Y.; Miyachi, H. Design and synthesis of phthalimide-type histone deacetylase inhibitors. Bioorg. Med. Chem. Lett.,2005,15:4427-4431.
    [126]Shinji, C.; Maeda, S.; Imai, K.; Yoshida, M.; Hashimoto, Y.; Miyachi, H. Design, synthesis, and evaluation of cyclic amide/imide-bearing hydroxamic acid derivatives as class-selective histone deacetylase (HDAC) inhibitors. Bioorg. Med. Chem.,2006,14: 7625-7651.
    [127]Chen, D.; Deng, W.; Lee, K. C.; Lye, P. L.; Sun, E. R.; Wang, H.; Yu, N. Heterocyclic Compounds, US2009048300,2009.
    [128]Chen, D.; Deng, W.; Lee, K. C. L.; Lye, P. L.; Sun, E. T.; Wang, H.; Yu, N. Heterocyclic Compounds, WO 2007030080,2007.
    [129]Wang, H.; Yu, N.; Song, H.; Chen, D.; Zou, Y.; Deng, W.; Lye, P. L.; Chang, J.; Ng M.; Blanchard, S.; Sun, E. T.; Sangthongpitag, K.; Wang, X.; Goh, K. C.; Wu, X.; Khng, H. H.; Fang, L.; Goh, S. K.; Ong, W. C.; Bonday, Z.; Stunkel, W.; Poulsen, A.; Entzeroth, M.N-Hydroxy-1,2-disubstituted-1H-benzimidazol-5-yl acrylamides as novel histone deacetylase inhibitors:Design, synthesis, SAR studies, and in vivo antitumor activity. Bioorg. Med. Chem. Lett.,2009,19:1403-1408.
    [130]Lee, K. C. L.; Sun, E. T. Imidazo[1,2-α]pyridine Derivatives:Preparation and Pharmaceutical Applications. WO2006101455,2006.
    [131]Mai, A.; Massa, S.; Pezzi, R.; Rotili, D.; Loidl, P.; Brosch, G. Discovery of (Aryloxopropenyl)pyrrolyl Hydroxyamides as Selective Inhibitors of Class Ila Histone Deacetylase Homologue HD1-A. J. Med. Chem.,2003,46:4826-4829.
    [132]Mai, A.; Massa, S.; Cerbara, I.; Valente, S.; Ragno, R.; Bottoni, P.; Scatena, R.; Loidl, P.; Brosch, G.3-(4-Aroyl-1-methyl-1H-2-pyrrolyl)-N-hydroxy-2-propenamides as a New Class of Synthetic Histone Deacetylase Inhibitors.2. Effect of Pyrrole-C2 and/or-C4 Substitutions on Biological Activity. J. Med. Chem.,2004,47:1098-1109.
    [133]Ragno, R.; Mai, A.; Massa, S.; Cerbara, I.; Valente, S.; Bottoni, P.; Scatena, R.; Jesacher, F.; Loidl, P.; Brosch, G.3-(4-Aroyl-1-methyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamides as a New Class of Synthetic Histone Deacetylase Inhibitors.3. Discovery of Novel Lead Compounds through Structure-Based Drug Design and Docking Studies. J. Med. Chem.,2004,47:1351-1359.
    [134]Mai, A.; Massa, S.; Pezzi, R.; Simeoni, S.; Rotili, D.; Nebbioso, A.; Scognamiglio, A.; Altucci, L.; Loidl, P.; Brosch, G. Class Ⅱ(Ⅱa)-Selective Histone Deacetylase Inhibitors. 1. Synthesis and Biological Evaluation of Novel (Aryloxopropenyl)pyrrolyl Hydroxyamides. J. Med. Chem.,2005,48:3344-3353.
    [135]Minucci, S.; Pelicci, P. G.; Mai, A.; Ballarini, M.; Gargiulo, G.; Massa,S. New Histone Deacetylase Inhibitors. WO2006037761,2006.
    [136]Thaler, F.; Colombo, A.; Mai, A.; Amici, R.; Bigogno, C.; Boggio, R.; Cappa, A.; Carrara, S.; Cataudella, T.; Fusar, F.; Gianti, E.; di Ventimiglia, S. J.; Moroni, M.; Munari, D.; Pain, G.; Regalia, N.; Sartori, L.; Vultaggio, S.; Dondio, G.; Gagliardi, S.; Minucci, S.; Mercurio, C.; Varasi, M. Synthesis and Biological Evaluation of N-Hydroxyphenylacrylamides and N-Hydroxypyridin-2-ylacrylamides as Novel Histone Deacetylase Inhibitors. J. Med. Chem.,2010,53 (2):822-839.
    [137]Maier, T.; Beckers, T.; Baer, T.; Gimmnich, P.; Dullweber, F.; Vennemann, M. Novel Amido-Substituted Hydroxy-6-phenylphenan-thridines. WO2005087724,2005.
    [138]Maier, T.; Bar, T.; Beckers, T.; Leja, A.; Schneider, S.; Gekeler, V. N-Sulphonylpyrrole and Their Use as Histone Deacetylase. WO2006097474,2006.
    [139]Maier, T.; Beckers, T.; Hummel, R. P.; Feth, M.; Muller, M.; Bar, T. Sulphonylpyrrole Hydrochloride Salts as Histone Deacetylase Inhibitors. WO2007039403,2007.
    [140]Su, H.; Nebbioso, A.; Carafa, V.; Chen, Y.; Yang, B.; Altucci, L.; You, Q. Design, synthesis and biological evaluation of novel compounds with conjugated structure as anti-tumor agents. Bioorg. Med. Chem.,2008,16:7992-8002.
    [141]Shen, J.; Woodward, R.; Kedenburg, J. P.; Liu, X.; Chen, M.; Fang, L.; Sun, D.; Wang, P. G. Histone Deacetylase Inhibitors through Click Chemistry. J. Med. Chem.,2008, 51(23):7417-7427.
    [142]Fertig, G.; Herting, F.; Koerner, M.; Kubbies, M.; Limberg, A.; Reiff, U.; Tibes, U. Hydroxamates, Their Manufacture and Use as Pharmaceutical Agents. WO2005121119, 2005.
    [143]Fertig, G.; Herting, F.; Koerner, M.; Kubbies, M.; Limberg, A.; Reiff, U.; Tibes, U. Thiophene Hydroxamic Acid Derivatives and Their Use as HDAC Inhibitors. WO2005121120,2005.
    [144]Fertig, G.; Herting, F.; Koerner, M.; Kubbies, M.; Limberg, A.; Reiff,U.; Tibes, U. Thiophene Derivatives, Their Manufacture and Use As Pharmaceutical Agents. WO2005121134,2005.
    [145]Archer, J. A.; Bordogna, W.; Bull, R. J.; Clark, D. E.; Dyke, H. J.; Gill, M.; Harris, N. V.; Van Den Heuvel, M.; Price,S. Substituted Thienyl-hydroxamic Acids as Histone Deacetylase Inhibitors. WO2004013130,2004.
    [146]Bordogna, W.; Sutton, J. M.; Hynd, G.; Dyke, H. J.; Price, S.; Harris, N. V.; Gill, M. I. A. Thiazolyl-hydroxamic Acids and Thiadiazolyl-hydroxamic Acids, and Use There offor Treating Diseases Associated with Histone Deacetylase Enzymatic Activity. WO2005075469,2005.
    [147]Price, S.; Bordogna, W.; Bull, R. J.; Clark, D. E.; Crackett, P. H.; Dyke, H. J; Gill, M.; Harris, N. V.; Gorski, J.; Lloyd, J.; Lockey, P.M.; Mullett, J.; Roach, A. G.; Roussel, F.; White, A. B. Identification and optimisation of a series of substituted 5-(1H-pyrazol-3-yl)-thiophene-2-hydroxamic acids as potent histone deacetylase (HDAC) inhibitors. Bioorg. Med. Chem. Lett.,2007,17:370-375.
    [148]Price, S.; Bordogna, W.; Braganza, R.; Bull, R. J.; Dyke, H. J.; Gardan, S.; Gill, M.; Harris, N. V.; Heald, R. A.; Heuvel, M. V. D.; Lockey, P. M.; Lloyd, J.; Molina, A. G.; Roach, A. G.; Roussel, F.; Sutton, J. M.; White, A. B. Identification and optimisation of a series of substituted 5-pyridin-2-yl-thiophene-2-hydroxamic acids as potent histone deacetylase (HDAC) inhibitors. Bioorg. Med. Chem. Lett.,2007,17:363-369.
    [149]Stunkel, W.; Wang, H.; Yin, Z. Biaryl Linked Hydroxamates:Preparation and Pharmaceutical Applications. WO2005040161,2005.
    [150]Uesato, S.; Nagaoka, Y.; Yamori, T. N-Hydroxycarboxamide Derivative. WO2003070691,2003.
    [151]Chakravarty, P. K.; Kuo, H.; Matthews, J. M.; Meinke, P. T. Inhibitors of Histone Deacetylase. WO2006017214,2006.
    [152]Anandan, S. K.; Xiao, X.-Y.; Ward, J. S.; Patel, D. V. Fused Heterocyclic Compounds Useful as Inhibitors of Histone Deacetylase. WO2006088949,2006.
    [153]Anandan, S. K.; Xiao, Z.-Y.; Patel, D. V.; Ward, J. S. Inhibitors of Histone Deacetylase. US20050234033,2005.
    [154]Van Elemen, K.; Verdonck, M. G. C.; Van Brandt, S. F. A.; Angibaud, P. R.; Meerpoel, L.; Dyatkin, A. B. Inhibitors of Histone Deacetylase. WO2003075929,2003.
    [155]Van Brandt, S. F. A.; Franciscus, A.; Van Elemen, K.; Angibaud, P. R.; Marconnet-Decrane, L.; Francoise, B.; Arts, J. Substituted Propenyl Piperazine Derivatives as Novel Inhibitors of Histone Deacetylase. WO2006010749,2006.
    [156]Ten Holte, P.; Van Elemen, K.; Angibaud, P. R.; Marconnet-Decrane, L.; Francoise, B.; Meerpoel, L. Imidazolinone and Hydantoine Derivatives as Novel Inhibitors of Histone Deacetylase. WO2006136553,2006.
    [157]Verdonck, M. G. C.; Gustaaf, C.; Angibaud, P. R.; Roux, B.; Pilatte, I.; Noelle, C.; Ten Holte, P.; Arts, J.; VanElemen, K. Substituted Indolyl Alkyl Amino Derivatives as Novel Inhibitors of Histone Deacetylase. WO2006010750,2006.
    [158]Angibaud, P.; Van Emelen, K.; Decrane, L.; van Brandt, S.; ten Holte, P.; Pilatte, I.; Roux, B.; Poncelet, V.; Speybrouck, D.; Queguiner, L.; Gaurrand, S.; Marien, A.; Floren, W.; Janssen, L.; Verdonck, M.; van Dun, J.; van Gompel, J.; Gilissen, R.; Mackie, C.; Du Jardin, M.; Peeters, J.; Noppe, M.; Van Hijfte, L.; Freyne, E.; Page, M.; Janicot, M.; Arts, J. Identification of a series of substituted 2-piperazinyl-5-pyrimidyl hydroxamic acids as potent histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2010,20:294-298.
    [159]Miller, T. A.; Witter, D. J.; Belvedere, S. Thiophene and Benzothiophene Hydroxamic Acid Derivatives. WO2005034880,2005.
    [160]Bressi, J. C.; Gangloff, A. R.; Jennings, A. J. Histone Deacetylase Inhibitors. WO2005066151,2005.
    [161]Beckmann. E. Chem. Ber.,1886,89:988.
    [162]Kurti, L.; Czako, B., Strategic Applications of Named Reactions in Organic Synthesis. Elsevier Academic Press,2005.
    [163](a)朱敏泽.小分子催化Beckmann重排反应的研究.华东理工大学硕士毕业论文,2007; (b) Hashimoto, M.; Obora, Y.; Sakaguchi, S.; Ishii, Y Beckmann Rearrangement of Ketoximes to Lactams by Triphosphazene Catalyst. J. Org. Chem.,2008,73: 2894-2897.
    [164](a) Boero, M.; Ikeshoji, T.; Liew, C. C.; Terakura, K.; Parrinello, M. Hydrogen Bond Driven Chemical Reactions:Beckmann Rearrangement of Cyclohexanone Oxime into ε-Caprolactam in Supercritical Water. J. Am. Chem. Soc.,2004,126:6280-6286; (b) Ikushima, Y.; Hatakeda, K.; Sato, M.; Sato, O.; Arai, M. Innovation in a chemical reaction process using a supercritical water microreaction system:environmentally friendly production of ε-caprolactam. Chem. Commun.,2002,19:2208-2209; (c) Ikushima, Y.; Hatakeda, K.; Sato, O.; Yokoyama, T; Arai, M. Noncatalytic Organic Synthesis Using Supercritical Water:The Peculiarity Near the Critical Point. Angew. Chem. Int. Ed.,1999,38(19):2910-2914.
    [165](a) Betti, C.; Landini, D.; Maia A.; Pasi, M. Beckmann Rearrangement of Oximes Catalyzed by Cyanuric Chloride in Ionic Liquids. Synlett.,2008,6:908-910; (b) Marziano, N. C.; Ronchin, L.; Tortato, C.; Vavasori, A.; Bortoluzzi, M. Catalyzed Beckmann rearrangement of cyclohexanone oxime in heterogeneous liquid/solid system. Part 2:Influence of acid catalysts and organic promoters. J. Mol. Catal. A:Chem.,2008, 290:79-87; (c) Liu, X.; Xiao, L.; Wu, H.; Chen, J.; Xia, C. Synthesis of Novel Gemini DicationicAcidic Ionic Liquids and Their Catalytic Performances in the Beckmann Rearrangement. Helv. Chim. Acta,2009,92:1014-1021; (d) Liu, X.; Xiao, L.; Wu, H.; Li Z.; Chen, J.; Xia, C. Novel acidic ionic liquids mediated zinc chloride:Highly effective catalysts for the Beckmann rearrangement. Catal. Commun.,2009,10: 424-427; (e) Zicmanis, A.; Katkevica, S.; Mekss, P. Lewis acid-catalyzed Beckmann rearrangement of ketoximes in ionic liquids. Catal. Commun.,2009,10:614-619.
    [166](a) Ghiaci, M.; Abbaspur, A; Kalbasi, R. Vapor-phase Beckmann rearrangement of cyclohexanone oxime ovr H3PO4/ZrO2-TiO2. Appl. Cata. A:Gen.,2005,287:83-88; (b) Pillai, S. K.; Gheevarghese b, O.; Sugunan S. Catalytic properties of V2O5/SnO2 towards vapour-phase Beckmann rearrangement of cyclohexanone oxime. Appl. Cata. A:Gen.,2009,353:130-136; (c) Eickelberg, W.; Hoelderich, W. F. Beckmann rearrangement of cyclododecanone oxime to ω-laurolactam in the gas phase. J. Cata., 2009,263:42-55.
    [167](a) Ronchin, L.; Vavasori, A.; Bortoluzzi, M. Organocatalyzed Beckmann rearrange-ment of cyclohexanone oxime by trifluoroacetic acid in aprotic solvent. Catal. Commun.,2008,10:251-256; (b) Ghiaci, M.; Aghaei, H.; Oroojeni, M.; Aghabarari, B.; Rives, V.; Vicente, M. A.; Sobrados, I.; Sanz, J. Synthesis of paracetamol by liquid phase Beckmann rearrangement of 4-hydroxyacetophenone oxime over H3PO4/Al-MCM-41. Catal. Commun.,2009,10:1486-1492; (c) Shiju, N. R.; AnilKumar. M.; Hoelderich, W. F.; Brown, D. R. Tungstated Zirconia Catalysts for Liquid-Phase Beckmann Rearrangement of Cyclohexanone Oxime:Structure-Activity Relationship. J. Phys. Chem. C.,2009,113:7735-7742.
    [168](a) Thakur, A. J.; Boruah, A.; Prajapati, D.; Sandhu, J. S., Microwave induced bismuth trichloride catalysed Beckmann rearrangement of oximes. Synth. Commun.,2000, 30(12):2105-2111; (b) Moghaddam, F. M.; Rad, A. A. R.; Zali-Boinee, H. Solid Supported Microwave-Assisted Beckmann Rearrangement of Ketoximes in Dry Media. Synth. Commun.,2004,34(11):2071-2075.
    [169]Kitagawa, O.; Fujita, M.; Taguchi, T. Beckmann Rearrangement of O-4-Pentenyl Oxime through N-Bromosuccinimide-Mediated Activating Process. Chem. Pharm. Bull.,1997, 45(1):32-35.
    [170]Sato, H.; Yoshika, H.; Izumi, Y.; Homogeneous liquid-phase Beckmann rearrangement of oxime catalyzed by phosphorous pentaoxide and accelerated by fluorine-containing strong acid. J. Mol. Cat. A:Chem.,1999,149:25-32.
    [171]Anilkumar, R.; Chandrasekhar, S.; Improved procedures for the Beckmann rearrange-ment:The reaction of ketoxime carbonates with boron trifluoride etherate. Tetrahedron Lett.,2000,41:5427-5429.
    [172]Wang, B.; Gu, Y.; Luo, C.; Yang, T.; Yang, L.; Suo, J. Sulfamic acid as a cost-effective and recyclable catalyst for liquid Beckmann rearrangement, a green process to produce amides from ketoximes without waste. Tetrahedron Lett.,2004,45:3369-3372.
    [173]Li, D.; Shi, F.; Guo, S.; Deng, Y. Highly efficient Beckmann rearrangement and dehydration of oximes. Tetrahedron Lett.,2005,46:671-674.
    [174]Sardarian, A. R.; Shahsavari-Fard, Z.; Shahsavari, H. R.; Ebrahimi, Z.; Efficient Beckmann rearrangement and dehydration of oximes via phosphonate intermediates. Tetraheldron Lett.,2007,48:2639-2643.
    [175]Wang, X. C.; Li, L.; Quan, Z. J.; Gong, H. P.; Ye, H. L.; Cao, X. F. Chin. Chem. Lett., 2009,20:651-655.
    [176]Mukaiyama, T.; Harada, T. The catalytic Beckmann Rearrangement of ketoxime trimethylsilyl ethers using an Antimony(V) salt. Chem. lett.,1991,1653-1656.
    [177]Kusama, H.; Yamashita, Y.; Narasaka, K. Beckmann rearrangement of oximes catalyzed with tetrabutylammonium perrhenate and trifluoromethanesulfonic acid. Bull. Chem. Soc. Jpn.,1995,68:373-377.
    [178]Arisawa, M.; Yamaguchi, M. Rhodium-Catalyzed Beckmann Rearrangement. Org. Lett., 2001,3(2):311-312.
    [179]Yadov, J. S.; Reddy, B. V. S.; Madhavi, A. V.; Ganesha, Y.S.S. [Yb(OTf)3] catalysed facile conversion of ketoximes to amides and lactams. J. Chem. Research(s).2002, 236-238.
    [180]De, S. K. Facile Beckmann rearrangement of ketoximes mediated by Yttrium Triflate. Org. Prepar. Proc. Int.,2004,36(4):383-386.
    [181]De, S. K. RUCl3 Catalyzed Facile Conversion of Arylalk Ketoximes to Amides. Synth. Commun.,2004,34(18):3431-3434.
    [182]De, S. K. [Nd(OTf)3] mediated facile conversion of ketoximes to amides. J. Chem. Res., 2004,131-132.
    [183]Yan, P.; Batanack, P.; Prakash, G. K. S.; Olah, G. A. Gallium (Ⅲ) Triflate Catalyzed Beckmann Rearrangement. Catal. Lett.,2005,103(3-4):165-168.
    [184]Ramalingan, C.; Park, Y.-T. Mercury-Catalyzed Rearrangement of Ketoximes into Amides and Lactams in Acetonitrile. J. Org. Chem.,2007,72(12):4536-4538.
    [185]Luca, L. D.; Giacomelli, G.; Porcheddu, A. Beckmann Rearrangement of Oximes under
    Very Mild Conditions. J. Org. Chem.,2002,67:6272-6274.
    [186]Chandrasekhar, S.; Gopalaiah, K. Beckmann reaction of oximes catalysed by chloral: mild and neutral procedures. Tetrahedron Lett.,2003,44:755-756.
    [187]Chandrasekhar, S.; Gopalaiah, K. Ketones to amides via a formal Beckmann rearrange-ment in'one-pot':a solvent-free reaction promoted by anhydrous oxalic acid.Possible analogy with the Schmidt reaction. Tetrahedron Lett.,2003,44:7437-7439.
    [188]Furuya, Y.; Ishihara, K.; Yamamoto, H. Cyanuric Chloride as a Mild and Active Beckmann Rearrangement Catalyst. J. Am. Chem. Soc.,2005,127:11240-1124.
    [189]Zhu, M.; Cha, C.; Deng, W.-P.; Shi, X.-X. A mild and efficient catalyst for the Beckmann rearrangement, BOP-Cl. Tetrahedron Lett.,2006,47:4861-4863.
    [190]Hoffenberg, D. S.; Hauser, C. R. Dehydration or Beckmann rearrangement of aldoximes with Boron fluoride. Conversion of aldoximes to corresponding amides. J. Org. Chem., 1955,20(11):1496-1500.
    [191]Hauser, C. R.; Hoffenerg, D. S. The Beckmann rearrangement of ketoximes with boron fluoride. Development of the theory and of a new method. J. Org. Chem.,1955,20(11): 1482-1490.
    [192]Keersmaeker, J. P. D.; Fontyn, F. Born trifluoride catalyzed Beckmann rearrangements. Indust. Chim. Belge,1967,10:1087.
    [193]Waters, R. M.; Wakabayashi, N.; Fields, E. S. Beckmann rearrangements using the carbon tetrachloride-triphenylphosphine reagent. Org. Prep. Proc. Int.,1974,6(2): 53-56.
    [194]Iranpoor, N.; Firouzabadi, H.; Aghapour, G. A rapid and facile conversion of primary amides and aldoximes to nitriles and ketoximes to amides with triphenylphosphine and N-Chlorosuccinimide. Synth. Commun.,2002,32(16):2535-2541.
    [195]Narsaiah, A. V.; Sreenu, D.; Nagaiah, K. Triphenylphosphine-Iodine:An Efficient Reagent System for the Synthesis of Nitriles From Aldoximes. Synth. Commun.,2006, 36:137-140.
    [196]Chapman, A. W. Studies of the Beckmann Change. Part III. The Rearrangement of Ketoxime Hydrochlorides. J. Chem. Soc.,1935,1223-1229.
    [197]a)查传涛.磺酰氯催化的Beckmann重排反应的研究.华东理工大学硕士毕业论文,2007;b)董金东,磺酰氯催化Beckmann重排反应及其应用的再研究.华东理工大学硕士毕业论文,2009.
    [198]Katritzky, A. R.; Hayden, A. E.; Kirichenko, K.; Pelphrey, P.; Ji, Y. A novel Route to Imidoylbenzotriazoles and Their Application for the Synthesis of Enaminones. J. Org. Chem.,2004,69:5108-5111.
    [199]Katritzky, A. R.; Rachwal, S. Synthesis of Heterocycles Mediated by Benzotriazole.1. Monocyclic Systems. Chem. Rev.,2010,110:1564-1610
    [200]Katritzky, A. R.; Rachwal, S.; Offerman, R. J.; Najzarek, Z.; Yagoub, A. K.; Zhang, Y. Nucleophilic Attack at Heterocyclic Nitrogen:Unusual Reactivity of the Bezotriazole Heterocyclic Ring. Chem. Ber.,1990,123:1545-1551.
    [201]Katritzky, A. R.; Stevens, C. V.; Zhang, G.-F.; Jiang, J. Imidoylbenzotriazoles stable alternatives to Imidoyl Chlorides. Heterocycles,1995,40(1):231-240.
    [202]Katritzky, A. R.; Cai, C.; Meher, N. K. Efficient Synthesis of 1,5-Disubstituted Tetrazoles. Synthesis,2007,8:1204-1208.
    [203]Katritzky, A. R.; Donkor, A.; Fang, Y. Preparation of Heterocycle-Masked β-Enamino Acids. J. Org. Chem.,2001,66:4041-4044.
    [204]Katritzky, A. R.; Cai, C.; Singh, S. K. Efficient Microwave Access to Polysubstituted Amidines from Imidoylbenzotriazoles. J. Org. Chem.,2006,71:3375-3380.
    [205]Katritzky, A. R.; Khashab, N. M.; Kirichenko, N.; Singh, A. Microwave-Assisted Preparations of Amidrazones and Amidoximes. J. Org. Chem.,2006,71:9051-9056.
    [206]Katritzky, A. R.; Monteux, D. A.; Tymoshenko, D. O. One-Pot Synthesis of N-Imidoylbenzotriazoles via Benzotriazole-Mediated Beckmann Rearrangement of Oximes. Org. Lett.,1999,1(4):577-578.
    [207]Katritzky, A. R.; Button, M. A. C.; Busont, S. Synthesis of Novel a-Amino-N-substituted Thioacetimidates. J. Org. Chem.,2001,66:2865-2868.
    [208]Katritzky, A. R.; Huang, T. B.; Voronkov, M. V. From Amides to Amidines-Preparations of Imidoylbenzotriazoles and Arylaminoheterocycles. J. Org. Chem., 2001,66:1043-1045.
    [209]Steinbrink, S. D.; Pergola, C.; Buhring, U.; George, S.; Metzner, J. Fischer, A. S.; Hafner, A.-K.; Wisniewska, J. M.; Geisslinger, G.; Werz O.; Steinhilber, D.; Maier, T. J. Sulindac sulfide suppresses 5-lipoxygenase at clinically relevant concentrations. Cell. Mol. Life Sci.,2010,67:797-806.
    [210]戴立言,李倩,贺电,王晓钟,陈英奇.舒林酸的合成工艺研究.高校化学工程学报,2009,23(4):673-678.
    [211]Niphade, N.; Mali, A.; Jagtap, K.; Ojha, R. C.; Vankawala, P. J.; Mathad, V. T. An Improved and Efficient Process for the Production of Donepezil Hydrochloride: Substitution of Sodium Hydroxide for n-Butyl Lithium via Phase Transfer Catalysis. Org. Process. Res. Dev.,2008,12(4):731-735.
    [212]Grossberg, G. T. Cholinesterase Inhibitors for the Treatment of Alzheimer's Disease: Getting On and Staying On. Curr. Ther. Res.,2003,64(4):216-235.
    [213]Kim, M. H.; Maegn, H. J.; Yu, K. H.; Lee, K. R.; Tsuruo, T.; Kim, D. D.; Shim, C. K.; Chung, S. J. Evidence of Carrier-Mediated Transport in the Penetration of Donepezil into the Rat Brain. J. Pharm. Sci.,2010,99(3):1548-1566.
    [214]Binda, C.; Hubalek, F.; Li, M.; Herzig, Y.; Sterling, J.; Edmondson, D. E.; Mattevi, A. Crystal Structures of Monoamine Oxidase B in Complex with Four Inhibitors of the N-Propargylaminoindan Class. J. Med. Chem.,2004,47:1767-1774.
    [215]Binda, C.; Hubalek, F.; Li, M.; Herzig, Y.; Sterling, J.; Edmondson, D. E.; Mattevi, A. Binding of Rasagiline-Related Inhibitors to Human Monoamine Oxidases:A Kinetic and Crystallographic Analysis. J. Med. Chem.,2005,48:8148-8154.
    [216]B(?)ges(?), K. P.; Christensen, A. V.; Hyttel, J.; Liljefors, T.3-Phenyl-1-indanamines. Potential Antidepressant Activity and Potent Inhibition of Dopamine, Norepinephrine, and Serotonin Uptake. J. Med. Chem.,1985,28:1817-1828.
    [217]Gu, X.-H.; Yu, H.; Jacobson, A. E.; Rothman, R. B.; Dersch, C. M.; George, C.; Flippen-Anderson, J. L.; Rice, K. C. Design, Synthesis, and Monoamine Transporter Binding Site Affinities of Methoxy Derivatives of Indatraline. J. Med. Chem.,2000,43: 4868-4876.
    [218]Davies, H. M. L.; Gregg, T. M. Asymmetric synthesis of (+)-indatraline using rhodium-catalyzed C-H activation. Tetrahedron Lett.,2002,43:4951-4953.
    [219]刘长令.新型高效杀虫剂茚虫威.农药,2003,42(2):42-44.
    [220]Ito, T.; Ando, H.; Suzuki, T.; Ogura, T.; Hotta, K.; Imamura, Y.; Yamaguchi, Y.; Handa, H. Identification of a Primary Target of Thalidomide Teratogenicity. Science,2010, 327:1345-1350.
    [221]Robert L. Rosati, Stonington, Conn. Malonyl Derivatives of 6-(α-Aminoacyl-amide)penicilianic acids. US2003928324,1975.
    [222]Nishino Shigeyoshi, Shima Hideyoshi. Method for producting 2-aralkyl-or Heteroaralkyl-malonic acid compound. JP2006347888,2006.
    [223]Kawasaki, M.; Goto, M.; Kawabata, S.; Kometani, T. The effect of vinyl esters on the enantioselectivity of the lipase-catalysed transesterification of alcohols. Tetrahedron Asymmetry,2001,12:585-596.
    [224]Adamczyk, M.; Watt, D. S. Synthesis of Biological Markers in Fossil Fuels.2. Synthesis and 13C NMR Studies of Substituted Indans and Tetralins. J. Org. Chem., 1984,49:4226-4237.
    [225]Lansbuw, P. T.; Mancuso, N. R. Non-Stereospecificity in the Beckmann and Schmidt Reactions. Tetrahedron Lett.,1965,29:2445-2450.
    [226]Lee, B. S.; Chi, D. Y. Beckmann Rearrangement of 1-Indanone Oxime Using Aluminum Chloride. Bull. Korean. Chem. Soc.,1998,19(12):1373-1375.
    [227]Lee, B. S.; Chu, S.; Lee, I. Y.; Lee, B.-S.; Song, C. E.; Chi, D. Y. Beckmann Rearrangements of 1-Indanone Oxime Derivatives Using Aluminum Chloride and Mechanistic Considerations. Bull. Korean Chem. Soc.,2000,21(9):860-866.
    [228]Torisawa, Y.; Nishi, T.; Minamikawa, J.-I. A Study on the Conversion of Indanones into Carbostyrils. Bioorg. Med. Chem.,2003,11:2205-2209.
    [229]Torisawa, Y.; Nishi, T.; Minamikawa, J.-I. Continuing efforts on the improvement of Beckmann rearrangement of indanone oxime. Bioorg. Med. Chem. Lett.,2007,17: 448-452.
    [230]Chen, Dizhong, Deng, Weiping, Lee, Ken, Chi, Lik Lye, Pek Ling. Heterocyclic compounds. WO2007030080,2007.
    [231]R. Bryan Miller, James M. Frincke. Synthesis of isoquinolines from indenes. J. Org. Chem.1980,45(26):5312-5315.
    [232]Lowe, J.; Drozda, S.; Qian, W.; Peakman, M.-C.; Liu, J.; Gibbs, J.; Harms, J.; Schmidt, C.; Fisher, K., Strick, C.; Schmidt, A.; Vanase, M.; Lebel, L. A novel, non-substrate-based series of glycine type1transporter inhibitors derived from high-throughput screening. Bioorg. Med. Chem. Lett.,2007,17:1675-1678.
    [233]Whisler, M. C.; Beak, P. Synthetic Applications of Lithiated N-Boc Allylic Amines as Asymmetric Homoenolate Equivalents. J. Org. Chem.,2003,68:1207-1215.
    [234]Martin, N. I.; Woodward, J. J.; Marletta, M. A. NG-Hydroxyguanidines from Primary Amines. Org. Lett.,2006,8(18):4035-4038.
    [235]Nag, S.; Madapa, S.; Batra, S. Application of Primary Allylamine Derivatives of Baylis-Hillman Adducts to Heterocyclic Synthesis:Generation of 5-Benzyl-4(3H)-Pyrimidinones and 2-Benzylidene-2,3-dihydropyrrolizin-1-ones. Synthesis,2008, 101-109.
    [236]Deng, W.-P.; You, S.-L.; Hou, X.-L.; Dai, L.-X.; Yu, Y.-H.; Xia, W.; Sun, J. Importance of Planar Chirality in Chiral Catalysts with Three Chiral Elements:The Role of Planar Chirality in 2'-Substituted 1,1'-P,N-Ferrocene Ligands on the Enantioselectivity in Pd-Catalyzed Allylic Substitution. J. Am. Chem. Soc.,2001,123:6508-6519.
    [237]Hauser, F. M.; Zhou, M.; Sun, Y. Facile Synthesis of Indenones from Indanones:A New Procedure. Synth. Commun.,31(1):77-80.
    [238]Nicolaou, K.C.; Gray, D. L. F.; Montagnon, T.; Harrison, S.T. Oxidation of Silyl Enol Ethers by Using IBX and IBX·N-Oxide Complexes:A Mild and Selective Reaction for the Synthesis of Enones. Angew. Chem. Int. Ed.,2002,41(6):996-1000.
    [239]Nicolaou, K.C.; Montagnon, T.; Baran, P. S. HIO3 and I2O5:Mild and Selective Alternative Reagents to IBX for the Dehydrogenation of Aldehydes and Ketones. Angew. Chem. Int. Ed.,2002,41(8):1386-1389.
    [240]Marvel. C. S.; Hinman, C.W. The Synthesis of Indone and Some Related Compounds. J. Am. Chem. Soc.,1954,76(5):5435-5437.
    [241]Gavina, F.; Costero, A. M.; Gonzalez, A. M. Reactive Annulenones:A Comparative Study. J. Org. Chem.,1990,55:2060-2063.
    [242]Xi, Z.; Jones, G. B.; Qabaja, G.; Wright, J.; Johnson, F.; Goldberg, I. H. Org. Lett.,1999, 1(9):1375-1377.
    [243]Tao, W.; Silverberg, L. J.; Rheingold, A. L.; Heck, R. F. Alkyne Reactions with Arylpalladium Compounds. Organometallics,1989,8:2550-2559.
    [244]Larock, R. C.; Doty, M. J. Synthesis of Indenones via Palladium-Catalyzed Annulation of Internal Alkynes. J. Org. Chem.,1993,58:4579-4583.
    [245]Kokubo, K.; Matsumasa, K.; Miura, M.; Nomura, M.; Rhodium-Catalyzed Reaction of Aroyl Chlorides with Alkynes. J. Org. Chem.,1996,61:6941-6946.
    [246]Larock, R. C.; Tian, Q.; Pletnev, A. A. Carbocycle Synthesis via Carbopalladation of Nitriles. J. Am. Chem. Soc.,1999,121:3238-3239.
    [247]Pletnev, A. A.; Tian, Q.; Larock, R. C. Carbopalladation of Nitriles:Synthesis of 2,3-Diarylindenones and Polycyclic Aromatic Ketones by the Pd-Catalyzed Annulation of Alkynes and Bicyclic Alkenes by 2-Iodoarenenitriles. J. Org. Chem.,2002,67: 9276-9287.
    [248]Miura, T.; Murakami, M. Rhodium-Catalyzed Annulation Reactions of 2-Cyanophenyl boronic Acid with Alkynes and Strained Alkenes. Org. Lett.,2005,7(15):3339-3341.
    [249]Harada,Y.; Nakanishi, J.; Fujihara, H.; Tobisu, M.; Fukumoto, Y.; Chatani, N. Rh(Ⅰ)-Catalyzed Carbonylative Cyclization Reactions of Alkynes with 2-Bromophenylboronic Acids Leading to Indenones. J. Am. Chem. Soc.,2007,129, 5766-5771.
    [250]Tsukamoto, H.; Kondo, Y. Palladium(II)-Catalyzed Annulation of Alkynes with ortho-Ester-Containing Phenylboronic Acids. Org. Lett.,2007,9(21):4227-4230.
    [251]Morimoto, T.; Yamasaki, K.; Hirano, A.; Tsutsumi, K.; Kagawa, N.; Kakiuchi, K.; Harada, Y.; Fukumoto, Y.; Chatani, N.; Nishioka, T. Rh(I)-Catalyzed CO Gas-Free Carbonylative Cyclization Reactions of Alkynes with 2-Bromophenylboronic Acids Using Formaldehyde. Org. Lett.,2009,11(8):1777-1780.
    [252]Clark, W. M.; Tickner-Eldridge, A. M.; Huang, G. K.; Pridgen, L. N.; Olsen, M. A.; Mills, R. J.; Lantos, I.; Baine N. H. A Catalytic Enantioselective Synthesis of the Endothelin Receptor Antagonists SB-209670 and SB-217242. A Base-Catalyzed Stereospecific Formal 1,3-Hydrogen Transfer of a Chiral 3-Arylindenol. J. Am. Chem. Soc.,1998,120:4550-4551.
    [253]Hedberg, C.; Andersson, P. G. Catalytic Asymmetric Total Synthesis of the Muscarinic Receptor Antagonist (R)-Tolterodine. Adv. Synth. Catal.,2005,347:662-666.
    [254]Murray, R. J.; Gromwell, N. H. Mobile Keto Allyl Systems.18. Synthesis and Charge-Transfer Interactions of 2-(a-Aminobenzyl)-1-indenone. J. Org. Chem.,1976, 41(22):3540-3545
    [255]Kinzel, O.; Fattori, D.; Muraglia, E.;Gallinari, P.; Nardi, M. C.; Paolini, C.; Roscilli, G.; Toniatti, C.; Paz, O. G.; Laufer, R.; Lahm, A.; Tramontano, A.; Cortese, R.; DeFrancesco, R.; Ciliberto, G.; Koch, U. A Structure-Guided Approach to an Orthogonal Estrogen-Receptor-Based Gene Switch Activated by Ligands Suitable for in Vivo Studies. J. Med. Chem.,2006,49:5404-5407.
    [256]Martinez, A,; Fernandez, M.; Estevez, J. C.; Estevez R. J.; Castedo, L. New '2-phenylnaphthalene'-mediated synthesis of benzo[b]naphtho[2,3-d]furan-6,11-diones and 6-oxa-benzo[a]anthracene-5,7,12-triones:first total synthesis of 6-oxa-benzo[a]anthracen-5-ones. Tetrahedron,2005,61:1353-1362.
    [257]Martinez, A,; Fernandez, M.; Estevez, J. C.; Estevez R. J.; Castedo, L. Studies on the chemistry of 2-(2-oxo-3-phenylpropyl)-benzaldehydes:novel total synthesis of 3-phenylnaphthalen-2-ols and 2-hydroxy-3-phenyl-1,4-naphthoquinones. Tetrahedron, 2005,61:485-492.
    [258]Cecchetti, V.; Fravolini, A.; Schiaffella, F.; Tabarrini, O.; Zhou, W. J. Heterocyclic Chem.,1992,29:375-382.
    [259]Chu, D. T. W.; Fernandes, P. B.; Pernet, A. G. Synthesis and Biological Activity of Benzothiazolo[3,2-a]quinolone Antibacterial Agents. J. Med. Chem.,1986,29: 1531-1534
    [260]高世豪,高长权,赵信岐.2-(5-氨基-1,2,4-噻二唑-3-基)-2-(Z)-甲氧亚氨基 乙酸S-苯并噻唑硫酯的合成.中国医药工业杂志,2008,39(9):645-646.
    [261](a) Bacskai, B. J.; Hickey, G. A.; Skoch, J.; Kajdasz, S. T.; Wang, Y.; Huang, G.-f.; Mathis, C. A.; Klunk, W. E.; Hyman, B. T. Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-β ligand in transgenic mice. Proc. Natl. Acad. Sci.,2003,100(21):12462-12467; (b) Mathis, C. A.; Wang, Y.; Holt, D. P.; Huang, G.-F.; Debnath, M. L.; Klunk, W. E. Synthesis and Evaluation of 11C-Labeled 6-Substituted 2-Arylbenzothiazoles as Amyloid Imaging Agents. J. Med. Chem.,2003,46:2740-2754; (c) Wilsonl, A. A.; Garcia, A.; Chestakova, A.; Kung, H.; Houle, S. A rapid one-step radiosynthesis of the β-amyloid imaging radiotracer N-methyl-[11C]2-(4'-methylaminophenyl)-6-hydroxybenzothiazole([11C]-6-OH-TA-1). J. Label Compd. Radiopharm.,2004,47:679-682.
    [262]Naya, A.; Kobayashi, K.; Ishikawa, M.; Ohwaki, K.; Saeki, T.; Noguchi, K.; Ohtake, N. Structure-Activity Relationships of 2-(BenzothiazoIylthio)acetamide Class of CCR3 Selective Antagonist. Chem. Pharm. Bull.,2003,51(6):697-701.
    [263]杨忠,胡薇,李亦学,沈建华,唐赞,徐斌,肖树华,冯正,曹志伟,陈宇综,孙胜强,邹汉军,邓卫平,曾步兵,张浩冰,康斌.CN101205555,2008.
    [264]Shi, D.-F.; Bradshaw, T. D.; Wrigley, S.; McCall, C. J.; Lelieveld, P.; Fichtner, I. Stevens, M. F. G. Antitumor Benzothiazoles.3. Synthesis of 2-(4-Amino-phenyl)-benzothiazoles and Evaluation of Their Activities against Breast Cancer Cell Lines in Vitro and in Vivo. J. Med. Chem.,1996,39:3375-3384.
    [265]Bradshaw, T. D.; Stevens M. F. G.; Westwell, A. D. The Discovery of the Potent and Selective Antitumour Agent 2-(4-Amino-3-methylphenyl)benzothiazole (DF 203) and Related Compounds. Curr. Med. Chem.,2001, (8):203-210.
    [266]Bradshaw, T. D.; Westwell, A. D. The Development of the Antitumour Benzothiazole Prodrug, Phortress, as a Clinical Candidate. Curr. Med. Chem.,2004,11:1009-1021.
    [267]Fringuelli, R.; Schiaffella, F.; Navarro, M. P. U.; Milanese, L.; Santini, C.; Rapucci, M.; Marchetti, C.; Riccardi, C.1,4-Benzothiazine Analogues and Apoptosis:Structure-Activity Relationship. Bioorg. Med. Chem.,2003,11:3245-3254.
    [268]Parai, M. K.; Panda, G. Aconvenient synthesis of chiral amino acid derived 3,4-dihydro-2H-benzo[b][1,4]thiazines and antibiotic levofloxacin. Tetrahedron Lett. 2009,50:4703-4705.
    [269]Fujita, M.; Ito, S.; Ota, A.; Kato, N.; Yamamoto, K.; Kawashima, Y.; Yamauchi, H.; Iwao, J.-I. Synthesis and Ca2+Antagonistic Activity of 2-[2-[(Aminoalkyl) oxy]-5-methoxyphenyl]-3,4-dihydro-4-methyl-3-oxo-2H-1,4-benzo-thiazines. J. Med. Chem.,1990,33:1898-1905.
    [270]Stark, G.; Kasper, K.; Stark, U.; Miyawaki, N.; Decrinis, M.; Tritthart, H. A. Effects of semotiadil, a novel Ca2+channel antagonist, on the electrical activity of Langendorff-perfused guinea pig hearts in comparision with diltiazem, amlodiphine and nifediphine. Euro.J. Pharmacol.,1995,71-78.
    [271]Schou, S. C.; Hansen, H. C.; Tagmose, T. M.; Boonen, H. C. M.; Worsaae, A.; Drabowski, M.; Wahl, P.; Arkhammar, P. O. G.; Bodvarsdottir, T.; Antoine, M.-H. Lebrunb, P.; Hansena, J. B. Synthesis and pharmacological evaluation of 4H-1,4-benzothiazine-2-carbonitrile 1,1-dioxide and N-(2-cyanomethylsulfonyl-phenyl)-acylamide derivatives as potential activators of ATP sensitive potassium channels. Bioorg. Med. Chem.,2005,13:141-155.
    [272]Calderone, V.; Spogli, R.; Martelli, A.; Manfroni, G.; Testai, L.; Sabatini, S.; Tabarrini, O.; Cecchetti, V. Novel 1,4-Benzothiazine Derivatives as Large Conductance Ca2+-Activated Potassium Channel Openers. J. Med. Chem.,2008,51:5085-5092.
    [273]Chikashita, H.; Takegami, N.; Yanase, Y.; Itoh, K. Synthesis of 2-[1-(Alkoxycarbonyl)-alkyl]-3-methylbenzothiazolines and 3-Methyl-2-(2-oxoalkyl)benzothiazolines by the Direct alkylation of Lithium Enolates with 3-methylbenzothiazolium salts. Bull. Chem. Soc. Jpn.,1989,62:3389-3391.
    [274]Takayama, W.; Shirasaki, Y.; Sakai, Y.; Nakajima, E.; Fujita, S.; Sakamoto-Mizutani, K.; Inoue, J. Synthesis and PDF Inhibitory Activities of Novel Benzothiazolyli-denehydroxamic Acid Derivatives. Bioorg. Med. Chem. Lett.,2003,13:3273-3276.
    [275]#12
    [276]Nigrey, P. J.; Garito, A. F. Synthesis and Characterization of 3-Alkyl-benzothiazolium Salts. J. Chem. Engin. Data,1977,22(4):451-452.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700