大麻纳米纤维素的制备、表征及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境意识的增加,垃圾处理以及全球气候暖化问题使得各国政府不得不通过立法来加以约束。另一方面,来自于农业或木材产品中的可再生资源已成为一种新的工业产品或能源资源。从这些物质中提取出来的天然纤维目前广泛应用于各领域,如纺织,制浆造纸工业以及塑料工业。同时,随着纳米技术的发展,人们开始关注从天然纤维中制备纳米纤维。
     在本项目(研究)中我们始终关注大麻纳米纤维素的提取及其应用。通过新的纳米纤维素的制备方法,利用RSM对大麻纳米纤维素的制备实验进行设计,结果显示:当时间4 h,温度65 oC,润胀剂用量4-4.18%,氧化剂用量为60-62.29%,可以获得得率超过50%的纳米纤维素。NTA的测定,AFM、FEG-SEM的表面形貌观测相继证实,采用超声波/氧化降解的方法,经过条件的优化可以较好制备出纳米纤维素颗粒。尽管在降解过程中部分纤维素上C2,C3和C6的羟基会被氧化,但这些氧化并未对纳米纤维素的结晶指数造成负面影响,XRD的测定显示了采用超声波/氧化降解所制得的纳米纤维素同样具有较高的结晶度。不过DSC测定的结果则显示纳米纤维素的热稳定性弱于大麻纱线。
     研究大麻纤维的纳米纤维素改性时,对纤维的位错系统展开了研究。力学测定结果显示,经DTAB-纳米纤维素改性后大麻纤维的弹性模量、拉伸应变以及拉伸应力这三种力学性能参数的增加值在90.74~176.54%波动。通过FEG-SEM观测,清晰的观察到纳米纤维素对纤维的改性结果:纳米纤维素通过两种途径对大麻纤维进行“修复”,即(1)填充于大麻纤维中纤丝之间,或在纤丝之间部分形成薄膜而“修复”纤维,(2)通过填充大麻纤维的沟状条纹而实现对大麻纤维的“修复”。通过XPS研究,我们进一步推测纳米纤维素对于纤维的“修复”还可能通过羟醛缩合反应的方式对纤维进行修复。XRD的测定结果显示:较高的结晶指数出现在pH值为11-12,DTAB添加量在0.1左右的区域。界面的XPS研究显示:DTAB-纳米纤维素改性纤维后,能较好的提高纤维与树脂间的界面相容性。采用ATR-FTIR差谱分析技术对界面的研究进一步显示:这种相容性的提高可能是纤维通过酯化反应的方式对聚酯进行作用。
     环氧树脂的纳米纤维素复合研究时,DETA作为纳米纤维素的改性剂,采用高温和冷冻干燥方式对纳米纤维素进行改性。以DETA高温处理纳米纤维素为增强剂,研究了固化温度与纳米纤维素添加量对环氧树脂力学性能的影响,结果显示:当固化温度为130 oC,纳米纤维素添加量为0.035%时,复合物的力学性能最佳。采用DETA冷冻干燥处理纳米纤维素时,当DETA相对用量为50%时,复合物的力学性能最佳。用差示扫描量热法(DSC)分别测定了不同纳米纤维素用量与环氧树脂组成的固化体系在不同升温速率下的DSC曲线。分别采用KAS、Friedman、Málek数学模型计算了环氧树脂/纳米纤维素复合物的固化动力学参数。
The increasing environmental awareness, growing global waste problems, and the global warming motivated governments around the world to increase the legislative pressure.Renewable resources from agricultural or forestry products form a basis for new industrial products or alternative energy sources. Natural-based fibres are used in a wide range of products such as textiles and geotextiles, special pulps and papers, reinforcement for polymers. As the development of nanotechnology, researchers pay much more attention on the fabrication of nanomaterials from natural fibres and their applications.
     In this present project (work), we focus on the extraction of nanocellulose from hemp fibres and the application of hemp nanocellulose for natural fibre modification and nanocomposite. We develop a novel method with couple outstanding advantages for the fabrication of nanocellulose. A central composite design (CCD) is applied using Design-Expert software to optimize the conditions of fabrication.The results show that the yield maximum amounts to more than 50% under the following conditions: time 4 h; temperature: 65 oC, dosage of swelling agent 4-4.18%; dosage of oxidant 60-62.29%. According to NTA (Nanoparticle Tracking Analysis), the mean size of nanocellulose can get around 100 nm. Characterized with AFM and FEG-SEM showsthat the dimension of nanocellulose is 3-dimensional system. ATR-FTIR shows that parts of the hydroxyl in C2, C3 and C6 are oxidized. But the oxidative reaction seems did not give rise to the decrease of CI. DSC determination shows that the thermal stability of nanocellulose is less then raw fibres.
     Dislocation also been investigated systematically by using ATR-FTIR and EDX during the second stage of research for the hemp fibres modification. Tensile testing shows that DTAB-Nanocellulose modification can increase the mechanical properties of hemp fibres significantly. FEG-SEM morphologies observation shows clearly that nanocellulose can modify the fibres by (1) filling in the interfibrillar gap or form thin film between fibrils and (2) filling in the stria on the surface of hemp fibres. XPS determination shows that nanocellulose may modify the fibres by aldol condensation. A higher CI can be got, when the pH Value is 11-12 and the dosage of DTAB is around 0.1%. XPS and ATR-FTIR are used to investigate the interfacial agehesion of polyester on the fibre. The interface between fibre and resin can be increased by the DTAB-Nanocellulose modification, this may be due to the esterifiable reaction.
     DETA is used to modify nanocellulose, and the results show that epoxy/nanocellulose nanocomposite can get a maximum of mechanical properties at the following condition: cure temperature 130 oC, dosage of nanocellulose 0.035%. Isothermal cure kinetics of epoxy/nanocellulose has also been investigated in present work. Three kinds of model are used to analysis the cure behavior of nanocomposite,
引文
[1]黎宇,谢国炎,熊谷良,等.世界麻类原料生产与贸易概况(Ⅳ)[J].中国麻业科学, 2007, 29(2): 102-109.
    [2]周永凯.汉麻杆芯黏胶纤维的制备及结构与性能研究[D].北京化工大, 2008: 1.
    [3] http://www.gmw.cn/03pindao/lunwen/show.asp?id=2906
    [4]顾观光(清)编辑.神农本草经[M].北京:学苑出版社,2007: 89.
    [5] S.K.Francis. Hemp (Cannabis sativa L.) as an alternative fibre source for Nova Scotia[D]. Dalhousie University, 1996.
    [6] Walton, R.P. Marijuana America`s New Drug Problem. New York: J.B.Lippincot Co. 1938 pp.8.
    [7] A. C. Kimmens, ed., Tales of Hashish (New York: Wm. Morrow, 1977), p. 278.
    [8] C. Niebuhr, Travels in Arabia, in A General Collection of the Best and Most Interesting Voyages and Travels in All Parts of the World, ed. J. Pinkerton (London: Longman, Hurst, Ries, Orme, and Brown, 1811), 10: 153.
    [9]胡占莉.汉麻的能量[N].中国纺织报, 2008-01-28(2).
    [10] H(a|¨)rk(a|¨)salmi, T. Bast fibres by short fibre methods-towards productization of flax and hemp environmentally consciously[D]. University of Art and Design,2006.
    [11] Chen Y, Gratton JL, Liu J. Power Requirements of Hemp Cutting and Conditioning[J]. Biosystems Engineering. 2004; 87(4): 417-424.
    [12] Sch(a|¨)fer T, Honermeier B. Effect of sowing date and plant density on the cell morphology of hemp (Cannabis sativa L.)[J]. Industrial Crops and Products. 2006;23(1):88-98.
    [13] Ranalli, P. 1999. Agronomical and physiological advances in hemp crops. In: Ranalli, P. (ed.). Advances in hemp research. Food Products Press, An imprint of the Haworth Press Inc., NY. p. 61-84.
    [14] McDougall GJ, Morrison IM, Stewart D, Weyers JDB, Hillman JR. Plant fibres: Botany, chemistry and processing for industrial use[J]. Journal of the Science of Food and Agriculture. 1993; 62(1): 1-20.
    [15] Sankari HS. Comparison of bast fibre yield and mechanical fibre properties of hemp (Cannabis sativa L.) cultivars[J]. Industrial Crops and Products. 2000; 11(1): 73-84.
    [16] Blake A, Marcus S, Copeland J, Blackburn R, Knox J. In situ analysis of cell wall polymers associated with phloem fibre cells in stems of hemp, Cannabis sativa L[J] Planta. 2008;228(1):1-13.
    [17] Hoffmann, W., 1961. Hanf, Cannabis sativa L. In: Kappert, H., Rudorf, W. (Eds.), Handbuch der Pflanzenzu¨chtung, 5. Paul Parey, Berlin, pp. 204–261.
    [18] Anders Thygesen. Properties of hemp fibre polymer composites-An optimisation of fibre properties using novel defibration methods and fibre characterization[D]. Ris? National Laboratory,2006.
    [19] Thygesen A, Daniel G, Lilholt H, Thomsen AB. Hemp fiber microstructure and use of fungal defibration to obtain fibers for composite materials[J]. Journal of Natural Fibers. 2006;2(4):19-37.
    [20] Roger, M.R., James, S.H. and Jeffrey, S.R. Characterization and Factors Effecting Fiber Properties. In Natural Polymers and Agrofibers Based Comosites, Eds., Frollini, E., Leao, A L., Mattoso, L.H.C. Embrapa Instrumentacao Agropecuaria, Brazil, 2000.
    [21] Mohanty, A.K., Misra, M., Drzal, L.T. Natural fibers, biopolymers, and Biocomposites [M]. Boca Raton, Taylor & Francis Group, LLC. 2005.
    [22] Rials TG, Wolcott MP. Physical and mechanical properties of agro-based fibers in paper and composites from agro-based resources[M]. Boca Raton, FL: CRC Press; 1996.
    [23] Reddy N, Yang Y. Characterizing natural cellulose fibers from velvet leaf (Abutilon theophrasti) stems. Bioresource Technology. 2008;99(7):2449-2454.
    [24] Mohanty AK, Misra M, Hinrichsen G. Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering[J]. 2000;276-277(1):1-24.
    [25] Madsen B. Properties of Plant Fiber Yarn Polymer Composites: An Experimental Study[D]. Technical University of Denmark, 2004.
    [26] Kr(a|¨)ssig, H., J. Schurz, R.G. Steadman, K. Schliefer, and W. Albrecht, Cellulose, in Ulmann's Encyclopedia of Industrial Chemistry[M]. 2002, Wiley-VCH Verlag.
    [27] Bledzki, A.K. and Gassan J. Composites reinforced with cellulose based fibres[J]. Progress in Polymer Science, 1999. 24(2): p. 221-274.
    [28] Karnani R. Kenaf-reinforced polypropylene composites [D]. Michigan State University, 1996.
    [29]孙小寅,管映亭,温桂清,等.大麻纤维的性能与应用研究[J].《纺织学报》, 2001(4):234-236.
    [30] Sridhar M.K, Basavarajappa G. Evaluation of jute as a reinforcement in composites Indian Journal Textile Research [J]. 1982; 7(9): 87–92.
    [31] Wambua P, Ivens J, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology [J]. 2003; 63(9): 1259-1264.
    [32] Centre of Lightweight Structures TU Delft, Recent projects - Natural fibre composites from upholstery to structural components, 2005
    [33] Keller A, Leupin M, Mediavilla V, Wintermantel E. Influence of the growth stage of industrial hemp on chemical and physical properties of the fibres [J]. Industrial Crops and Products. 2001; 13(1): 35-48.
    [34] Hughes J.M. On the mechanical properties of bast fibre reinforced thermosetting polymer matrix composites [D]. University of Wales, 2000.
    [35] Ochi S. Mechanical properties of kenaf fibers and kenaf / PLA composites [J]. Mechanics of Materials. 2008; 40 (4-5): 446-452.
    [36] Elsaid A, Dawood M, Seracino R, Bobko C. Mechanical properties of kenaf fiber reinforced concrete[J]. Construction and Building Materials. 2011; 25(4):1991-2001.
    [37] Liu W, Drzal LT, Mohanty AK, Misra M. Influence of processing methods and fiber length on physical properties of kenaf fiber reinforced soy based biocomposites[J]. Composites Part B: Engineering. 2007; 38 (3): 352-359.
    [38] Ranalli P. Advances in hemp research [M]. Food Products Press, Binghamton, 1998.
    [39]顾名淦.麻纤维开发利用[M].北京:纺织工业出版社,1993
    [40]杨红穗,张元明.大麻纺织应用前景及研究现状[J].纺织学报, 1999(4): 220, 258-260.
    [41] DTI, 2003a. Our Energy Future—Creating a Low Carbon Economy[R]. TSO, London.
    [42] http://faostat.fao.org/
    [43] Johnson R. Hemp as an Agricultural Commodity, CRS, 2010.
    [44] http://www.hemcore.co.uk/rapport.php
    [45]http://www.amazon.co.uk/Pro-Rep-Hemp-Bedding-1-5kg/dp/B00393OO7A/ref=sr1fkmr11?ie=UTF8&qid= 1297765788&sr=8-1-fkmr1
    [46] http://www.ashridgetrees.co.uk/Mulch-Mats
    [47] Sipos B, Kreuger E, Svensson S-E, Réczey K, Bj?rnsson L, Zacchi G. Steam pretreatment of dry and ensiled industrial hemp for ethanol production[J]. Biomass and Bioenergy. 2010; 34 (12): 1721-1731.
    [48] Kreuger E, Prade T, Escobar F, Svensson SE, Englund JE, Bj?rnsson L. Anaerobic digestion of industrial hemp-Effect of harvest time on methane energy yield per hectare[J]. Biomass and Bioenergy. 2011; 35 (2): 893-900.
    [49] Kreuger E, Sipos B, Zacchi G, Svensson S-E, Bj?rnsson L. Bioconversion of industrial hemp to ethanol and methane: The benefits of steam pretreatment and co-production[J]. Bioresource Technology. 2011; 102 (3): 3457-3465.
    [50] Bevan R, Woolley T. Hemp Lime Construction[M]. Bracknell IHS/BRE Press, 2008.
    [51] Seyfang G. Community action for sustainable housing: Building a low-carbon future[J]. Energy Policy. 2010; 38 (12): 7624-7633.
    [52] Koz(?)owski R, W?adyka-Przybylak M. Flammability and fire resistance of composites reinforced by natural fibers[J]. Polymers for Advanced Technologies. 2008; 19(6): 446-453.
    [53] Mwaikambo LY, Ansell MP. Hemp fibre reinforced cashew nut shell liquid composites[J]. Composites Science and Technology. 2003; 63(9): 1297-1305.
    [54] Wibowo AC, Mohanty AK, Misra M, Drzal LT. Chopped Industrial Hemp Fiber Reinforced Cellulosic Plastic Biocomposites:? Thermomechanical and Morphological Properties[J]. Industrial & Engineering Chemistry Research. 2004; 43(16): 4883-4888.
    [55] Van de Velde K, Kiekens P. Thermoplastic pultrusion of natural fibre reinforced composites[J]. Composite Structures. 2001; 54(2-3): 355-360.
    [56] Bledzki AK, Fink HP, Specht K. Unidirectional hemp and flax EP- and PP-composites: Influence of defined fiber treatments[J]. Journal of Applied Polymer Science. 2004; 93(5): 2150-2156.
    [57] Thygesen A, Thomsen AB, Daniel G, Lilholt H. Comparison of composites made from fungal defibrated hemp with composites of traditional hemp yarn[J]. Industrial Crops and Products. 2007; 25(2): 147-159.
    [58] http://www.transport20.com/uncategorized/lotus-announces-hemp-based-eco-elise-a-new-type-of-green-car/
    [59] Karus M, Vogt D. European hemp industry: Cultivation, processing and product lines[J]. Euphytica. 2004; 140(1): 7-12.
    [60] Kraenzel DG, Petry T, Nelson B, et al.. Industrial Hemp as an Alternative Crop in North Dakota[R]. North Dakota State University, 1998.
    [61] Haupt P, Parker K. Acumen in advanced aerospace materials expertise[J]. Science Scope, 2006, 1(5): 12-13.
    [62]苏友波,朱颖.大麻RAPD分子标记的引物筛选[J].中国麻业,2002,24(5): 12-16
    [63]杨龙,吕咏梅,王斌等.优质高产大麻新品种皖大麻1号的选育研究[J].中国麻业科学, 2009, 31(1):17-20.
    [64]许艳萍,杨明,胡学礼等.大麻种子发芽条件的研究[J].中国麻业科学,2009,31(3): 201-204.
    [65]胡尊红,郭鸿彦,郭孟璧等.AFLP技术在大麻遗传研究中的应用[J].中国麻业科学,2009,31(5): 296-300.
    [66]胡学礼,杨明,许艳萍等.栽培密度对工业大麻品种"云麻1号"产量及农艺性状的影响[J].中国麻业科学,2009,31(5):303, 322-324.
    [67]任翠梅,王殿奎,王明泽等.工业大麻"尤纱-14"田间除草剂筛选及施用时间初探[J].中国麻业科学, 2009, 31(6): 358-361, 378
    [68]许艳萍,杨明,郭鸿彦等."云麻1号"黑斑病的药效试验[J].中国麻业科学,2009,31(5):327-329
    [69]伍菊仙,杨明,郭孟璧等.大麻顶枯现象与原因的探究[J].中国麻业科学,2010,32(1):30-32, 44.
    [70] Sharma HSS. Studies on chemical and enzyme retting of flax on a semi-industrial scale and analysis of the effluents for their physico-chemical components[J]. International Biodeterioration. 1987; 23(6): 329-342.
    [71] Di Candilo M, Ranalli P, Bozzi C, Focher B, Mastromei G. Preliminary results of tests facing with the controlled retting of hemp[J]. Industrial Crops and Products. 2000; 11(2-3): 197-203.
    [72] Thomsen AB, Thygesen A, Bohn V, Nielsen KV, Pallesen B, J?rgensen MS. Effects of chemical-physical pre-treatment processes on hemp fibres for reinforcement of composites and for textiles[J]. Industrial Crops and Products. 2006; 24(2): 113-118.
    [73] Vignon MR, Garcia-Jaldon C, Dupeyre D. Steam explosion of woody hemp chènevotte[J]. International Journal of Biological Macromolecules. 1995;17(6):395-404.
    [74] Vignon MR, Dupeyre D, Garcia-Jaldon C. Morphological characterization of steam-exploded hemp fibers and their utilization in polypropylene-based composites[J]. Bioresource Technology. 1996; 58(2): 203-215.
    [75] Garcia C, Jaldon, Dupeyre D, Vignon MR. Fibres from semi-retted hemp bundles by steam explosion treatment[J]. Biomass and Bioenergy. 1998; 14(3): 251-260.
    [76]殷祥刚.大麻纤维“闪爆”处理技术的研究[D].天津工业大学,2002.
    [77]高丽贤.超临界二氧化碳处理对工业用麻纤维的结构和性能的影响[D].北京服装学院,2006.
    [78]罗玉成.汉麻纤维的冷冻辐射辅助脱胶工艺研究[D].太原理工大学, 2008.
    [79]尹云雷.闪爆-化学联合处理对大麻结构与性能影响的研究[D].北京服装学院,2009.
    [80]郭玉路,赵书林,张暴暴.汉麻原麻的超声脱胶工艺与原理[J].天津工业大学学报, 2010, 29(1):43-45.
    [81] Nykter M, Kym?l?inen H-R, Thomsen AB, Lilholt H, Koponen H, Sj?berg A-M, et al. Effects of thermal and enzymatic treatments and harvesting time on the microbial quality and chemical composition of fibre hemp (Cannabis sativa L.). Biomass and Bioenergy. 2008;32(5):392-399.
    [82]王贵宾.大麻脱胶功能菌株的选育及在沤麻中的应用[D].黑龙江大学,2009.
    [83]江云飞.应用PCR-DGGE技术研究大麻沤麻系统中的细菌多样性[D].黑龙江大学,2009.
    [84]李美英.尿素膨化预处理大麻的染色性能[J].印染,2010(8):26-27.
    [85]唐占伟,张华,来侃.液氨处理对大麻纤维结构与性能的影响[J].纺织学报, 2008, 29(1):69-72.
    [86]张辉,张俐敏.壳聚糖丁烷四羧酸整理大麻织物染色性能分析[J].印染助剂.2009, 26(1):46-49.
    [87] Ray PK, Chakravarty AC, Bandyopadhaya SB. Fine structure and mechanical properties of jute differently dried after retting[J]. Journal of Applied Polymer Science. 1976; 20(7):1765-1767.
    [88] Semsarzadeh MA. Fiber matrix interactions in jute reinforced polyester resin[J]. Polymer composite. 1986; 7(1):23-25.
    [89] Bisanda ETN, Ansell MP. The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites[J]. Composites Science and Technology. 1991; 41(2): 165-178.
    [90] Zeronian SH, Kawabata H, Alger KW. Factors Affecting the Tensile Properties of Nonmercerized and Mercerized Cotton Fibers[J]. Textile Research Journal. 1990; 60(3):179-183.
    [91] http://en.wikipedia.org/wiki/File:Plasma-lamp_2.jpg
    [92] Ragoubi M, BienaiméD, Molina S, George B, Merlin A. Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites made thereof[J]. Industrial Crops and Products. 2010; 31(2): 344-349.
    [93] Radetic M, Jovancic P, Jocic D, et al.The influence of low-temperature plasma and enzymatic treatment on hemp fabric dyeability[J]. Fibres & Textiles in Eastern Europe; 2007; 15(4):93-96.
    [94]周正刚.高性能有机纤维表面等离子体改性研究[J].玻璃钢/复合材料,2009,(1):77-79, 84.
    [95] Liston EM, Martinu L, Wertheimer MR. Plasma surface modification of polymers for improved adhesion: a critical review[J]. Journal of Adhesion Science and Technology, 1993, 7(10):1091-1127.
    [96] Simionescu CI, Dénes F, Macoveanu MM, Totolin M, Cazacu G. Polymerization of some potential“grafting-monomers”for natural and synthetic fibres in cold plasma conditions[J]. Acta Polymerica. 1982; 33(1): 26-30.
    [97] Cristofor, Simionescu, Dénes F, Macoveanu MM, Negulescu I. Surface modification and grafting of natural and synthetic fibres and fabrics under cold plasma conditions[J]. Die Makromolekulare Chemie. 1984; 8 (S19841): 17-36.
    [98] Mujin S, Baorong H, Yisheng W, Ying T, Weiqiu H, Youxian D. The surface of carbon fibres continuously treated by cold plasma[J]. Composites Science and Technology. 1989; 34(4): 353-364.
    [99]孙慕瑾,胡宝荣,吴怡盛,等人.碳纤维表面冷等离子体连续化处理[J].复合材料学报,1986,(4).
    [100]张秀斌,张志谦,魏月贞.空气冷等离子体连续化处理碳纤维表面的研究[J].哈尔滨工业大学学报,1988,(3).
    [101] Chen JR. Free radicals of fibers treated with low temerature plasma[J]. Journal of Applied Polymer Science. 1991; 42(7): 2035-2037.
    [102] Plawky U, Londschien M, Michaeli W. Surface modification of polyethylene fibers treated in an oxygenmicrowave plasma[J]. Acta Polymerica. 1996;47(2-3):112-118.
    [103] Jang J, Kim H. Improvement of carbon fiber/PEEK hybrid fabric composites using plasma treatment[J]. Polymer Composites. 1997;18(1):125-132.
    [104]何瑶.低温等离子体技术在羊毛染整加工中的应用[D].西北工程大学, 1996.
    [105]张庆.低温等离子体处理对聚酯织物着色性能的影响[D].东华大学,1996.
    [106] Bouyer E, Henne RH, Müller M, Schiller G. Si3N4 Fibers Synthesized by Thermal Plasma CVD[J]. Chemical Vapor Deposition. 2001;7(4):139-142.
    [107] Ma W, Ogura M, Kobayashi T, Takahashi H. Preparation of solar grade silicon from optical fibers wastes with thermal plasmas[J]. Solar Energy Materials and Solar Cells. 2004; 81(4): 477-483.
    [108] Tong L, Reddy RG. Thermal plasma synthesis of SiC nano-powders/nano-fibers[J]. Materials Research Bulletin. 2006;41(12):2303-2310.
    [109] Wang GJ, Liu YW, Guo YJ, Zhang ZX, Xu MX, Yang ZX. Surface modification and characterizations of basalt fibers with non-thermal plasma[J]. Surface and Coatings Technology. 2007;201(15):6565-6568.
    [110] Morent R, De Geyter N, Verschuren J, De Clerck K, Kiekens P, Leys C. Non-thermal plasma treatment of textiles[J]. Surface and Coatings Technology. 2008; 202(14): 3427- 3449.
    [111] Li R, Ye L, Mai Y-W. Application of plasma technologies in fibre-reinforced polymer composites: a review of recent developments[J]. Composites Part A: Applied Science and Manufacturing. 1997; 28(1):73-86.
    [112] Morent R, De Geyter N, Verschuren J, De Clerck K, Kiekens P, Leys C. Non-thermal plasma treatment of textiles[J]. Surface and Coatings Technology. 2008;202(14):3427-3449.
    [113] www.mstconf.com/UMaine%20Presentations/contact6Riedl.pdf
    [114] JovaněiéP, JociéD, RadetiéM, TopaloviéT, PetroviéZLj., et al. The Influence of Surface Modification on Related Functional Properties of Wool and Hemp [J]. Materials Science Forum, 2005, 494(9): 283-290.
    [115] Titova YV, Stokozenko VG, and Maximov AI. Application of Plasma-Solution Treatment for Modification of Bast Fibers[J]. Surface Engineering and Applied Electrochemistry, 2009, 45(1):16-20.
    [116] Baltazar-y-Jimenez A, Bistritz M, Schulz E, et al. Atmospheric air pressure plasma treatment of lignocellulosic fibres: Impact on mechanical properties and adhesion to cellulose acetate butyrate[J]. Composites Science and Technology. 2008; 68(1): 215-227.
    [117] Ragoubia M, BienaiméD, Molinaa S, et al. Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites made thereof [J].Industrial Crops and Products, 2010, 31(2): 344-349
    [118] Klemm D, Philipp B, Heinze T, et al. Comprehensive cellulose chemistry Volume1: Fundamental and Analytical Methods [M]. Weinheim: Wiley-VCH, 1998: 19.
    [119] Oh SY, Yoo DI, Shin Y, Seo G. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide [J]. Carbohydrate Research. 2005; 340(3): 417-428
    [120] Okano T, Sarko A. Mercerization of cellulose. I. X-ray diffraction evidence for intermediate structures[J]. Journal of Applied Polymer Science. 1984;29(12):4175-4182.
    [121] Okano T, Sarko A. Mercerization of cellulose. II. Alkali–cellulose intermediates and a possible mercerization mechanism [J]. Journal of Applied Polymer Science. 1985;30(1):325-332.
    [122] Nishimura H, Sarko A. Mercerization of cellulose. III. Changes in crystallite sizes [J]. Journal of Applied Polymer Science. 1987;33(3):855-866.
    [123] Nishimura H, Sarko A. Mercerization of cellulose. IV. Mechanism of mercerization and crystallite sizes [J]. Journal of Applied Polymer Science. 1987;33(3):867-874.
    [124] Bledzki AK, Gassan J. Composites reinforced with cellulose based fibres [J]. Progress in Polymer Science. 1999;24(2):221-274.
    [125] Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, et al. Crystalline structure analysis of cellulose treatedwith sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy [J]. Carbohydrate Research. 2005;340(15):2376-2391.
    [126] Mansikkam?ki P, Lahtinen M, Rissanen K. The conversion from cellulose I to cellulose II in NaOH mercerization performed in alcohol-water systems: An X-ray powder diffraction study [J]. Carbohydrate Polymers. 2007; 68(1): 35-43.
    [127] Karmakar SR. Chemical technology in the pre-treatment process of textiles[M]. Netherlands: Elsevier Science B.V., 1999: 279.
    [128] Rodriguez ES, Stefani PM, Vazquez A. Effects of Fibers' Alkali Treatment on the Resin Transfer Molding Processing and Mechanical Properties of Jute—Vinylester Composites [J]. Journal of Composite Materials. 2007, 41(14): 1729-1741.
    [129] Ray D, Sarkar BK, Bose NR. Impact fatigue behaviour of vinylester resin matrix composites reinforced with alkali treated jute fibres [J]. Composites Part A: Applied Science and Manufacturing. 2002;33(2):233-241.
    [130] Saha P, Manna S, Chowdhury SR, Sen R, Roy D, Adhikari B. Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment [J]. Bioresource Technology. 2010;101(9):3182-3187.
    [131] Mwaikambo LY, Ansell MP. Hemp fibre reinforced cashew nut shell liquid composites [J]. Composites Science and Technology. 2003; 63(9):1297-1305.
    [132] Mwaikambo LY, Ansell MP. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials [J]. I. hemp fibres [J]. Journal of Materials Science. 2006; 41(8):2482-2496.
    [133] Gulati D, Sain M. Surface characteristics of untreated and modified hemp fibers[J]. Polymer Engineering & Science. 2006; 46(3): 269-273.
    [134]许云辉,陈宇岳,林红.氧化纤维素的研究进展及发展趋势[J].苏州大学学报(工科版),2006,26(2): 1-6.
    [135] Yackel EC, Kenyon WO, Preparation of oxycellulose [P]. US: 2232990, 1941.
    [136] Nabar G, Padmanabhan C. Studies in oxycellulose Part III. Oxidation of cellulose with a mixture of nitrogen dioxide and oxygen [J]. Proceedings Mathematical Sciences. 1950; 32(4): 212-231.
    [137] Colvin JR. Oxidation of cellulose microfibril segments by alkaline silver nitrate and its relation to the fine structure of cellulose [J]. Journal of Applied Polymer Science. 1964; 8(6): 2763-2774.
    [138] Shenai VA, Singh OP. Studies in Accelerated Oxidation of Cellulose. I—Hypochlorite Oxidation of Cellulose in Presence of Manganous Hydroxide [J]. Journal of the Society of Dyers and Colourists. 1971; 87 (7): 228-231.
    [139] Arendt JH, Carrière JP, Bouchez P, Sachetto JP. Oxidation of cellulose by acid-sodium nitrite systems [J]. Journal of Polymer Science: Polymer Symposia. 1973;42(3):1521-1529.
    [140] Heinze T, Klemm D, Loth F, Nehls I. Sph?rische ionotrope gele carboxygruppenhaltiger cellulosederivate als tr?germaterialien für biologische wirkstoffe, IV. Synthese von carboxycellulose und ionotrope gelbildung mit calciumionen [J]. Die Angewandte Makromolekulare Chemie. 1990;178(1):95-107.
    [141] Schnabelrauch M, Heinze T, Klemm D, Nehis I, K?tz J. Investigations on synthesis and characterization of carboxy-groups containing cellulose sulfates [J]. Polymer Bulletin. 1991; 27(2):147-153.
    [142] Isogai A, Kato Y. Preparation of Polyuronic Acid from Cellulose by TEMPO-mediated Oxidation [J]. Cellulose. 1998;5(3):153-164.
    [143] Hirota M, Tamura N, Saito T, Isogai A. Surface carboxylation of porous regenerated cellulose beads by 4-acetamide-TEMPO /NaClO /NaClO2 system [J]. Cellulose. 2009;16(5):841-851.
    [144] Toda T. Graft copolymerization to cellulose by sodium periodate [J]. Journal of Polymer Science. 1962; 58 (166): 411-427.
    [145] Sihtola H. Chemical properties of modified celluloses [J]. Die Makromolekulare Chemie. 1960; 35(1): 250- 265.
    [146] Rowland SP, Cousins ER. Periodate oxidative decrystallization of cotton cellulose [J]. Journal of Polymer Science Part A-1: Polymer Chemistry. 1966; 4(4): 793-799.
    [147] Kangle PJ, Nabar GM. Studies in chemically modified celluloses. I. Oxidative susceptibility of chemically, modified cellulose [J]. Journal of Applied Polymer Science. 1969;13(2):323-336.
    [148] Defaye J, Gadelle A. Oxydation sélective de groupes hydroxyles vicinaux du méthyl-4, 6-O-benzylidène- [beta]- glucopyranoside par le diméthyl sulfoxyde et l'anhydride acétique[J]. Carbohydrate Research. 1977; 56 (2): 411-414.
    [149] Morooka T, Norimoto M, Yamada T. Periodate oxidation of cellulose by homogeneous reaction[J]. Journal of Applied Polymer Science. 1989;38(5):849-858.
    [150] Shibata I, Yanagisawa M, Saito T, Isogai A. SEC-MALS analysis of cellouronic acid prepared from regenerated cellulose by TEMPO-mediated oxidation [J]. Cellulose. 2006; 13(1): 73-80.
    [151] Saito T, Isogai A. Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2006; 289 (1-3): 219-225.
    [152] Saito T, Okita Y, Nge TT, Sugiyama J, Isogai A. TEMPO-mediated oxidation of native cellulose: Microscopic analysis of fibrous fractions in the oxidized products [J]. Carbohydrate Polymers. 2006;65(4):435-440.
    [153] DiFlavio J-L, Pelton R, Leduc M, Champ S, Essig M, Frechen T. The role of mild TEMPO–NaBr–NaClO oxidation on the wet adhesion of regenerated cellulose membranes with polyvinylamine [J]. Cellulose. 2007; 14 (3):257-268.
    [152] Hirota M, Tamura N, Saito T, Isogai A. Surface carboxylation of porous regenerated cellulose beads by 4-acetamide-TEMPO /NaClO /NaClO2 system [J]. Cellulose. 2009; 16(5): 841-851.
    [153] Isogai T, Yanagisawa M, Isogai A. Degrees of polymerization (DP) and DP distribution of cellouronic acids prepared from alkali-treated celluloses and ball-milled native celluloses by TEMPO-mediated oxidation [J]. Cellulose. 2009; 16(1): 117-127.
    [154] Johnson R, Zink-Sharp A, Renneckar S, Glasser W. A new bio-based nanocomposite: fibrillated TEMPO- oxidized celluloses in hydroxypropylcellulose matrix [J]. Cellulose. 2009; 16(2): 227-238.
    [155] Figueiredo J, Ismael M, Anjo C, Duarte A. Cellulose and Derivatives from Wood and Fibers as Renewable Sources of Raw-Materials. In: Rauter AP, Vogel P, Queneau Y, editors. Carbohydrates in Sustainable Development I, vol. 294: Springer Berlin / Heidelberg; 2010. p. 117-128.
    [156] Fujisawa S, Isogai T, Isogai A. Temperature and pH stability of cellouronic acid [J]. Cellulose. 2010; 17 (3): 607- 615.
    [157] Hirota M, Tamura N, Saito T, Isogai A. Oxidation of regenerated cellulose with NaClO2 catalyzed by TEMPO and NaClO under acid-neutral conditions [J]. Carbohydrate Polymers. 2009; 78(2): 330-335.
    [158] Praskalo J, Kostic M, Potthast A, Popov G, Pejic B, Skundric P. Sorption properties of TEMPO-oxidized natural and man-made cellulose fibers[J]. Carbohydrate Polymers. 2009;77(4):791-798.
    [159] Xhanari K, Syverud K, Chinga-Carrasco G, Paso K, Stenius P. Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants [J]. Cellulose. 2010:1-14.
    [160] Fukuzumi H, Saito T, Okita Y, Isogai A. Thermal stabilization of TEMPO-oxidized cellulose [J]. Polymer Degradation and Stability. 2010; 95(9):1502-1508.
    [161] Potthast A, Kostic M, Schiehser S. Studies on oxidative modifications of cellulose by the TEMPO and periodate oxidation system [A]. Italic 4– Science & Technology of Biomass: Advances and Challenges, Roma, Italy, 8-10 May 2007, 70-73.
    [162] Kostic M, Praskalo J, Dimitrijevic S, et al. Silver-loaded hemp fibers with antimicrobial activity [Z]. Proc.AUTEX. 2007
    [163] Kostic M, Pejic B, Skundric P. Quality of chemically modified hemp fibers[J]. Bioresource Technology. 2008; 99(1): 94-99.
    [164]松井哲治,山岡昭美.オゾン酸化した麻へのメタクリル酸メチルのグラフト共重合[J].神戸市立工業高等専門学校研究紀要, 1997, 36(1): 51-55.
    [165]松井哲治,山岡昭美.オゾン酸化した麻へのメタクリル酸メチルのグラフト共重合II :グラフト共重合の微細構造,機械的性質および耐薬品性に及ぼす影響[J].神戸市立工業高等専門学校研究紀要, 1999, 38(1): 21-24.
    [166]顾春菊,孙宾.TEMPO体系对粘胶纤维的氧化过程研究[J].纤维素科学与技术,2004,12(1):7-13.
    [167]孙宾,顾春菊.TEMPO-NaOCl-NaBr氧化体系氧化再生纤维素的动力学研究[J].东华大学学报(自然科学版),2004,30(2).
    [168]王凤川,路聪聪,孙宾等.亚硝酰自由基氧化体系氧化再生纤维素的研究——氧化反应的影响因素[J].东华大学学报(自然科学版), 2007,33(4):415-419,439.
    [169]许云辉.选择性氧化法制备环境友好型功能棉纤维研究[D].苏州大学,2006.
    [170]杨美桂,林红,陈宇岳等.丝胶蛋白对氧化棉纤维结构和性能的影响[J].丝绸,2007,(9): 26-28.
    [171]王浩.蛋白棉纤维(制品)的制备及结构和性能研究[D].苏州大学,2008.
    [172]王菊华,陈宇岳,林红等.氧化竹浆纤维的结构与性能研究[J].南通大学学报(自然科学版), 2007, 6(4): 54- 57.
    [173]王菊华.新型功能性竹浆纤维的制备及结构与性能的研究[D].苏州大学,2008.
    [174]刘操.竹浆纤维的蛋白质改性及其结构与性能研究[D].苏州大学,2009.
    [175]张俊华,宋海农,林鹿等.化学氧化预处理对MFC性能的影响[J].中国造纸学报,2009,24(3):24-27
    [176]郑培培.麻纤维的选择性氧化及丝素蛋白的改性研究[D].苏州大学,2008.
    [177]张燕,林红,陈宇岳.丝胶蛋白处理氧化亚麻纤维结构和性能研究[J].天津工业大学学报,2008,27(5):80-82
    [178]张燕.亚麻纤维蛋白质改性及结构与性能研究[D].苏州大学,2009.
    [179]刘刚,韩卿,夏安军.TEMPO选择性催化氧化对纸浆成纸性能的影响[J].中华纸业,2008,29(7):50-53
    [180]毛连山,马朴,刘桂南等.机械浆长纤维的TEMPO选择性催化氧化[J].中国造纸,2009,28(7): 7-11
    [181] Jones EW, Rayburn JA. Crosslinking of cotton cellulose with diglycidyl ether [J]. Journal of Applied Polymer Science. 1961; 5(18):714-720.
    [182] Clingman AL, Schwenker RF. The alkane dithioether and the polysulfide crosslinking of cellulose [J]. Journal of Polymer Science Part C: Polymer Symposia. 1965;11(1):107-118.
    [183] Klemm D, Philipp B, Heinze T, et al. Comprehensive cellulose chemistry Volum21: Functionalization cellulose [M]. Weinheim: Wiley-VCH, 1998: 16.
    [184] Lee N, Kwon O-J, Chun B, et al. Characterization of castor oil/ polycaprolactone polyurethane biocomposites reinforced with hemp fibers [J]. Fibers and Polymers. 2009;10(2):154-160.
    [185] Hui Z, Liming Z. Sturctural changes of hemp fibres modified with chitosan and BTCA [J]. Industrial textile. 2010; 61(2):51-56.
    [186]张俐敏,张辉.壳聚糖柠檬酸处理大麻织物的染色性能[J].印染, 2009, (4): 4-8.
    [187]张辉,张俐敏.壳聚糖柠檬酸改性大麻织物结构与性能研究[J].西安工程大学学报, 2009,23(4): 9-14.
    [188] McDowall DJ, Gupta BS, Stannett VT. Grafting of vinyl monomers to cellulose by ceric ion initiation[J]. Progress in Polymer Science. 1984;10(1):1-50.
    [189] Mansour OY, Nagaty A. Grafting of synthetic polymers to natural polymers by chemical processes [J]. Progress in Polymer Science. 1985;11(1-2):91-165.
    [190] Singh RP. Surface grafting onto polypropylene-a survey of recent developments [J]. Progress in Polymer Science. 1992;17(2):251-281.
    [191] Tsubokawa N. Functionalization of carbon black by surface grafting of polymers[J]. Progress in Polymer Science. 1992;17(3):417-470.
    [192] Bashar AS, Khan MA, Idriss Ali KM. Modification of cotton, rayon and silk fibers by radiation induced graft co-polymerization[J]. Radiation Physics and Chemistry. 1995;45(5):753-759.
    [193]韩晓燕,张政朴.γ-射线辐照接枝制备几种功能性高分子材料[J].高分子学报, 2008(7): 639-643
    [194] Bilongo TG, Remigy JC, Clifton MJ. Modification of hollow fibers by UV surface grafting [J]. Journal of Membrane Science. 2010; 364(1-2): 304-308.
    [195]王晓,马海涛,李淳等.亚麻织物紫外光接枝丙烯酸的改性[J].纺织学报, 2010, 31 (9): 84-88.
    [196] Zubaidi, Hirotsu T. Graft polymerization of hydrophilic monomers onto textile fibers treated by glow discharge plasma[J]. Journal of Applied Polymer Science. 1996; 61(9):1579-1584.
    [197]李淳,王晓.不同等离子体对亚麻纤维接枝改性效果的比较[J].纺织导报, 2005, (3):60-61
    [198] Abidi N, Hequet E. Cotton fabric graft copolymerization using microwave plasma. I. Universal attenuated total reflectance–FTIR study [J]. Journal of Applied Polymer Science. 2004;93(1):145-154.
    [199]肖改丽.微波辅助纸浆纤维与MCETMAC接枝共聚改性的研究[D].陕西科技大学, 2009.
    [200] Kondo T, Kubota H, Katakai R. Effect of ultrasonic irradiation on ceric-salt-initiated grafting of methyl methacrylate onto regenerated cellulose film [J]. Journal of Applied Polymer Science. 1999; 71(2): 251-258.
    [201] Chen T, Kumar G, Harries MT, Smith PJ, Payne GF. Enzymatic grafting of hexyloxyphenol onto chitosan to alter surface and rheological properties [J]. Biotechnol Bioeng 2000; 70(5): 564–73.
    [202] Cosnier S, Fologen D, Szunerits S, Marks RS. Poly(dicarbazole- N-hydroxysuccinimide) film: a new polymer for the reagentless grafting of enzymes and redox initiators [J]. Electrochem Commun 2000; 2(12): 827–831.
    [203] Sun Y, Sun G. Durable and regenerable antimicrobial textile materials prepared by a continuous grafting process[J]. Journal of Applied Polymer Science. 2002; 84(8): 1592-1599.
    [204]王晓,马海涛,李淳等.紫外光接枝丙烯酸亚麻织物的服用性能[J].纺织学报, 2010, 31 (8) .73-77.
    [205] George J, Sreekala MS, Thomas S. A review on interface modification and characterization of natural fiber reinforced plastic composites[J]. Polymer Engineering & Science. 2001;41(9):1471-1485.
    [206]张长安,鲁博,曾竟成等.苎麻落麻的表面处理及其复合材料的性能研究[J].工程塑料应用, 2004, 32 (11): 5-9.
    [207] Saikia CN, Ali F. Graft copolymerization of methylmethacrylate onto high [alpha]-cellulose pulp extracted from Hibiscus sabdariffa and Gmelina arborea [J]. Bioresource Technology. 1999; 68(2): 165-171.
    [208]梁喜林,翟华敏,黄军等. Fe2+-H2O2-二氧化硫脲引发绒毛浆与MMA接枝共聚的研究[J].纤维素科学与技术, 2008, 16 (4):29-33.
    [209] Pracella M, Chionna D, Anguillesi I, et al. Functionalization, compatibilization and properties of polypropylene composites with Hemp fibres[J]. Composites Science and Technology. 2006; 66(13): 2218- 2230.
    [210] http://baike.baidu.com/view/183981.htm
    [211] Lu JZ, Wu Q, McNabb HS.Chemical coupling in wood fiber and polymer composites: A review of coupling agents and treatments[J]. Wood and Fiber Science. 2000. 32(1): 88-104.
    [212] Maldas D, Kokta BV, Daneault C. Influence of coupling agents and treatments on the mechanical properties of cellulose fiber–polystyrene composites[J]. Journal of Applied Polymer Science. 1989;37(3):751-775.
    [213] Raj RG, Kokta BV, Maldas D, Daneault C. Use of wood fibers in thermoplastics. VII. The effect of coupling agents in polyethylene–wood fiber composites[J]. Journal of Applied Polymer Science. 1989; 37 (4): 1089-1103
    [214]刘训堃,滕翠青,余木火等.苎麻织物增强PLA-PCL复合材料的制备及其性能研究[J].塑料工业,2007,35(1): 21-24.
    [215]夏忠珍.木塑复合材料的界面相容性及吸水性能研究[D].南京航空航天大学, 2009.
    [216] Kushwaha PK, Kumar R.Effect of Silanes on Mechanical Properties of Bamboo Fiber-epoxy Composites [J]. Journal of Reinforced Plastics and Composites. 2010; 29(5 ):718-724.
    [217] Behzad T, Sain M. Surface and interface characterization of untreated and SMA Imide-treated hemp fiber / acrylic composites[J]. Polymer Composites. 2009; 30(6):681-690.
    [218] Beckermann GW, Pickering KL. Engineering and evaluation of hemp fibre reinforced polypropylene composites: Micro-mechanics and strength prediction modeling[J]. Composites Part A: Applied Science and Manufacturing. 2009; 40(2):210-217.
    [219]雷文,杨涛.不饱和聚酯树脂/大麻纤维复合材料性能的研究[J].工程塑料应用, 2008, 36 (4): 25-29.
    [220] Bhardwaj NK, Bajpai P, Bajpai PK. Use of enzymes in modification of fibres for improved beatability[J]. Journal of Biotechnology. 1996;51(1):21-26.
    [221] Beckermann G. Performance of Hemp-Fibre Reinforced Polypropylene Composite Materials [D].University of Walkato, 2007.
    [222] Gulati D, Sain M. Fungal-modification of Natural Fibers: A Novel Method of Treating Natural Fibers for Composite Reinforcement[J]. Journal of Polymers and the Environment. 2006;14(4):347-352.
    [223] Juntaro J, Pommet M, Mantalaris A, et al. Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites[J]. Composite Interfaces. 2007;14(7-9):753-762.
    [224] Karkare M. Nanotechnology: Fundamentals And Applications [M]. New Delhi: I.K. International Publishing House Pvt. Ltd, 2008,107.
    [225]武晓伟,施亦东,陈衍夏等.稀土纳米TiO2在棉织物上的抗菌性能[J].印染, 2007, 33 (6):11-13.
    [226] Dubas ST, Kumlangdudsana P, Potiyaraj P. Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2006; 289 (1-3):105-109.
    [227]陶旭晨,刘新华,熊飞虎等.棉织物的聚氨酯改性纳米TiO2功能整理[J].印染, 2010, 36 (20): 32-34.
    [228]庄伟,徐丽慧,蔡再生等.棉织物的纳米SiO2拒水整理[J].印染, 2010, 36 (21): 1-3.
    [229] Busbridge R and Rhydwen R. An inverstigation of the thermal properties of hemp and clay monolithic walls. Advances in Computing and Technology:The School of Computing, Information Technology and Engineering, 5th Annual Conference, 2010:163-170.
    [230] http://gzdaily.dayoo.com/html/2007-06/13/content_29157108.htm
    [231] Elfordy S, Lucas F, Tancret F, Scudeller Y, Goudet L. Mechanical and thermal properties of lime and hemp concrete ("hempcrete") manufactured by a projection process [J]. Construction and Building Materials. 2008;22(10):2116-2123.
    [232] Le Tro?dec M, Peyratout CS, Smith A, Chotard T. Influence of various chemical treatments on the interactions between hemp fibres and a lime matrix [J]. Journal of the European Ceramic Society. 2009; 29 (10):1861-1868.
    [233] de Bruijn PB, Jeppsson K-H, Sandin K, Nilsson C. Mechanical properties of lime-hemp concrete containing shives and fibres [J]. Biosystems Engineering. 2009;103(4):474-479.
    [234] Collet F, Bart M, Serres L, Miriel J. Porous structure and water vapour sorption of hemp-based materials [J]. Construction and Building Materials. 2008; 22 (6):1271-1280.
    [235] Tran Le AD, Maalouf C, Mai TH, Wurtz E, Collet F. Transient hygrothermal behaviour of a hemp concrete building envelope [J]. Energy and Buildings. 2010;42(10):1797-1806.
    [236] Osabohien E, Egboh SHO. Utilization of bowstring hemp fiber as a filler in natural rubber compounds [J]. Journal of Applied Polymer Science. 2008;107(1): 210-214.
    [237] Ochi S. Development of high strength biodegradable composites using Manila hemp fiber and starch-based biodegradable resin [J]. Composites Part A: Applied Science and Manufacturing. 2006;37(11):1879-1883.
    [238] N(a|¨)ttinen K, Hyv?rinen S, Joffe R, et al. Naturally compatible: Starch acetate/cellulosic fiber composites. I. Processing and properties [J]. Polymer Composites. 2010;31(3):524-535.
    [239] Mohanty AK, Tummala P, Liu W et al. Injection Molded Biocomposites from Soy Protein Based Bioplastic and Short Industrial Hemp Fiber [J]. Journal of Polymers and the Environment. 2005;13(3):279-285.
    [240] Li Y, Pickering KL, Farrell RL. Analysis of green hemp fibre reinforced composites using bag retting and white rot fungal treatments[J]. Industrial Crops and Products. 2009;29(2-3):420-426.
    [241] MutjéP, Vallejos ME, Gironès J, Vilaseca F, López A, López JP, et al. Effect of maleated polypropylene as coupling agent for polypropylene composites reinforced with hemp strands[J]. Journal of Applied Polymer Science. 2006;102(1):833-840.
    [242] Pickering KL, Beckermann GW, Alam SN, Foreman NJ. Optimising industrial hemp fibre for composites[J]. Composites Part A: Applied Science and Manufacturing. 2007; 38(2): 461-468.
    [243] Sawpan MA, Pickering KL, Fernyhough A. Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites[J]. Composites Part A: Applied Science and Manufacturing. 2011; 42(3): 310-319.
    [244] Islam MS, Pickering KL, Foreman NJ. Influence of alkali treatment on the interfacial and physico- mechanical properties of industrial hemp fibre reinforced polylactic acid composites[J]. Composites Part A: Applied Science and Manufacturing. 2010; 41(5):596-603.
    [245] Vilaseca F, López A, LlauróX, PèLach MA, MutjéP. Hemp Strands as Reinforcement of Polystyrene Composites[J]. Chemical Engineering Research and Design. 2004;82(11):1425-1431.
    [246] Hautala M, Pasila A, Piril? J. Use of hemp and flax in composite manufacture: a search for new production methods[J]. Composites Part A: Applied Science and Manufacturing. 2004;35(1):11-16.
    [247] Rouison D, Sain M, Couturier M. Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials[J]. Composites Science and Technology. 2006; 66 (7-8): 895-906.
    [248] Mehta G, Drzal LT, Mohanty AK, Misra M. Effect of fiber surface treatment on the properties of biocomposites from nonwoven industrial hemp fiber mats and unsaturated polyester resin[J]. Journal of Applied Polymer Science. 2006;99(3):1055-1068.
    [249] Richardson M, Zhang Z. Nonwoven hemp reinforced composites[J]. Reinforced Plastics. 2001;45(4):40-44.
    [250] (O|¨)ZtüRk S. The effect of fibre content on the mechanical properties of hemp and basalt fibre reinforced phenol formaldehyde composites[J]. Journal of Materials Science. 2005;40(17):4585-4592.
    [251] Keller A. Compounding and mechanical properties of biodegradable hemp fibre composites[J]. Composites Science and Technology. 2003; 63(9): 1307-1316.
    [252] HermidaéB, Mega VI. Transcrystallization kinetics at the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) /hemp fibre interface[J]. Composites Part A: Applied Science and Manufacturing. 2007; 38(5): 1387-1394.
    [253] Lux Research (2005a)‘Nanotechnology: Where Does the US Stand?’, in Testimony before the Research Subcommittee of the House Committee on Science, Lux Research: New York.
    [254] Taiz L, Zeiger E. Plant Physiology (4 edition)[M]. Sinauer Associates Inc,2006,319.
    [255] Nickerson RF. Hydrolysis and Catalytic Oxidation of Cellulosic Materials[J]. Industrial and Engineering Chemistry. 1941;33(8):1022-1027.
    [256] Conrad CC, Scroggie AG. Chemical Characterization of Rayon Yarns and Cellulosic Raw Materials[J]. Industrial & Engineering Chemistry. 1945; 37(6): 592-598.
    [257] Battista OA, Coppick S. Hydrolysis of Native Versus Regenerated Cellulose Structures[J]. Textile ResearchJournal. 1947; 17(8): 419.
    [258] Nickerson RF, Habrle JA. Cellulose intercrystalline structure[J]. Industrial and Engineering Chemistry. 1947; 39(11): 1507-1512.
    [259] Hermans PH, Weidinger A. Change in crystallinity upon heterogeneous acid hydrolysis of cellulose fibers[J]. Journal of Polymer Science. 1949;4(3):317-322.
    [260] Battista OA. Hydrolysis and crystallization of cellulose[J]. Industrial & Engineering Chemistry. 1950; 42(3): 502-507.
    [261] R(a|。)nby BG. The cellulose micelles[J]. Tappi. 1952;35(2):53-58.
    [262] R(a|。)nby BG. Physico-chemical investigations on animal cellulose (Tunicin)[J]. Ark Kemi. 1952; 4: 241-248.
    [263] R(a|。)nby BG. Physico-chemical investigations on bacterial cellulose[J]. Ark Kemi. 1952; 4: 249- 257.
    [264] Mukherjee SM, Woods HJ. X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid[J]. Biochimica et Biophysica Acta. 1953;10:499-511.
    [265] Sharples A. The hydrolysis of cellulose Part I. The fine structure of egyptian cotton[J]. Journal of Polymer Science. 1954; 13(70):393-401.
    [266] Choudhury DKR. Accessibility of Various Cellulose Preparations from Jute[J]. Textile Research Journal. 1959; 29(5): 394.
    [267] Marchessault RH, Morehead FF, Walter NM. Liquid crystal systems from fibrillar polysaccharides[J]. Nature. 1959; 184:632-633.
    [268] Marchessault RH, Morehead FF, Koch MJ. Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape [J]. Journal of colloid science. 1961;16(4):327-344.
    [269] Okada A, Fukushima Y, Kawasumi M,et al. Kabushiki Kaisha Toyota Chuo Kenkyusho, assignee; US 4,739,007, 1988.
    [270] A. Usuki, T. Mizutami, Y. Fukushima, M. Fujimoto, K. Fukumori, Y. Kojima, N. Sato, T. Kurauchi and O. Kamigaito, inventors; Kabushiki Kaisha Toyota Chuo Kenkyusho, assignee; US 4,889,885, 1988.
    [271] Favier V, Canova GR, CavailléJY, et al, Gauthier C. Nanocomposite materials from latex and cellulose whiskers[J]. Polymers for Advanced Technologies. 1995; 6 (5):351-355.
    [272] Favier V, Chanzy H, Cavaille JY. Polymer Nanocomposites Reinforced by Cellulose Whiskers[J]. Macromolecules. 1995;28(18):6365-6367.
    [273] Nanoforest: A nanotechnology roadmap for the forest products industry European[R]. STFI-Packforsk Report NO.48, 2005
    [274] Nanotechnology for the Forest Products Industry—Vision and Technology Roadmap[M]. USA,2005
    [275] http://www.foodnavigator.com/Science-Nutrition/Swedish-breakthrough-to-unlock-super-material-potential
    [276] Siro I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: a review[J]. Cellulose. 2010; 17 (3):459-494
    [277] Samir MASA, Alloin F, Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field[J]. Biomacromolecules.2005; 6:612–626
    [278]Tanem BS, Kvien I, van Helvoort ATJ, Oksman K. Morphology of cellulose and its nanocomposites. In: Oksman K, Sain M (eds) Cellulose Nanocomposites: Processing, Characterization, and Properties, American Chemical Society, Washington DC, 2006; 938:48-62
    [279] Hubbe MA, Rojas OJ, Lucia LA, Sain M. Cellulosic nanocomposites: a review[J]. Bioresources.2008; 3: 929
    [280] Beck-Candanedo S, Roman M, Gray DG. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions [J]. Biomacromolecules. 2005; 6(2):1048-1054.
    [281] Saito T, Kimura S, Nishiyama Y, Isogai A. Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose[J]. Biomacromolecules. 2007; 8(8):2485-2491.
    [282] Stelte W, Sanadi AR. Preparation and Characterization of Cellulose Nanofibers from Two Commercial Hardwood and Softwood Pulps [J]. Industrial & Engineering Chemistry Research. 2009; 48(24): 11211- 11219.
    [283] Plackett D, Anturi H, Hedenqvist M, Ankerfors M, Gallstedt M, Lindstrom T, et al. Physical Properties and Morphology of Films Prepared from Microfibrillated Cellulose and Microfibrillated Cellulose in Combination with Amylopectin [J]. Journal of Applied Polymer Science. 2010; 117(6):3601-3609.
    [284] Oksman K, Etang JA, Mathew AP, Jonoobi M. Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production[J]. Biomass and Bioenergy. 2011; 35(1):146-152.
    [285] Morán J, Alvarez V, Cyras V, Vázquez A. Extraction of cellulose and preparation of nanocellulose from sisal fibers[J]. Cellulose. 2008;15(1):149-159.
    [286] Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A. Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose[J]. Biomacromolecules. 2006; 7(6): 1687-1691.
    [287] Dufresne A, Dupeyre D, Vignon MR. Cellulose microfibrils from potato tuber cells: Processing and characterization of starch–cellulose microfibril composites[J]. Journal of Applied Polymer Science. 2000; 76(14): 2080-2092.
    [288] Hassan M, Hassan E, Oksman K. Effect of pretreatment of bagasse fibers on the properties of chitosan/ microfibrillated cellulose nanocomposites[J]. Journal of Materials Science. 2011; 46(6):1732-1740.
    [289] Niimura H, Yokoyama T, Kimura S, Matsumoto Y, Kuga S. AFM observation of ultrathin microfibrils in fruit tissues[J]. Cellulose. 2010; 17(1): 13-18.
    [290] Klemm D, Schumann D, Kramer F, et al. Nanocelluloses as Innovative Polymers in Research and Application. In: Klemm D, editor. Polysaccharides II, vol. 205: Springer Berlin / Heidelberg; 2006. p. 49-96.
    [291]杨礼富.细菌纤维素研究新进展.微生物学通报[J], 2003,30(4):95-98
    [292] Mathew AP, Dufresne A. Morphological Investigation of Nanocomposites from Sorbitol Plasticized Starch and Tunicin Whiskers[J]. Biomacromolecules. 2002;3(3):609-617.
    [293] De Souza Lima MM, Wong JT, Paillet M, Borsali R, Pecora R. Translational and Rotational Dynamics of Rodlike[J] Cellulose Whiskers. Langmuir. 2002;19(1):24-29.
    [294] Mathew AP, Thielemans W, Dufresne A. Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers[J]. Journal of Applied Polymer Science. 2008; 109(6): 4065-4074.
    [295] Janardhnan S, Sain MM. Isolation of cellulose microfibrils an enzymatic approach. Bioresources. 2006; 1(2): 176-188.
    [296] Svagan AJ, Samir MASA, Berglund LA. Biomimetic Foams of High Mechanical Performance Based on Nanostructured Cell Walls Reinforced by Native Cellulose Nanofibrils[J]. Advanced Materials. 2008; 20(7): 1263-1269.
    [297] Henriksson M, Berglund LA, Isaksson P, Lindstr?m T, Nishino T. Cellulose Nanopaper Structures of High Toughness[J]. Biomacromolecules. 2008;9(6):1579-1585.
    [298] Dufresne A, Cavaille JY, Vignon MR. Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils [J]. Journal of Applied Polymer Science. 1997;64(6):1185-1194.
    [299] Bhatnagar A, Sain M. Processing of cellulose nanofiber-reinforced composites[J]. Journal of Reinforced Plastics and Composites. 2005;24(12):1259-1268.
    [300] Chakraborty A, Sain M, Kortschot M. Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing[J]. Holzforschung. 2005;59(1):102-107.
    [301] Janardhnan S, Sain MM. Isolation of cellulose microfibrils an enzymatic approach[J]. Bioresources. 2006;1(2): 176-188.
    [302] Wang B, Sain M. Dispersion of soybean stock-based nanofiber in a plastic matrix [J]. Polymer International. 2007;56(4):538-546.
    [303] Wang B, Sain M. Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers [J]. Composites Science and Technology. 2007;67(11-12):2521-2527.
    [304] Wagberg L.: Wood material science. Finnish-swedish research programme, 2003–2007. Year Book 91–95 (2005).
    [305] Zuluaga R, Putaux JL, Cruz J, et al. Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features[J]. Carbohydrate Polymers. 2009;76(1):51-59.
    [306]黄仁毅.纖維素於介質研磨下之破碎模式[D].台湾大学, 2007.
    [307]赵明煜.奈米纖維製備方法之研究[D].台湾大学, 2007.
    [308] Cherian BM, Leao AL, de Souza SF, et al. Isolation of nanocellulose from pineapple leaf fibres by steam explosion[J]. Carbohydrate Polymers. 2010; 81(3): 720-725.
    [309] Bai W, Holbery J, Li K. A technique for production of nanocrystalline cellulose with a narrow size distribution[J]. Cellulose. 2009;16(3):455-465.
    [310] Cheng Q, Wang S. A method for testing the elastic modulus of single cellulose fibrils via atomic force microscopy[J]. Composites Part A: Applied Science and Manufacturing. 2008; 39(12):1838-1843.
    [311] Cheng Q, Wang S, Harper DP. Effects of process and source on elastic modulus of single cellulose fibrils evaluated by atomic force microscopy[J]. Composites Part A: Applied Science and Manufacturing. 2009;40(5):583-588.
    [312] De Souza Lima MM, Wong JT, Paillet M, Borsali R, Pecora R. Translational and Rotational Dynamics of Rodlike Cellulose Whiskers[J]. Langmuir. 2002;19(1):24-29.
    [313] Garcia de Rodriguez NL, Thielemans W, Dufresne A. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites[J]. Cellulose. 2006;13(3):261-270.
    [314] RH Marchessault; Morehead FF; Walter NM. Liquid Crystal Systems from Fibrillar Polysaccharides[J]. Nature. 1959;184:632-633.
    [315] Marchessault RH, Morehead FF, Koch MJ. Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape[J]. Journal of Colloid Science. 1961;16(4):327-344.
    [316] De Souza Lima MM, Borsali R. Static and Dynamic Light Scattering from Polyelectrolyte Microcrystal Cellulose[J]. Langmuir. 2002;18(4):992-996.
    [317] De Souza Lima MM, Borsali R. Rodlike Cellulose Microcrystals: Structure, Properties, and Applications[J]. Macromolecular Rapid Communications. 2004;25(7):771-787.
    [318] Lu J, Askeland P, Drzal LT. Surface modification of microfibrillated cellulose for epoxy composite applications[J]. Polymer. 2008;49(5):1285-1296.
    [319] Nystr?m G, Mihranyan A, Razaq A, et al. A Nanocellulose Polypyrrole Composite Based on Microfibrillated Cellulose from Wood[J]. The Journal of Physical Chemistry B. 2010; 114(12): 4178-4182.
    [320] Siqueira G, Bras J, Dufresne A. Cellulose Whiskers versus Microfibrils: Influence of the Nature of the Nanoparticle and its Surface Functionalization on the Thermal and Mechanical Properties of Nanocomposites[J]. Biomacromolecules. 2009;10(2):425-432.
    [321] Corrêa A, de Morais Teixeira E, Pessan L, Mattoso L. Cellulose nanofibers from curaua fibers[J]. Cellulose. 2010;17(6):1183-1192.
    [322] Andresen M, Johansson L-S, Tanem BS, Stenius P. Properties and characterization of hydrophobized microfibrillated cellulose[J]. Cellulose. 2006;13(6):665-677.
    [323] P??kk? M, Ankerfors M, Kosonen H, Nyk?nen A, Ahola S, ?sterberg M, et al. Enzymatic HydrolysisCombined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels[J]. Biomacromolecules. 2007; 8(6): 1934-1941.
    [324] Heux L, Chauve G, Bonini C. Nonflocculating and Chiral-Nematic Self-ordering of Cellulose Microcrystals Suspensions in Nonpolar Solvents[J]. Langmuir. 2000;16 (21): 8210-8212.
    [325] Henriksson M, Berglund LA. Microfibrillated cellulose films [A]. Navi P, Guidoum A.Proceedings of third International Symposium on Wood Machining [C]. Lanusanne: Presses polytechniques et universitaires romandes, 2007:17-20.
    [326] Nishino T, Matsuda I, Hirao K. All-Cellulose Composite[J]. Macromolecules. 2004; 37(20):7683-7687.
    [327] Nakagaito AN, Yano H. Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure[J]. Applied Physics A: Materials Science & Processing. 2005; 80(1): 155-159.
    [328] López-Rubio A, Lagaron JM, Ankerfors M, et al. Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose[J]. Carbohydrate Polymers. 2007 68(4):718-727.
    [329] Soykeabkaew N, Sian C, Gea S, et al. All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose[J]. Cellulose. 2009; 16:435–444.
    [330] Duchemin BJC, Newman RH, Staiger MP. Structure-property relationship of all-cellulose composites[J]. Composites Science and Technology. 2009;69(7-8):1225-1230.
    [331] Svagan AJ, Samir MASA, Berglund LA. Biomimetic Foams of High Mechanical Performance Based on Nanostructured Cell Walls Reinforced by Native Cellulose Nanofibrils[J]. Advanced Materials. 2008; 20(7): 1263-1269.
    [332] Hassan M, Hassan E, Oksman K. Effect of pretreatment of bagasse fibers on the properties of chitosan/microfibrillated cellulose nanocomposites[J]. Journal of Materials Science. 2011;46(6):1732-1740.
    [333] Wang Y, Cao X, Zhang L. Effects of Cellulose Whiskers on Properties of Soy Protein Thermoplastics[J]. Macromolecular Bioscience. 2006; 6(7):524-531.
    [334] Anil NN, Xiaosong H, Preeti L. Cured soy protein with green strengthening additive and fabrication of such into green composite[P].WO 2006/127276A2.
    [335] Cao XD, Chen Y, Chang PR, Stumborg M, Huneault MA. Green composites reinforced with hemp nanocrystals in plasticized starch[J]. Journal of Applied Polymer Science. 2008;109(6):3804-3810.
    [336] Park W-I, Kang M, Kim H-S, Jin H-J. Electrospinning of Poly(ethylene oxide) with Bacterial Cellulose Whiskers[J]. Macromolecular Symposia. 2007;249-250(1):289-294.
    [337] Malainine ME, Mahrouz M, Dufresne A. Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell[J]. Composites Science and Technology. 2005; 65(10): 1520- 1526.
    [338] Bhatnagar A, Sain M. Processing of Cellulose Nanofiber-reinforced Composites[J]. Journal of Reinforced Plastics and Composites. 2005;24(12):1259-1268.
    [339] Zoppe JO, Peresin MS, Habibi Y, Venditti RA, Rojas OJ. Reinforcing Poly(ε-caprolactone) Nanofibers with Cellulose Nanocrystals[J]. ACS Applied Materials & Interfaces. 2009;1(9):1996-2004.
    [340] De Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A. Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites[J]. Polymer. 2009;50(19):4552-4563.
    [341] Sanchez-Garcia M, Lagaron J. On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid[J]. Cellulose. 2010;17(5):987-1004.
    [342] Jonoobi M, Harun J, Mathew AP, Oksman K. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion[J]. Composites Science and Technology. 2010; 70 (12): 1742-1747.
    [343] Iwamoto S, Nakagaito AN, Yano H, et al. Optically transparent composites reinforced with plant fiber-based nanofibers[J]. Applied Physics A: Materials Science & Processing. 2005;81(6):1109-1112.
    [344] Henriksson M, Berglund LA. Structure and properties of cellulose nanocomposite films containing melamine formaldehyde[J]. Journal of Applied Polymer Science. 2007;106(4):2817-2824.
    [345] Nakagaito A, Yano H. The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose[J]. Cellulose. 2008;15(4):555-559.
    [346] Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A. Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites[J]. European Polymer Journal. 2008;44(8):2489-2498.
    [347] Lee S-Y, Mohan D, Kang I-A, et al. Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading[J]. Fibers and Polymers. 2009; 10(1):77-82.
    [348] Montanari S, Roumani M, Heux L, et al. Topochemistry of Carboxylated Cellulose Nanocrystals Resulting from TEMPO-Mediated Oxidation[J]. Macromolecules. 2005;38(5):1665-1671.
    [349] Saito T, Nishiyama Y, Putaux J-L, et al. Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose[J]. Biomacromolecules. 2006; 7(6): 1687- 1691.
    [350] Kloser E, Gray DG. Surface Grafting of Cellulose Nanocrystals with Poly(ethylene oxide) in Aqueous Media[J]. Langmuir. 2010;26(16):13450-13456.
    [351] Xiao M, Li S, Chanklin W, et al. Surface-initiated atom transfer radical polymerization of butyl acrylate on cellulose microfibrils[J]. Carbohydrate Polymers. 2011;83(2):512-519.
    [352] GousséC, Chanzy H, Cerrada ML,et al. Surface silylation of cellulose microfibrils: preparation and rheological properties[J]. Polymer. 2004;45(5):1569-1575.
    [353] Wang N, Ding E, Cheng R. Surface modification of cellulose nanocrystals[J]. Frontiers of Chemical Engineering in China. 2007;1(3):228-232.
    [354] Lu J, Askeland P, Drzal LT. Surface modification of microfibrillated cellulose for epoxy composite applications[J]. Polymer. 2008;49(5):1285-1296.
    [355] Andresen M, Stenius P. Water-in-oil Emulsions Stabilized by Hydrophobized Microfibrillated Cellulose[J]. Journal of Dispersion Science and Technology. 2007;28(6):837 - 844.
    [356] Lif A, Stenstad P, Syverud K, et al. Fischer-Tropsch diesel emulsions stabilised by microfibrillated cellulose and nonionic surfactants[J]. Journal of Colloid and Interface Science. 2010; 352(2): 585-592.
    [357] Xhanari K, Syverud K, Chinga-Carrasco G, et al. Structure of nanofibrillated cellulose layers at the o/w interface[J]. Journal of Colloid and Interface Science. 2011;356(1):58-62.
    [358] Thielemans W, Licence P. Nanomaterials from Nature: Cellulose nanoparticles with polymer brushes grown in Ionic Liquids[R]. M.Sci. Final Year Research Projects. University of Nottingham.
    [359] Thielemans W, Walsh D. Electrocatalytically active nanocomposites for fuel cell applications[R]. M.Sci. Final Year Research Projects. University of Nottingham.
    [360] Shin Y, Blackwood JM, Bae I-T, et al. Synthesis and stabilization of selenium nanoparticles on cellulose nanocrystal[J]. Materials Letters. 2007;61(21):4297-4300.
    [361] Zhou Y, Ding EY, Li WD. Synthesis of TiO2 nanocubes induced by cellulose nanocrystal (CNC) at low temperature[J]. Materials Letters. 2007;61(28):5050-5052.
    [362] Shin Y, Exarhos GJ. Template synthesis of porous titania using cellulose nanocrystals[J]. Materials Letters. 2007;61(11-12):2594-2597.
    [363] Olsson RT, Samir M, Salazar-Alvarez G, et al. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates[J]. Nature Nanotechnology. 2010;5(8):584-588.
    [364] Hu WL, Chen SY, Zhou BH, et al. Facile synthesis of ZnO nanoparticles based on bacterial cellulose [J]. Materials Science and Engineering B: Advanced Functional Solid-State Materials. 2010; 170 (1-3): 88-92.
    [365] Wan YZ, Huang Y, Yuan CD, et al. Biomimetic synthesis of hydroxyapatite/ bacterial cellulose nanocomposites for biomedical applications[J]. Materials Science and Engineering: C. 2007; 27(4): 855-864.
    [366] Wan MH, Zhao MX, Ouyang JM. Research on Particle Size and Sizi Distribution of Nanocrystals in Urines by Laser Light Scattering Method[J]. Spectroscopy and Spectral Analysis. 2009;29(1):217-221.
    [367] Wan YZ, Gao C, Luo HL, et al. Early Growth of Nano-Sized Calcium Phosphate on Phosphorylated Bacterial Cellulose Nanofibers[J]. Journal of Nanoscience and Nanotechnology. 2009;9(11): 6494-6500.
    [368] Roman M, Dong S, Hirani A, Lee Yong W. Cellulose Nanocrystals for Drug Delivery[M]. Polysaccharide Materials: Performance by Design, vol. 1017: American Chemical Society; 2009. p. 81-91.
    [369] Wan Y, Gao C, Han M, et al. Preparation and characterization of bacterial cellulose/heparin hybrid nanofiber for potential vascular tissue engineering scaffolds[J]. Polymers for Advanced Technologies. 2010:n/a-n/a.
    [370] Wan Y, Zuo G, Yu F, et al. Preparation and mineralization of three-dimensional carbon nanofibers from bacterial cellulose as potential scaffolds for bone tissue engineering[J]. Surface and Coatings Technology. 2011;205(8-9):2938-2946.
    [371] Blaker JJ, Lee KY, Mantalaris A, Bismarck A. Ice-microsphere templating to produce highly porous nanocomposite PLA matrix scaffolds with pores selectively lined by bacterial cellulose nano-whiskers[J]. Composites Science and Technology. 2010;70(13):1879-1888.
    [372] Gatenholm P, Klemm D. Bacterial Nanocellulose as a Renewable Material for Biomedical Applications[J]. Mrs Bulletin. 2010;35(3):208-213.
    [373] Segal L, Creely JJ, Martin AE, et al. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer[J].Textile Research Journal.1959; 29(10): 786-794.
    [374] Nelson ML, Robert T. O'Connor. Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose[J]. Journal of Applied Polymer Science, 1964, 8(3): 1311-1324.
    [375] Kondo T, Sawatari C. A fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose[J]. Polymer, 1996, 37:393-399.
    [376] Schwanningera M, Rodriguesc JC, Pereira H, et al. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose[J]. Vibrational Spectroscopy, 2004, 36(1) 23-40.
    [377] Susanne Merk, Alfred Blume, Markus Riedereer. Phase behaviour and crystallinity of plant cuticular waxes studied by Fourier transform infrared spectroscopy.[J] Planta, 204: 44-53
    [378] E.N. Dubis, A.T. Dubis, J.W. Morzycki. Comparative analysis of plant cuticular waxes using HATR FT-IR reflection technique[J]. Journal of Molecular Structure, 1999 511–512 (11): 173–179.
    [379] Jittra Singthong, Steve W. Cui, Suwayd Ningsanond et al.Structural characterization, degree of esterification and some gelling properties of Krueo Ma Noy (Cissampelos pareira) pectin. Carbohydrate Polymers. 2004. 58(7):391-400.
    [380] J Singthong, S Ningsanond, SW Cui. Extraction and physicochemical characterization of Krueo Ma Noy pectin[J]. Food Hydrocolloids, 2005, 19 (5): 793–801.
    [381] Xu, L., Lio A., Hu J, et al. Wetting and capillary phenomena on mica[J]. J. Phys. Chem. B., 1998. 102(3): 540- 548.
    [382] Paolo Calvini, Andrea Gorassini, Giorgio Luciano, et al. FTIR and WAXS analysis of periodate oxycellulose: Evidence for a cluster mechanism of oxidation[J]. Vibrational Spectroscopy. 2006; 40(2): 177- 183.
    [383] Fengel D, Ludwig M. Moglichkeiten und Grenzen der FTIR-Spektroskopie bei der Charakterisierung von Cellulose[J]. Das Papier.1991; 45 (2): 45–51.
    [384] O.Faix. Classification of Lignins from Different Botanical Origins by FT-IR Spectroscopy[J]. International Journal of the Biology, Chemistry, Physics and Technology of Wood, 1991; 45:21-27.
    [385] Kubo S, Kadla JF. Hydrogen Bonding in Lignin: A Fourier Transform Infrared Model Compound Study[J]. Biomacromolecules, 2005; 6:2815-2821.
    [386] Rana AK, Basak RK, Mitra BC, et al. Banerjee, Studies of acetylation of jute using simplified procedure and its characterization[J]. Journal of Applied Polymer Science, 1997; 64(8): 1517-1523.
    [387] Cael JJ, Gardner KH, Koenig JL. Infrared and Raman spectroscopy of carbohydrates. Paper V. Normal coordinate analysis of cellulose I[J]. J. Chem. Phys. 1975; 62:1145-1153.
    [388] Colom X, Carrillo F. Crystallinity changes in lyocell and viscose-type fibres by caustic treatment[J], Eur. Polym. J. 2002; 38: 2225–2230.
    [389] Carrillo F, Colom X, Su?ol JJ, et al. Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres[J]. European Polymer Journal, 2004,40(9): 2229-2234
    [390] Ruan D, Zhang L, Mao Y, et al. Microporous membranes prepared from cellulose in NaOH/thiourea aqueous solution[J]. Journal of Membrane Science, 2004, 241(10):265-274.
    [391] Collier. W, Kalasinsky VF, Schultz TP. Infrared study of lignin: Assignment of methoxyl C-H bending and stretching bands[J]. Holzforschung, 1997; 51(2):167-168.
    [392] del Río JC, Gutiérreza A, Rodrígueza IM, et al. Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR[J]. 2007; 79: 39-46.
    [393] Oh SY, Yoo D, Shin Y. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy[J]. Carbohydrate Research. 2005, 340: 2376- 2391.
    [394] Liang CY,. Marchessault RH. Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm-1[J]. Journal of Polymer Science, 1959; 39: 269-278.
    [395] Cao Y, Tan H. Structural characterization of cellulose with enzymatic treatment. Journal of Molecular Structure[J]. 2004; 705(11): 189-193.
    [396] Maréchal Y, Chanzy. H The hydrogen bond network in Iβcellulose as observed by infrared spectrometry[J]. Journal of Molecular Structure. 2000; 523(5): 183-196.
    [397] Winter, B., EL 2005023 - Personal Communication. 2005, AB Enzymes GmbH.
    [398] Ivanova NV, Korolenko EA, Korolik EV, Zbankov RG. IR spectrum of cellulose[J]. J. Appl. Spectrosc. 1991;51 (2): 301–306.
    [399] Liang CY, Marchessault RH. Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses[J]. J. Polym. Sci. 1959;37 (132): 385–395.
    [400] Kalutskaya EP, Gusev SS. An infrared spectroscopic investigation of the hydration of cellulose Polym. Sci. U.S.S.R.1981; 22 (3): 550–556.
    [401] Fengel D, Ludwig M. Moglichkeiten und Grenzen der FTIR-Spektroskopie bei der Charakterisierung von Cellulose[J]. Das Papier 1991;45 (2): 45–51.
    [402] Bastidas JC, Venditti R, Pawlak J, Gilbert R, Zauscher S, Kadla JF. Chemical force microscopy of cellulosic fibers[J]. Carbohydrate Polymers. 2005;62(4):369-378.
    [403] Moulder JF, Stickle WF, Sobol P, et al. Handbook of X-ray photoelectron spectroscopy[M]. Minnesota: Perkin-Elmer,1992: 40-41
    [404] Klemm D, Philipp B, Heinze T, et al. Comprehensive cellulose chemistry Volume1: Fundamental and Analytical Methods [M]. Weinheim: Wiley-VCH, 1998: 107.
    [405] Klemm D, Philipp B, Heinze T, et al. Comprehensive cellulose chemistry Volume1: Fundamental and Analytical Methods [M]. Weinheim: Wiley-VCH, 1998: 110.
    [406] Lu P, Hsieh Y-L. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network[J]. Carbohydrate Polymers. 2010;82(2):329-336.
    [407] Quiévy N, Jacquet N, Sclavons M, Deroanne C, Paquot M, Devaux J. Influence of homogenization anddrying on the thermal stability of microfibrillated cellulose[J]. Polymer Degradation and Stability. 2010; 95 (3): 306-314.
    [408] Shimazaki Y, Miyazaki Y, Takezawa Y, Nogi M, Abe K, Ifuku S, et al. Excellent Thermal Conductivity of Transparent Cellulose Nanofiber/Epoxy Resin Nanocomposites[J]. Biomacromolecules. 2007; 8(9): 2976- 2978.
    [409]王能,丁恩勇.酸碱处理后纳米微晶纤维素的热行为分析[J].高分子学报,2004,(6) :925-928.
    [410] Klemm D, Heublein B, Fink H-P, et al. Cellulose: Fascinating Biopolymer and Sustainable Raw Material[J]. Angewandte Chemie International Edition. 2005;44(22):3358-3393.
    [411] Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, et al. Review: Current international research into cellulosic fibres and composites[J]. Journal of Materials Science. 2001; 36(9): 2107-2131.
    [412] George J, Sreekala MS, Thomas S. A review on interface modification and characterization of natural fiber reinforced plastic composites[J]. Polymer Engineering & Science. 2001;41(9):1471-1485.
    [413] Belgacem MN, Gandini A. The surface modification of cellulose fibres for use as reinforcing elements in composite materials[J]. Composite Interfaces. 2005;12:41-75.
    [414] John MJ, Anandjiwala RD. Recent developments in chemical modification and characterization of natural fiber-reinforced composites[J]. Polymer Composites. 2008;29(2):187-207.
    [415] Kevin H, Mariana R, Juan H. Layer-by-layer deposition of polyelectrolyte nanolayers on natural fibres: cotton[J]. Nanotechnology. 2005;16(7):S422-S428.
    [416] Dubas ST, Kumlangdudsana P, Potiyaraj P. Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2006; 289(1-3): 105- 109.
    [417] Hadad L, Perkas N, Gofer Y, Calderon-Moreno J, Ghule A, Gedanken A. Sonochemical deposition of silver nanoparticles on wool fibers[J]. Journal of Applied Polymer Science. 2007;104(3):1732-1737.
    [418] Ilic V, Saponjic Z, Vodnik V, Potkonjak B, Jovancic P, Nedeljkovic J, et al. The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles[J]. Carbohydrate Polymers. 2009;78(3):564-569.
    [419] Ravindra S, Murali Mohan Y, Narayana Reddy N, Mohana Raju K. Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via "Green Approach"[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010;367(1-3):31-40.
    [420] Juntaro J, Pommet M, Athanasios M. Bacterial cellulose“Grafting”– a boost to plant fibre-polymer matrix adhesion in green composites[A]. 16TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS,2007.
    [421] Pommet M, Juntaro J, Heng JYY, et al. Surface Modification of Natural Fibers Using Bacteria: Depositing Bacterial Cellulose onto Natural Fibers To Create Hierarchical Fiber Reinforced Nanocomposites[J]. Biomacromolecules. 2008;9(6):1643-1651.
    [422] http://en.wikipedia.org/wiki/Weibull_distribution
    [423] Weibull W. A statistical distribution function of wide applicability [J]. Journal of Applied Mechanics, 1951,(7):293—297.
    [424] Murthy D.N.P, Min Xie, Renyan Jiang. Weibull Models[M]. New Jersey: John Wiley & Sons, Inc,1993, 61.
    [425] Zafeiropoulos NE, Baillie CA. A study of the effect of surface treatments on the tensile strength of flax fibres: Part II. Application of Weibull statistics[J]. Composites Part A: Applied Science and Manufacturing,2007, 38(2):629-638.
    [426] O’Connor R T, Durpe E P, Mitchman D. Applications of infrared absorption spectroscopy to investigationsof cotton and modified cottons [J]. Textile Research Journal, 1958, 28(2): 382—392.
    [427] Ferruz R, Pages P. Water retention value and degree of crystallinity by infrared absorption spectroscopy in caustic-soda-treated cotton [J]. Cellulose Chemistry & Technology, 1977, 11(5): 633—637.
    [428] Yutaka K, Tetsuo K. FT-IR Microscopic Analysis of Changing Cellulose Crystalline Structure during Wood Cell Wall Formation[J]. Macromolecules, 1998, 31(3): 760—764.
    [429] Marianne L T, David S , Claire P, et al. Influence of various chemical treatments on the composition and structure of hemp fibres[J]. Composites Part A: Applied Science and Manufacturing,. 2008, 39(3): 514—522.
    [430] Tashiro K, Kobayashi M. Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds [J]. Polymer, 1991, 32(8):1516—1526.
    [431] Walker J C F. Primary Wood Processing: Principles and Practice [M]. Netherlands: Chapman & Hall, 1993. 23-43.
    [432] JoséC D R, Gutiérreza A, Isabel M, et al. Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR [J]. Journal of Analytical and Applied Pyrolysis, 2007, 79(5): 39—46.
    [433] Love G D, Snape C E, Jarvis M C. Comparison of leaf and stem cell-wall components in barley straw by solid-state 13C NMR [J]. Phytochemistry, 1998, 49(11):1191—1194.
    [434] Tagawa T, Miyata T. Size effect on tensile strength of carbon fibers[J]. Materials Science and Engineering A. 1997;238(2):336-342.
    [435] Sha J, Park J, Hinoki T, Kohyama A. Tensile properties and microstructure characterization of Hi-NicalonTM SiC fibers after loading at high temperature[J]. International Journal of Fracture. 2006;142(1): 1-8.
    [436] Postle, R, Zhang Y, Wang X, et al. Weibull analysis of the tensile behavior of fibers with geometrical irregularities[J]. Journal of Materials Science. 2002; 37(7): 1401-1406.
    [437] Korteoja M, Salminen LI, Niskanen KJ, Alava MJ. Strength distribution in paper[J]. Materials Science and Engineering: A. 1998;248(1-2):173-180.
    [438] Zafeiropoulos NE, Baillie CA. A study of the effect of surface treatments on the tensile strength of flax fibres: Part II. Application of Weibull statistics[J]. Composites Part A: Applied Science and Manufacturing. 2007; 38(2):629-638.
    [439] Xia ZP, Yu JY, Cheng LD, Liu LF, Wang WM. Study on the breaking strength of jute fibres using modified Weibull distribution[J]. Composites Part A: Applied Science and Manufacturing. 2009; 40(1):54-59.
    [440]何文元.苎麻纤维的改性研究[J].上海毛麻科技,2007(3):10-13.
    [441] Paul A, Karolina N. Deformations in wood and spruce pulp fibres: Their importance for wood and pulp properties[A]. Stanzl-Tschegg SE, Reiterer A. Wood Machining Properties of Wood and Wood Composites Related to Wood Machinng[C]. Wien(Austria): Christian-Doppler-Laboratory. 2000: 3-19.
    [442] Thygesen LG. Quantification of dislocations in hemp fibers using acid hydrolysis and fiber segment length distributions[J]. Journal of Mater Science, 2008, (43):1311–1317.
    [443] Mark Hughes; Gilles Sebe; Jamie Hague et al. An investigation into the effects of micro-compressive defects on interphase behavior in hemp-epoxy composites using half-fringe photoelasticity[J]. Composite Interfaces,2000, 1(7):13-29.
    [444] Lu J, Askeland P, Drzal LT. Surface modification of microfibrillated cellulose for epoxy composite applications[J]. Polymer. 2008;49(5):1285-1296.
    [445] Wagberg L, Decher G, Norgren M, Lindstrom T, Ankerfors M, Axnas K. The Build-Up of Polyelectrolyte Multilayers of Microfibrillated Cellulose and Cationic Polyelectrolytes[J]. Langmuir. 2008;24(3):784-795.
    [446] Thermo Fisher Scientific Inc. Infrared spectral Interpretation. Page 58.
    [447] Varga C, Miskolczi N, Bartha L, Lipóczi G. Improving the mechanical properties of glass-fibre-reinforced polyester composites by modification of fibre surface[J]. Materials & Design. 2010;31(1):185-193.
    [448] Lan T, Pinnavaia TJ. Clay-Reinforced Epoxy Nanocomposites[J]. Chemistry of Materials. 1994;6(12): 2216- 2219.
    [449] Messersmith PB, Giannelis EP. Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites [J]. Chemistry of Materials. 1994;6(10):1719-1725.
    [450] Lan T, Kaviratna PD, Pinnavaia TJ. Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites [J]. Chemistry of Materials. 1995;7(11):2144-2150.
    [451] Salahuddin N, Moet A, Hiltner A, Baer E. Nanoscale highly filled epoxy nanocomposite[J]. European Polymer Journal. 2002;38(7):1477-1482.
    [452] Xu W-B, Bao S-P, He P-S. Intercalation and exfoliation behavior of epoxy resin/curing agent/ montmorillonite nanocomposite[J]. Journal of Applied Polymer Science. 2002;84(4):842-849.
    [453] Sue HJ, Gam KT, Bestaoui N, Clearfield A, Miyamoto M, Miyatake N. Fracture behavior of alpha- zirconium phosphate-based epoxy nanocomposites[J]. Acta Materialia. 2004;52(8):2239-2250.
    [454] Choi Y-K, Sugimoto K-i, Song S-M, Gotoh Y, Ohkoshi Y, Endo M. Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers[J]. Carbon. 2005;43(10):2199-2208.
    [455] Zhong WH, Li J, Lukehart CM, Xu LR. Graphitic carbon nanofiber (GCNF)/polymer materials. II. GCNF/ epoxy monoliths using reactive oxydianiline linker molecules and the effect of nanofiber reinforcement on curing conditions[J]. Polymer Composites. 2005;26(2):128-135.
    [456] Kim JA, Seong DG, Kang TJ, Youn JR. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites[J]. Carbon. 2006;44(10):1898-1905.
    [457] Li Y-Q, Fu S-Y, Mai Y-W. Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency[J]. Polymer. 2006;47(6):2127-2132.
    [458] Abdalla M, Dean D, Adibempe D, Nyairo E, Robinson P, Thompson G. The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite[J]. Polymer. 2007;48(19):5662-5670.
    [459] Chau JLH, Tung C-T, Lin Y-M, Li A-K. Preparation and optical properties of titania/epoxy nanocomposite coatings[J]. Materials Letters. 2008;62(19):3416-3418.
    [460] Lakshmi MS, Narmadha B, Reddy BSR. Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials[J]. Polymer Degradation and Stability. 2008;93(1):201-213.
    [461] Lu J, Askeland P, Drzal LT. Surface modification of microfibrillated cellulose for epoxy composite applications[J]. Polymer. 2008;49(5):1285-1296.
    [462] Gabr MH, Elrahman MA, Okubo K, et al. Effect of microfibrillated cellulose on mechanical properties of plain-woven CFRP reinforced epoxy. Composite Structures. 2010;92(9):1999-2006.
    [463] Tang L, Weder C. Cellulose Whisker/Epoxy Resin Nanocomposites[J]. Applied Materials and Interfaces. 2010; 2(4):1073-1080
    [464] Ohnishi Y, Fujii T, Okubo K. Improvement in the mechanical properties of light curing epoxy resin with MFC (Micro-Fibrillated Cellulose)[A]. De Wilde WP, Bribbia CA, High Performance Structures and Materials IV[C]. Wessex Institute of Technology, WIT press,2008:139-148.
    [465] Flynn JH. Thermal analysis kinetics -- past, present and future[J]. Thermochimica Acta. 1992;203:519-526.
    [466] Vyazovkin S. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids[J]. International Reviews in Physical Chemistry.1998;17(3):407-433.
    [467]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001.
    [468] ?esták J: Thermophysical Properties of Solids - Their Measurements and Theoretical Thermal Analysis[M].Amsterdam: Elsevier, 1984:172-254.
    [469] Kissinger HE. Reaction Kinetics in Differential Thermal Analysis[J]. Analytical Chemistry. 1957; 29(11): 1702- 1706.
    [470] Akahira T, Sunose T. Joint convention of four electrical institutes. Research report (Chiba Institute of Technology). Sci Technol. 1971; 16: 22–31.
    [471] Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[J]. Journal of Polymer Science Part C: Polymer Symposia. 1964; 6(1): 183-195.
    [472] Ozawa T. A new method of analyzing thermogravimetric data[J]. Bull Chem Soc Jpn 1965; 38: 1881-1886.
    [473] Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data[J]. Journal of Polymer Science Part B: Polymer Letters. 1966; 4(5): 323-328.
    [474] Málek J. The kinetic analysis of non-isothermal data[J]. Thermochimica Acta. 1992;200:257-269.
    [475] Málek J. The shape of thermoanalytical curves as a function of the reaction kinetics[J]. Thermochimica Acta. 1993;222(1):105-113.
    [476] Montserrat S, Málek J. A kinetic analysis of the curing reaction of an epoxy resin[J]. Thermochimica Acta. 1993;228:47-60.
    [477] Popescu C. Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions A variant on the Ozawa-Flynn-Wall method[J]. Thermochimica Acta. 1996;285(2):309-323.
    [478] Popescu C, Segal E, Iditoiu C. A kinetic model for the thermal decomposition of wool[J]. Thermochimica Acta. 1995;256(2):419-427.
    [479] Dollimore D, Tong P, Alexander KS. The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the Arrhenius equation[J]. Thermochimica Acta. 1996;282-283:13-27.
    [480] Starink MJ. A new method for the derivation of activation energies from experiments performed at constant heating rate[J]. Thermochimica Acta. 1996;288(1-2):97-104.
    [481] Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature[J]. Journal of Computational Chemistry. 1997;18(3):393-402.
    [482] Sbirrazzuoli N, Girault Y, Elégant L. The Málek method in the kinetic study of polymerization by differential scanning calorimetry[J]. Thermochimica Acta. 1995;249:179-187.
    [483] Montserrat S, FlaquéC, Calafell M, et al. Influence of the accelerator concentration on the curing reaction of an epoxy-anhydride system[J]. Thermochimica Acta. 1995;269-270:213-229.
    [484] Rosu D, Cascaval CN, Mustata F, Ciobanu C. Cure kinetics of epoxy resins studied by non-isothermal DSC data[J]. Thermochimica Acta. 2002;383(1-2):119-127.
    [485] Li H, Shao T, Li D, et al. Nonisothermal reaction kinetics of diasporic bauxite. Thermochimica Acta. 2005;427(1-2):9-12.
    [486]陈艳雄.环氧树脂柔性固化剂的合成及其固化反应动力学研究[D].四川大学,2007:24.
    [487] Málek J. A computer program for kinetic analysis of non-isothermal thermoanalytical data[J]. Thermochimica Acta. 1989;138(2):337-346.
    [488] Loos AC, Springer GS. Curing of Epoxy Matrix Composites[J]. Journal of Composite Materials. 1983; 17(2): 135-169.
    [489] (?)esták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures[J]. Thermochimica Acta. 1971;3(1):1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700