基于废弃皮胶原改性的甲醛捕获剂的制备及其捕获行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
皮革工业在我国经济中占有重要地位。但是皮革行业在创造显著经济效益的同时,也产生了相应的污染物。随着资源、环境等全球性生态问题的日益严峻,皮革工业正面临着“可持续发展”战略的挑战。因此,皮革废弃物的资源化利用已成为国内外制革者和环境保护工作者关注和致力研究的重要课题之一。皮革边角料是一种富含蛋白质的廉价的工业原料,为该废弃物寻找适宜有效的应用途径,研制开发高附加值的产品,既能够充分利用资源,同时也是环境保护之必须。
     甲醛是一种普遍存在的空气污染物,主要是建筑、室内装修所用材料造成的。此外,在化妆品、烟草、纺织物和皮革中也有甲醛的存在,而且甲醛的释放是一个持续缓慢的过程。甲醛的治理方法主要有物理吸附法、光催化氧化法、低温等离子体催化降解法、化学吸收法等。简单易行的化学吸收法是通过化学反应将甲醛转化成无害的物质,以消除空气中的甲醛。甲醛是一种具有较高毒性的破坏生物细胞蛋白质的原生质毒物,能与蛋白质的氨基结合,使蛋白质变性凝固,利用甲醛的这一性质,并结合皮革工业的现状,利用胶原蛋白上的氨基与甲醛发生反应以达到捕获甲醛的目的,并研究其与甲醛的反应特性。希望能够为皮革废弃物的利用找到新的利用途径,对皮革废弃物的资源化利用作出指导性结论。
     以膦鞣革屑为原料,提胶率为指标,考察了不同方法的水解效果,结果表明:碱-酶混合法的水解效果明显优于酸法、碱法和酶法。通过单因素实验确定了酶法和碱-酶混合法的较优作用条件。单因素实验结果表明:酶法水解膦鞣革屑的较优作用条件为反应温度55℃、反应时间4h、碱性蛋白酶用量0.2%(以干革屑重计)、pH为9.0和液固比5∶1,在此条件下提胶率为31%;而碱-酶混合法的较优作用条件为MgO用量6%,温度70℃,反应时间3h,碱性蛋白酶的用量0.4%,在此条件下提胶率高达88%;在较优作用条件下的实验过程中,分别在碱处理后、加碱性蛋白酶30min后和反应结束后取样,采用扫描电镜对胶原纤维的形态变化进行了观察,发现在碱性蛋白酶的作用下胶原纤维发生断裂,胶原纤维溶解形成多肽和氨基酸的溶液;此外,通过对提取的胶原蛋白和市售的胶原蛋白红外谱图的对比得出,两个谱图的吸收峰位置基本一致,而且其三股螺旋构型已被破坏,说明提取的物质为胶原蛋白。GPC分析结果表明:提取的胶原蛋白的平均相对分子质量分别为1928和755,说明提取的物质主要是多肽以及少量的氨基酸的混合物,而且多肽占的比例较大。氨基酸分析结果表明:提取的胶原蛋白主要由17种氨基酸组成,其中甘氨酸含量几乎占了1/3,脯氨酸约占氨基酸总量的10%,而且天冬氨酸和谷氨酸含量较高,符合胶原蛋白的氨基酸组成特征。DSC分析说明提取的胶原蛋白的热稳定性比较差,开始发生收缩的温度为36.5℃,进一步证明它的三股螺旋结构已被破坏。
     以铬鞣革屑为原料,分别采用碱法和碱-酶两步法从铬鞣革屑中提取明胶,然后对所提取的明胶进行深度水解,得到水解明胶。以水解明胶的氨基氮含量和甲醛去除率为考察指标,选出较好的水解方法和水解剂,然后对选出的水解剂做进一步的实验以确定较优的作用条件。结果表明:酸法和碱法的提胶率明显高于酶法,而且碱法提取的胶原蛋白中的铬含量明显低于酶法和酸法。通过正交实验设计确定了碱法水解的较优作用条件,即反应温度65℃,时间3.5h,NaOH用量4%。在此条件下提胶率达到93.5%,胶原蛋白的铬含量为10.1 mg/kg。红外光谱分析证明提取的胶原蛋白和小牛筋腱Ⅰ型胶原的红外谱图基本吻合,说明其微观结构有很大的相似性,由此可以证明从铬鞣革屑中提取的物质是胶原蛋白。在碱-酶两步法中,选用碱性较弱的MgO作为碱处理剂,通过单因素实验确定了较优的作用条件,即反应温度80℃,反应时间5h,MgO用量7%,液固比6∶1,在此条件下,提胶率为53.8%,但明胶中的铬含量为5.8mg/kg,明显低于碱法水解得到的胶原蛋白。UV分析结果表明:240nm左右出现的吸收峰证明提取的物质为明胶。GPC分析结果表明:提取的明胶的相对分子质量为26257和4355,冷却后形成胶冻,需对其进行深度水解以降低其相对分子质量。
     在深度水解实验中,以氨基氮含量为指标,选用碱性蛋白酶以及胰酶和碱性蛋白酶双酶作为水解剂,并探讨了反应温度、碱性蛋白酶用量、反应时间、底物浓度对水解效果的影响,单因素和正交实验结果表明:碱性蛋白酶对明胶的较优作用条件为pH=9.0,反应温度50℃,加酶量0.9%,反应时间3.5h,底物浓度20%;而在双酶协同水解明胶中,两种酶的加入顺序为先加胰酶后加碱性蛋白酶,两者质量比为1∶2时,所得水解明胶的氨基氮含量大于单一酶水解所得水解明胶的氨基氮含量。对水解前后的明胶进行了红外光谱分析和GPC分析,结果表明:水解后的羧酸盐羧基的C=O伸缩振动吸收峰和胺基N-H伸缩振动的吸收峰都明显增强,酰胺基的N-H伸缩振动吸收峰明显变弱;而且相对分子质量明显减小,说明明胶已被酶水解为小分子的多肽和氨基酸。
     为了提高胶原蛋白的除醛效果,本研究以膦鞣革屑中提取的胶原蛋白(CPPL)为原料,乙二胺为氨基供给体,水溶性碳二亚胺为脱水剂,合成了氨基化胶原蛋白(EAC)。探讨了反应时间、乙二胺用量、脱水剂用量、反应温度、底物浓度和加料顺序对氨基含量和甲醛去除率的影响,以优化出胶原蛋白的改性条件,将胶原蛋白中的羧基尽可能多的转化成氨基,提高甲醛去除效果。通过单因素分析得出常温下改性效果较好,乙二胺用量、脱水剂用量、反应时间、胶原蛋白浓度的影响较大,然后通过正交实验得出氨基化改性胶原蛋白的较优条件,即脱水剂用量为3g,乙二胺用量为12.5 g,反应时间为3.5h,胶原蛋白浓度为30%,在此条件下测得的氨基含量达到3.77%,甲醛去除率为49%。采用红外光谱、GPC、氨基酸分析、DSC和~1H-NMR谱对产物进行了检测,结果表明胶原蛋白的羧基与乙二胺发生了反应,氨基含量增加。
     根据咪唑啉的合成原理,本研究采用二乙烯三胺(DETA)对胶原蛋白的羧基进行改性。单因素实验结果表明:溶剂法合成DAC的较优作用条件为溶剂采用二甲苯,反应温度160℃,反应时间4h,CPPL中羧基与DETA的摩尔比为1∶3;真空法合成DAC的最佳作用条件为真空度0.08MPa,反应温度150℃,反应时间4h,CPPL中羧基与DETA的摩尔比为1∶4。改性前后的红外谱图表明:胶原蛋白的羧基与DETA发生了反应,成功地引入了氨基,而且在1600~1610cm~(-1)处未出现咪唑啉环C=N的特征吸收峰,可以判断没有咪唑啉生成。此外,GPC、DSC和~1H-NMR谱分析结果也进一步证明DETA已经和胶原蛋白发生了反应,而且反应过程中未发生交联反应。
     将CPPL及其改性产物EAC和DAC用于皮革的甲醛去除实验中,发现它们都具有一定的除醛作用。当CPPL用量为5%,作用时间为2h时,甲醛去除率可达到40%;而经改性后,EAC和DAC的用量仅为3%,作用时间为1.5h时,其甲醛去除率从40%增加到55%,而且对皮革具有一定的增厚效应,改性产物中氨基含量的多少与除醛效果正相关。同时探讨了EAC和活泼亚甲基超支化聚合物(HPAM)的复配效果,当EAC和HPAM的质量比为1∶1,作用时间为2h,用量为3%时,甲醛去除率可达到75%以上。在噁唑烷鞣制和有机膦鞣制中的应用结果表明:EAC和HPAM混合物的甲醛去除率达到了75%以上,而且EAC对染色性能的提高较明显。在有机膦鞣实验中,端氨基超支化聚合物(HP-I)的甲醛去除率达到60.4%,增厚率为16.7%。
     以甲醛去除率和甲醛去除量为指标,CPPL和DAC在模拟空气中的应用结果表明:当质量浓度为10%的CPPL的用量为25g/m~3,作用时间为20min时,甲醛去除率达到70%以上,甲醛捕获量为26.3mg/g;而DAC的最佳应用条件为:多次少量喷于室内空气中,质量浓度为10%的DAC每次的用量为8g/m~3左右,可使甲醛捕获量达到47.8mg/g;DAC和HPAM混合物的作用条件为:质量比1∶1,按照1m~3计算,1∶1的DAC和HPAM的最佳用量为6g左右。
     以膦鞣革屑中提取的胶原蛋白和EAC为对象,研究其在溶液和模拟空气中与甲醛的反应动力学特征,确定了各反应物的反应级数和该反应的速率常数,分析温度和pH对反应速率的影响。EAC与甲醛在液相中的反应动力学结果表明:随着反应温度的提高,反应速度明显加快,实验结果符合准二级动力学的反应机理。反应速率常数k与绝对温度T的关系遵循Arrhenius方程式,反应活化能E等于9.26kJ/mol。反应速率常数随着EAC用量的增加而逐步提高;而当pH在4~6范围内变化时,对反应速率常数的影响不明显。当pH在7~9范围内时,随着pH的升高,EAC与甲醛的反应速率逐渐提高。胶原蛋白、EAC与甲醛在模拟空气中的反应动力学结果表明:各反应物所对应的反应级数均为一级,总反应级数都为二级。对于胶原蛋白与甲醛的反应,其反应速率常数为0.0127L·mg~(-1)·min~(-1)(R=0.99);对于EAC与甲醛的反应,其反应速率常数为0.0165L·mg~(-1)·min~(-1)(R=0.97)。
     在实际应用过程中,采用高温高压喷枪将胶原蛋白喷于新购置的家具中,应用结果表明:使用前橱柜中释放出的甲醛含量为0.22mg/m~3,用胶原蛋白进行处理后20min后,橱柜中释放出的甲醛含量降为0.02mg/m~3,甲醛去除率高达91%。这说明高温条件下有利于胶原蛋白与甲醛的充分接触,从而提高了反应活性。将纯水喷于模拟空气箱内,甲醛含量从0.69mg/m~3降到0.60mg/m~3,纯水的甲醛去除率为13%,但是一段时间后,甲醛含量又呈现增加的趋势,说明甲醛分子只是溶解在纯水中,并未与其发生反应。以此计算实际的甲醛去除率应为78%。
     本课题的创新之处在于:1.基于绿色化学思想,首次提出以“废”治“污”,利用皮革边角料制备甲醛捕获剂不仅可以解决皮革工业的一大污染源,同时还可以解决棘手的甲醛污染问题。本研究对于拓宽皮胶原的非制革利用领域具有重要的理论意义;2.采用碱-酶混合法从革屑特别是膦鞣革屑中提取胶原蛋白;3.并采用乙二胺、二乙烯三胺对胶原蛋白进行氨基化改性,制备两种氨基化胶原蛋白;4.系统地研究了所制备的胶原蛋白和氨基化胶原蛋白与甲醛的反应特性及其除醛行为,具有一定的理论价值。
The leather industry plays an important role in our country's economy. Although significant economic benefit was created in leather industry, plenty of pollutants also were produced. As global ecological problems, such as resources and environment, became severe day by day, the leather industry faced with the challenge of "sustainable development" strategy. Therefore, the recycling of leather wastes became one of important topics which tanners and environmental protection researchers paid more attention and dedicated to study. The leather shavings, are rich in protein, are a kind of low-cost industrial raw material. It is essential to find an appropriate and effective application way for these wastes and research products with high additional value. If so, the resources can be fully utilized and the environment is improved.
     Formaldehyde is one of the most ubiquitous indoor air pollutants. Among primary natural sources of formaldehyde, the stuff used in architecture and indoor decoration makes the biggest contribution. There are also diverse anthropogenic primary sources, such as in cosmetic, tobacco, textile and leather. The release process of formaldehyde is slow and continuous. The treatment methods of formaldehyde mainly include physical absorption, photocatalytic oxidation, low temperature plasma catalytic degradation and chemical absorption so on. The mechanism of chemical absorption method is the transformation of formaldehyde to nontoxic material by chemical reaction; as a result, formaldehyde in air is removed. Formaldehyde is a protoplasm toxicant with high toxicity and can destroy cell protein. Moreover, it can combine with amidogen in protein and makes protein denaturalization. Basing on the property of formaldehyde and the present situation of leather industry, the amidogen in collagen is used to absorb formaldehyde. Meantime, the reaction characteristics of collagen with formaldehyde are studied. This research is aiming at finding a new application way for leather wastes. It can instruct for the recycling of leather wastes.
     The collagen was extracted from phosphonium tanned leather shavings. The extraction percentage of collagen was as index, the hydrolyzation effect of different methods was studied. The results showed that two-step method was better than acid, alkali and enzyme. The optimum conditions were confirmed by single-factor experiment. The optimum extraction conditions of phosphonium tanned leather shavings were: reaction temperature was 55℃, reaction time was 4h, the dosage of alkaline protease was 0.2%(calculated based on the weight of leather shavings), pH was 9.0 and the ratio between water and wastes was 5:1. Under the conditions, the extraction rate was 31%. The optimum conditions of two-step method were: the dosage of MgO was 6%, the temperature and time in first-step was 70℃and 3h, the dosage of alkaline protease was 0.4%. Under the condition the extraction rate reached to 88%. When leather shavings were treated for 2.5h by MgO, 30min by alkaline protease and the reaction was finished, the collagen fiber was observed by multimedia microscope and SEM. The results showed that some collagen fibers were broken and the degree of collagen fiber breaks was small and the reaction system became liquor. Furthermore, the FT-IR spectrums of collagen peptide extracted from phosphonium tanned leather (CPPL) and commercial collagen peptide showed that their position of absorption peaks were basically consistent and the triplehelix configuration of extracted collagen peptide was destroyed. This proved the material extracted from phosphonium tanned leather shavings was collagen peptide. The GPC results showed that the average relative molecular weight of CPPL was 1928 and 755, respectively, which indicated the CPPL was the mixture of polypeptide and amino acid, and most were polypeptide. In amino acid analysis results, the CPPL consisted of 17 amino acids. In 17 amino acids, glycin nearly accounted for 30%, praline was 10%, the content of aspartic acid and glutamic acid were higher. All of these were in accordance with the composition characteristics of collagen. The DSC analysis indicated that thermal stability of collagen was worse. At 36.5℃it began to shrink, which further proved its triplehelix configuration had been destroyed.
     The alkali and alkali-enzyme were used to extract collagen and gelatin from chrome tanned leather, and then gelatin was further hydrolyzed to get collagen peptide. The amidogen content and percentage of formaldehyde removal were as index, the optimum hydrolyzing method and agent was selected, then the best conditions were further obtained by experiment. The results showed that the extraction rate of acidic method and alkaline method was better than that of enzyme method, and chromium content of alkaline method was significantly lower than that of enzyme and acidic method. The optimum conditions of alkaline method were obtained by orthogonal experiment. The temperature was 65℃, reaction time was 3.5h and the dosage of NaOH was 4%. Under the conditions, the extraction rate was 93.5% and the chromium content was 10.1mg/kg. The FT-IR analysis showed that the spectrum of collagen peptide obtained from chrome tanned leather shavings was similar with that of type I collagen from calf tendon. For two-step extraction method, the MgO with alkalescence was chosen to be extract gelatin from chrome leather shavings. The results of single-factor experiment showed that the optimum conditions were temperature 80℃, reaction time 5h, the dosage of MgO was 7% and the ratio between water and leather shavings 6:1. Under the condition, the extraction rate was 53.8%, but the chromium content in gelatin reduced to be 5.8mg/kg which was significantly lower than that extracted by NaOH. Moreover, in UV analysis, the absorption peak appeared at 240nm showed that it was gelatin. The GPC results indicated that the relative molecular weight of gelatin was bigger, so it must be further hydrolyzed to be peptide with small relative molecular weight.
     In extensive hydrolysis experiment, the amino nitrogen was as index, enzymatic hydrolysis technology and two-enzyme method was selected. The effect of temperature, the dosage of alkaline protease, reaction time and gelatin concentration were studied. The optimal conditions were pH 9.0, reaction temperature 50℃, the dosage of alkaline protease 0.9%, reaction time 3.5h and gelatin concentration 20%. In two-enzyme method, trypsinase was firstly added, and then was alkaline protease. Their mass ratio was 1:2. Under the conditions, the content of amino nitrogen was higher. The FT-IR analysis showed that the peak of C=O and N-H obviously became strong and N-H in amide became weak. Furthermore, the relative molecular weight became small. All of these proved the gelatin had been hydrolyzed to be polypeptide and amino acid.
     In order to improve the effect of formaldehyde removal, a new aminated collagen (EAC) was synthesized by modification of CPPL with ethylenediamine in the presence of a kind of water-soluble carbodiimide. The influence of reaction time, dosage of ethylenediamine and carbodiimide, reaction temperature, CPPL concentration and adding sequence on amino content and removal efficiency of formaldehyde was studied. The results of single-factor and orthogonal experiment showed that the optimal modification conditions were the CPPL concentration and dosage was 30% and 20g, the dosage of carbodiimide and ethylenediamine were 3g and 12.5g, reaction time was 3.5h, temperature was room temperature. Under the conditions, the amino content and percentage of formaldehyde removal were 3.77% and 49%, respectively. The FT-IR, GPC, amino acid analysis, DSC and 1H-NMR were used to characterize its structure. The results showed that carboxyl of CPPL reduced and ethylenediamine had been introduced into CPPL molecule.
     According to the synthetic principle of imidaoline, diethylene triamine (DETA) was used to modify CPPL. In solvent modification method, dimethyl benzene was as organic solvent, temperature was 160℃, reaction time was 4h and the mol ratio of carboxyl in CPPL and DETA was 1:3. In vacuum method, the optimal conditions were vacuum degree 0.08MPa, reaction temperature 150℃, reaction time 4h and the mol ratio of carboxyl in CPPL and DETA 1:4. The FT-IR spectrum showed that carboxyl had reacted with amido in DETA. The peak of C=N belong to imidaoline was not appeared at 1600~1610crn-l, which proved imidaoline was not produced. Moreover, the GPC, DSC and ~1H-NMR analysis also indicated DETA had been introduced into CPPL molecule and the crosslinking reaction was not happened.
     The CPPL, EAC and DAC were used to remove formaldehyde in leather. The results showed their removal formaldehyde efficiency were good. When the dosage of CPPL was 5% (based on the weight of leather), time was 2h, and its percentage of formaldehyde removal was 40%. After modification, when the dosage of EAC and DAC was 3%, time was 1.5h, its percentage of formaldehyde removal increased to 55% and its thickening effect was obvious. The amino content of modification products and formaldehyde removal efficiency was positive correlation. Meantime, the formaldehyde removal effect of DAC and HPAM mixture was studied. HPAM was hyperbranched polymer with active methylene. When the mass ratio of DAC and HPAM was 1:1, reaction time was 2h and the dosage was 3%, the percentage of formaldehyde removal reached to 75%. The application results in oxazolidine tanning showed that the complex of EAC and HPAM significantly reduced formaldehyde and EAC improved dyeing property. In phosphonium tanning experiment, the formaldehyde removal efficency of hyperbranched polymer with amidogen (HP-I) reached to 60.4% and the thickening rate was 16.7%.
     The percentage and weight of formaldehyde removal were as index, the application results of CPPL and DAC were obtained. When the dosage of 10% CPPL was 25g/m~3 and reaction time was 20min, the percentage and weight of formaldehyde removal respectively were 70% and 26.3mg/g. The DAC should be sprayed into air many times and every time a small number of DAC was sprayed. Every time its dosage was 8g/m~3 and the weight of formaldehyde removal reached to 47.8mg/g. The optimal application conditions of DAC and HPAM mixture were their mass ratio was 1:1 and the dosage was 6g/m~3.
     The CPPL and EAC were used to remove formaldehyde in solution and simulated air. Their reaction kinetics was studied. The reaction orders of every reagent and reaction rate constant were obtained. The influence of temperature and pH on reaction rate constant was analyzed. The results by the reaction of EAC and formaldehyde in solution showed that as the increase of temperature, the reaction speed obviously became quick. It accorded with reaction mechanism of pseudo-second Order Kinetic. The relation between reaction rate constant k and absolute temperature T followed Arrhenius equation. The activation energy equaled to 9.26kJ/mol. As the increase of the dosage of EAC, the reaction rate constant continuously increased. When pH equaled to 4~6, the influence of pH on reaction rate constant was not obvious. But when pH was 7~9, the reaction rate gradually increased. The results by the reaction of EAC and formaldehyde in simulated air showed that the reaction order of every reagent was one order and the overall reaction orders both were two orders. For the reaction of CPPL with formaldehyde, the reaction rate constant was 0.0127 L·mg~(-1)·min~(-1) and R was 0.99. And for the reaction of EAC and formaldehyde, the reaction rate constant was 0.0165 L·mg~(-1)·min~(-1) and R was 0.97.
     In practical application, the CPPL was sprayed into new furniture by using spray gun with high press and temperature. The application results showed that the formaldehyde concentration in cabinet before spraying CPPL was 0.22mg/m~3. After 20min, the formaldehyde concentration reduced to be 0.02mg/m~3. The percentage of formaldehyde removal reached to 91%. This indicated that at higher temperature it was easy for the impact of CPPL and formaldehyde, as a result, the reactivity was improved. The water was sprayed into simulated box, and then formaldehyde content was determined. The results showed that formaldehyde content reduced to 0.60mg/m~3 from 0.69mg/m~3. The percentage of formaldehyde removal was 13%. But after a time, the formaldehyde content had increasing trend. This illuminated the formaldehyde molecule only was enwrapped in water, but not reacted with water. Basing on the test, the percentage of formaldehyde removal of CPPL was 78%.
     The innovations of this thesis are: 1. basing on the green chemistry, pollution control by wastes was put forward firstly. The leather wastes and formaldehyde pollution both were solved. It broadened the application of collagen in other area. 2. The collagen was extracted from phosphinium tanned leather shavings by magnesium oxide and alkaline protease; 3. Two aminated collagens were prepared by using ethylenediamine and diethylene triamine; 4. The reaction characteristics of aminated collagen and formaldehyde were studied. The results obtained had certain theoretic guiding significance to further study formaldehyde scavenger.
引文
[1]Yang D F,Xi Z G,Zhang H S,et al.Oxidation damages of formaldehyde inhalation on rat multiple organs[J].Acta Scientiae Circumstantiae,2004,24:174-176.
    [2]徐敏,何满潮,王岩,等.TiO_2/ACF复合材料吸附-光催化降解甲醛的实验研究[J].中国安全生产科学技术,2008,4(2):40-44.
    [3]Rumchev K.B.,Spickett J.T.,Bulsara M.K.,et al.Domestic exposure to formaldehyde siginificantly increases the risk of asthma in young children[J].Eur Respir J,2002,20(2):403-408.
    [4]Nordnab H,Jesjubeb H,Tupparainen M.Formaldehyde asthma-rare or overlooked[J].J.Allergy Clin.Immunol,1985,75:91-99.
    [5]Coggon,D.Harris,E.C.,Poole,J.et al.Extended follow-up of a cohort of British chemical workers exposured to formaldehyde[J].J.Natl.Cancer Inst,2003,95,1608-1615.
    [6]Hauptmann,M.,Lubin,J.H.,Atewart,P.A.,etal.Mortality from lymphohematopoietic malignancies among workers in formaldehyde industries[J].J.Natl.Cancer Inst.,2003,95,1615-1623.
    [7]Perry A.Martos and Janusz Pawliszyn.Sampling and Determination of Formaldehyde Using Solid-Phase Microextraction with On-Fiber Derivatization[J].Anal.Chem.1998,70,2311-2320.
    [8]World Health Organization(WHO).IARC classifies formaldehyde as carcinogenic to humans[J].International Agency for Research on Cancer (IARC),WHO,Geneva.2004.
    [9]杨玉花.甲醛吸入染毒致大鼠肺损伤的蛋白质组学研究[D].北京:中国人民解放军军事医学科学院博士学位论文,2005.
    [10]文育锋,姚应水,王金权,等.甲醛对小鼠免疫系统的影响[J].皖南医学院学报,2001,2(3):166-167.
    [11]Rumehev K.B.,Spiekett T.J.,Bulsara M.K.,et al.Domestic exposure to formaldehyde significantly increases the risk of asthma young child[J].Eur.Respir.J.,2002,20(2):403-408.
    [12]Ying C.J.,Ye X.L.,Xie H.,et al.Lymphocyte subsets and sister-chromatid exchanges in the students exposed to formaldehyde vapor[J].Biomed Environ Sci,1999,12(2):88-94.
    [13]卫邦栋,郝兰英,温天佑,等.室内甲醛污染对人体免疫功能的影响[C].第一届全国室内空气质量与健康学术研讨会论文集,2002,197-198.
    [14]Morgan K.T.A brief review of formaldehyde carcinogenesis in relation to rat nasal pathology and human health risk assesment[J].Toxieol Pathol,1997,25(3):291-307.
    [15]Bagehi M.,Bagehi D.,Hassoun E.A.Subehronic effects of smoke less tobacco extract(STE) on hepatic lipid peroxidation,DNA damage,and excretion of urinarymetaolites in rats[J].Toxicology,1998,127(1-3):29-38.
    [16]Speit G,Sehutz P.,Merk O.Induction and repair of formaldehyde-induced DNA-protein crosslinks in repair-deficient human cell lines[J].Mutagenesis,2000,15(1):85-90.
    [17]杨丹凤,袭著革,张华山.典型醛类污染物单独及联合作用对小鼠脾淋巴细胞DNA损伤的离体实验研究[J].卫生研究,2000,29(1):30-32.
    [18]袭著革,戴树桂,孙咏梅.典型醛类污染物与细胞分子的结合作用[J].环境科学,2001,22(1):19-22.
    [19]Quievryn G.,Zhitkovieh A.Loss of DNA-protein crosslinks from formaldehyde-exposed cells occurs through spontaneous hydrolysis and active repair process linked to proteosome function[J].Carcinogenesis,2000,21(8):1573-1580.
    [20]Swenberg J.A.,Barrow C.S.,Boreiko C.J.,etal.Non-linear biological responses to formaldehyde and their implications for carcinogenic risk assessment[J].Carcinogenesis,1983,4,945-952.
    [21]Taskinen H.K.,Kyyronen P.,Sallmen M.,etal.Reduced fertility among female wood Workers exposed to formaldehyde[J].Am.J.Ind.Med.,1999,36(1):206-212.
    [22]Thrasher D.J.,Kilburn H.K.Embryo toxicity and teratogenicity of formaldehyde[J].Arch Environ Health,2001,56(4):300-311.
    [23]Sorg A.B.,Bailie M.T.,Tsehirgi M.L.,etal.Exposure to repeated low level formaldehyde in rats increases basal corticosterone levels and enhances the corticosterone response to subsequent formaldehyde[J].Brain Res,2001,898(2):314-320.
    [24]王耀武.室内甲醛检测方法和限定标准[J].毛纺科技,2003,(4):55-58.
    [25]程春梅,朱军辉.食品中甲醛的来源及其检测方法研究进展[J].食品科技,2008,(1):208-210.
    [26]安利华,孙群,郑万源.东海地区常见水产品甲醛本底值调查及含量分析[J].中国食品卫生杂志,2005,17(6):524-527.
    [27]张文德.食品中甲醛的来源及检测意义[J].中国食品卫生杂志,2006,8(5):455-459.
    [28]纪俊玲,鲁晓梅.织物整理过程中游离甲醛的控制[J].印染,2003,(7):28-30.
    [29]Walter B.J.,Noel C.J.Formaldehyde release from DP shirting fabrics[J].Textile Chemist and Colorist,1984,16(5):92-95.
    [30]Lewin M,Sello S.B.Handbook of fiber science and technology,Volume Ⅱ,Chemical Processing of Fibers and Fabrics,Functional Finishes,Part A[M].New York:Marcel Dekker,1983:118-126.
    [31]周中平,赵寿堂.室内污染检测与控制[M].北京:化学工业出版社,2002.
    [32]倪涵松,曹坚.居室空气污染的防治与标准[J].上海标准化,2001,(5):25-26.
    [33]王维新,杨帆,许文.GB18580-2001室内装饰装修材料人造板及其制品中甲醛释放限量[M].北京:中国标准出版社,2002,2-3.
    [34]侯毅勇.警惕甲醛对室内空气的危害[J].导刊·科教论坛,2007,4:146-148.
    [35]陈群玉.室内甲醛污染的来源及控制技术[J].地球环境,2008,3:59-61.
    [36]冯伟,孟燕.居室内甲醛污染现袱及控制指施[J].科技信息,3-4.
    [37]刘文霞,李唏,李品品.郑州市新装修房室内空气中甲醛污染状况分析[J].河南科学,2008,26(5):611-613.
    [38]Rozylo T K,Zabinska A,TyihakE.The possibility of quantitative OPLC measurement of levels of formaldehyde in human saliva[J].Planar Chromatogr Mod T L C,2000,13(5):394-396.
    [39]Dojaha J G,Wentworth W E,Stearas D.Characterization of formaldehyde by gas chromatography using multiple pulse-discharge photoionization detection and a flame ionization detector[J].J Chromatogr Sci,2001,39(2):54-58.
    [40]Afkhami A,Rezaei M.Sensitive spectrophotometric determination of formaldehyde by inhibition of the malachite green-sulfite reaction[J].Microchem J,1999,63(2):243-249.
    [41]Ayathri N,Balasabramanian N.Spectrophotometric determination of formalde- hyde[J].Anal Letter,2000,33(14):3037-3050.
    [42]Chan W H,Shuang S M,Chi M F.Determination of airborne formaldehyde by active sampling on 3-methy 1-2-benzothiazolinone hydrazone hydrochloride-coated glass fibre filters[J].Analyst,2001,126(5):720-723.
    [43]Eugenijus N,Algirdas V,Rasa P.Polarographic determination of formaldehyde according to the anodic oxidation wave in alkaline solutions[J].Electroanalysis,1999,11(6):447-449.
    [44]邹永德,陈永康,莫金垣.新合成“哥腊”衍生试剂在甲醛的电分析化学中的研究[J].分析化学,1999,27(3):261-265.
    [45]Kiba N,Sun L M,Yokose S,etal.Determination of Nano-molar Levels of Formaldeghyde in Drinking Water Using Flow-injection System with Immobilized Formaldehyde Dehydrogenase after Off-line Solid-phase Extraction[J].Anal Chim Acta,1999,378(1-3):169-175.
    [46]Sheng Wen,Yanli Feng,Yingxin Yu,etal.Development of a compound specific isotope analysis method for atmospheric formaldehyde and acetaldehyde[J].Environ.Sci.Technol.,2005,39:6202-6207.
    [47]Eugeng R Kennedy,Robert H Hill.Determination of Formaldehyde in Air as an Oxazolidine by Capillary Gas Chromatography[J].Anal Chem,1982,54:1739-1742.
    [48]Andrew L.Rice.Isotopic analysis of atmospheric formaldehyde by gas chromatography isotope ratio mass spectrometry[J].Anal.Chem.,2006,78:6320-6326.
    [49]Ge Jianming.Determination of Formaldehydein Air by HPLC[J].Journal of Hygiene research,1994,23(3):138-139.
    [50]Detlef Emeis,Willem Anker,Klaus-Peter Wittern.Quantitative ~(13)C NMR spectroscopic studies on the equilibrium of formaldehyde with its releasing cosmetic preservatives[J].Anal.Chem.2007,79:2096-2100.
    [51]葛兴,郑燕英,罗蓓.甲醛的几种测定方法[J].大众科技,2004,(11):19-21.
    [52]In-Y ong Eom,Qingyang Li,Jianzhong Li,etal.Robust hybrid flow analyzer for formaldehyde[J].Environ.Sci.Technol.2008,42,1221-1226.
    [53]Naohide Shinohara,Tomohisa Kajiwara,Masato Ohnishi,etal.Passive emission colorimetric sensor(PECS) for measuring emission rates of formaldehyde based on an enzymatic reaction and reflectance photometry[J].Environ.Sci.Technol.2008,42,4472-4477.
    [54]谭和平,方正,马天,等.室内空气中甲醛快速检测的研究[J].计量学报,2008,29(2):182-185.
    [55]Sergio Sanchez,Arnold L.Demain Research Insitute for Scientists Emeriti(RISE),Drew University,Madison,NJ 07940,USA.Metabolic Regulation and Overproduction of Primary Metabolites[J].Microbial Biotechnology,2008,30,3182-3185.
    [56]Takahiro Kawai,Chikara Ohtsuki,etal.Removal of Formaldehyde by Hydroxyapatite ayer Biomimetically Deposited on Polyamide Film[J].Environ.Sci.Technol.2006,40,281-4285.
    [57]强西怀,田灵,陈国平,等.端氨基PAMAM树枝状化合物捕获皮革中游离甲醛能力的研究[J].中国皮革,2007,36(9):22-24.
    [58]代岚.多羟树脂中游离甲醛的清除[J].辽宁城乡环境科技,2003,23(2):31-32.
    [59]Seiki Tanada,Naohito Kawasaki,Takeo Nakamura,etal.Removal of formaldehyde by activated carbons containing amino groups[J].Journal of colloid and interface science,1999,214:106-108.
    [60]Koizumi Mariko.Formaldehyde scavenger,methods for treatment woody plate and woody plate[P].JP:2002273145,2002-09-24.
    [61]Rozynov B V,Coyle W J,Wood W E.Control of volatile carbonyl in compositions used in printing,printing methods and resulting printed structure[P].US:6541560,2003-02-12.
    [62]Johnson,William Bruce,Fontenot,etal.Processor of aqueous solutions of melamine-aldehyde polymer having low level of free aldehyde[P].US 6100368,2000-08.
    [63]Sharp,Dim A ano Louis J,Hilda R.Waterborne coating composition having ultra low formaldehyde concentration[P].US:5795933,1998-08-18.
    [64]刘长风,刘学贵,臧树良.游离甲醛消除剂的研究进展[J].辽宁化工,2004,33(6):331-334.
    [65]朴正爱,朱英彩,李湘泰,等.甲醛清除剂在病理科的应用[J].新信息介绍,2003,10(1):62.
    [66]贾清,高林.甲醛消除剂[P].ISSN:1008-4247,2005-07-06.
    [67]励建荣,俞其林,胡子豪,等.茶多酚与甲醛的反应特性研究[J].中国食品学报,2008,8(2):52-57.
    [68]王金权,胡涛,马喜君,等.利用茶叶水对胶合板甲醛含量控制及相关性能影响研究[J].环境工程,2008,26(1):51-54.[
    69]Jean-Marie Herrmann.Heterogeneous photocatalysis:fundamentals and application to the removal of various types of aqueous pollutants[J],Catalysis Today,1999,53:115-129.
    [70]Rita Kakkar,Pramesh N.Kapoor,Kenneth J.Klabunde.Theoretical study of the adsorption of formaldehyde on magnesium oxide nanosurfaces:size effects and the role of low-coordinated and defect sites[J].J.Phys.Chem.B,2004,108:18140-18148.
    [71]Jennifer Cowan,Malyuba Abu-daabes and Sujit Banerjee.Controlling formaldehyde emissions with boiler ash[J].Environ.Sci.Technol.2005,39:5101-5104.
    [72]Fumihide S,Shunsuke Y.A rapid treatment of formaldehyde in a highly tight room using a photo catalytic reactor combined with a continuous adsorption and desorption apparatus[J].Chemical Engineering Science,2003,58:929-934.
    [73]Ringo C W.Michael K H.Visible-light-assisted photo catalytic degradation of gaseous formaldehyde by parallel-plate reactor coated with Cr ion-implanted TiO2 thin film[J].Solar Energy Materials & Solar Cells,2007,91:54-61.
    [74]孙和芳,张国栋,郑光宇.活性炭负载TiO_2光催化降解甲醛[J].安徽工业大学学报,2007,24(1):39-42.
    [75]彭娟,俞伟刚,郭锐.电催化氧化降解大气中甲醛的研究[J].环境化学,2007,26(3):392-394.
    [76]Hamal D B,Klabunde K J.Synthesis,characterization,and visible light activity of new nanoparticle photocatalysts based on silver,carbon,and sulfur-doped TiO2[J].J.Colloid Interface Sci.,2007,(3):1.
    [77]张小燕.胶原蛋白肽生物功能材料的研究与开发[D].陕西:西北工业大学博士学位论文,2006.
    [78]王碧,林炜,马春辉,等.皮革废弃物资源回收-胶原蛋白的利用基础、现状及前景[J].皮革化工,2001,18(3):10-14.
    [79]Brown.Collagen[R].陕西科技大学资源与环境学院:陕西科技大学科技处.2004.
    [80]蒋挺大.胶原蛋白[M].化学工业出版社,2001.
    [81]邓海燕.鸡皮明胶的制备及性质研究[D].福建:福建农林大学硕士学位论文,2004.
    [82]金桂仙,陈丽娟,彭必先.胶原/明胶的结构(构象)与性能研究[J].感光科学与光化学,1994,12(1):11-16.
    [83]林琳.鱼皮胶原蛋白的制备及胶原蛋白多肽活性的研究[D].山东:中国海洋大学博士研究生学位论文,2006.
    [84]周磊,陈敏,程海明,等.胶原蛋白硫代改性方法的研究[J].皮革科学与工程,2005,3(15):12-15.
    [85]Chantal Boudet,Ilias Iliopoulos,Olivier Poncelet,etal.Control of the chemical cross-linking of gelatin by a thermo sensitive polymer:example of switchable reactivity Biomacromolecules,2005,6:3073-3078.
    [86]Simona Bronco,Chiara Cappelli,Susanna Monti.Understanding the structural and binding properties of collagen:A theoretical perspective[J].J.Phys.Chem.B.,2004,108:10101-10112
    [87]张铭让,陈武勇.鞣制化学[M].北京:中国轻工业出版社,1999,8.
    [88]Ashwin Rao,Yongsin Kim,Charles M.Kausch,etal.Effect of binding of an oligomeric Cationic fluorosurfactant on the dilational rheological properties of gelatin adsorbed at the air-water interface[J].Langmuir,2006,22:7964-7968.
    [89]Fwu-Long Mi.Synthesis and characterization of a novel chitosan-gelatin bioconjugate with fluorescence emission[J].Biomacromolecules,2005,6:975-987.
    [90]Chen Rayneng,Wang Genming,Chen Chenho,etal.Development of N,O-(Carboxymethyl) chitosan/Collagen Matrixes as a Wound Dressing[J].Biomacromolecules,2006,7:1058-1064.
    [91]Stephen A.J.Shivas.The effects of trivalent chromium from tannery wastes on earthworms[J].J.Am.Leather Chem.Assoc.1984,79(5):207-215.
    [92]王碧.制革废弃物提取的胶原特性及与多糖共混生物膜材料的研究[D].四川:四川大学博士学位论文,2003.
    [93]任俊莉,邱化玉,付丽红.胶原蛋白及其在造纸工业中的应用[J].中国 造纸学报,2003,18(2):106.
    [94]王坤余,张铭让,陈元维,等.用铬革屑提取食用胶原蛋白和胶原多肽的研究[J].四川食品发酵,2000,(3):38-45.
    [95]董贵平,兰云军,鲍利红.皮革的绿色化工艺之路-铬鞣废弃物的回收利用[J].西部皮革,2006,(4):12-16.[
    96]Se-Kwon Kim,Yong-Tae Kim,Hee-Guk Byun,etal.Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin[J].J.Agric.Food Chem.2001,49,1984-1989.
    [97]穆畅道,林炜,王坤余,等.皮革固体废弃物资源化(Ⅰ)皮胶原的提取及其在食品工业中的应用[J].中国皮革,2001,30(9):37-40.
    [98]Stahlberger B.,Dach W.Preparation for the manufacture of films comprising a collagenous material and liquid reaction product of high molecular weight water-insoluble organic materials[P].U.S.Patent4125631,1978.
    [99]Taylor,M.M.,Diefendorf,E.J.,Brown,E.M.,et al.Enzymatic Processing of Materials Containing Chromium and Protein,US Patent 5094946,1992.
    [100]Taylor,M.M.,Diefendorf,E.J.,Brown,E.M.,et al.Enzymatic Processing of Materials Containing Chromium and Protein,U.S.Patent 5271912,1993.
    [101]Gray,A..Method and Apparatus for Forming Netted Meat Products Wrapped in an Edible Collagen Film.U.S.Patent 4716713,1988.
    [102]Boni,K.A.,Walsh,J.E..Method for Preparing Collagen Encased Sausage Products.U.S.Patent 5271948,1993.
    [103]Farouk,M.M.,Price,J.F.,Salih,A.M..Effect of an Edible Collagen Film Overwrap on Exudation and Lipid Oxidation in Beef Round Steak.J.Food Sci.,1990,55(6):1510-1512.
    [104]Cabeza L.F.,Taylor M.M.,Brown E.M.,etal.Potential application for gelatin isolated from chromium-containing solid tannery waste:microencapsulation[J].J.Am.Leather Chem.Assoc.,1999,94(5):182-189.
    [105]程凤侠.铬革屑做还原剂制备铬鞣剂碱度控制[J].嘉兴学院学报,2008,20(3):33-37.
    [106]马建中,刘凌云,徐春华,等.乙烯基类单体改性铬鞣革屑水解产物制备复鞣填充剂的研究[J].中国皮革.2003,32(7):6-10.
    [107]贾鹏翔,汤克勇.胶原蛋白改性丙烯酸类复鞣剂的制备[J].精细化工,2006.23(8):801-805.
    [108]Manzo G,Pedele G Tanning with condensates produced from chrome tanning residues[J].Cuoio Pelli Mater Concianti,1993,69(6):265.
    [109]Manzo G,Pedele G Tanning agent of a collagen condensate[J].Cuoio Pelli Mater Concianti,1994,70(1):17.
    [110]林炜,穆畅道,张铭让.皮革固体废弃物资原化(Ⅲ)铬革废弃物在皮革化工中的应用[J].中国皮革,2002,31(13):37-41.
    [111]Cantera C S,De Giuste M,Sofia A.Hydrolysis of chrome shavings:application of collagen hydrolyzate and"acrylic-protein"in post tanning operation.J.Soc.Leather Technol.Chem.,1997,81(5):183-191.
    [112]张铭让,李天铎,雷毅.利用含铬下脚料制备蛋白型加脂剂.第三届亚洲国际皮革会议论文集[C].1998,259-261.
    [113]李天铎.含铬下脚料制备皮革复鞣加脂剂[D].四川:四川大学博士学位论文,1999,4.
    [114]陈永芳,丁志文.胶原蛋白接枝共聚改性的研究[J].中国皮革,2007,36(23):24-26.
    [115]王志杰,花莉.动物胶原纤维对纸张的增强效果[J].中华纸业,2003,24(11):47.
    [116]王志杰,王建.皮革固体废弃物用于制浆造纸的研究[J].西北轻工业学院学报,2002,(12):28-31.
    [117]付丽红,张铭让.胶原纤维和植物纤维复合抄片紧度与吸水性的关系[J].皮革化工,2002,(3):4-7.
    [118]王志杰,彭立新.胶原蛋白的提取及其配抄纸张的物理性能[J].纸和造纸,2006,25(5):35-36.
    [119]戴达松,陈学榕,黄彪,等.皮革废弃物制备高透气度育果袋纸的研究[J].中国造纸,2008,27(1):17-20.
    [120]廖学品.基于皮胶原纤维的吸附材料制备及吸附特性研究[D].四川:四川大学博士学位论文,2006.
    [121]Xue pin Liao,Zhong bing Lu,Bi Shi.Selective adsorption of vegetable tannins onto collagen fibers[J].Ind.Eng.Chem.Res.,2003,42:3397-3402.
    [122]姜苏杰,张米娜,吴晖,等.铬废革屑对水体中有机物的吸附特性[J].中国皮革,2007,36(21):9-12.
    [123]Sreeram K.J.,Saravanabhavan S.,Rao J.R.,etal.Use of chromium-collagen wastes for the removal of tannins from wastewaters[J].Ind.Eng.Chem.Res. 2004,43,5310-5317.
    [124]Davison P.F.Collagen extracted from collagen-containing tissue[P].U.S.patent 5064941,1991.
    [125]Bailey A.J.Procter memopial lecture,Collagen-nature's framework in the medical,Food and leather industry[J].J.Soc.Leather Tech.Chem.,1992,76(4):111-127.
    [126]Miller A.T.Current and future uses of limed hide collagen in the food industry[J].J.Am.Leather Chem.Assoc.,1996,91(7):183-189.
    [127]Alpaslan C.,Alpaslan G.,Oygur T.,etal.Tissue reaction to subperiosteally implanted hydroxyapatite/collagen/glycosam inoglycans and coral in guinea pig[J].Oral Surg Oral Med Oral Pathol,1994,77-80.
    [128]冈村浩,丹羽行夫,利田敬山,等.皮革制造固体废物的有效利用[J].皮革化学,1980,26(1):1-15.
    [129]Jacek A.Koziel,Japeth Noah,Janusz Pawliszyn.Field Sampling and Determination of Formaldehyde in Indoor Air with Solid-Phase Microextraction and On-Fiber Derivatization[J].Environment Science and Technology,2001,35:1481-1486.
    [130]刘春丽,章亚东.室内甲醛污染治理的研究进展[J].江苏化工,2007,35(1):15-18.
    [131]穆畅道,林炜,王坤余,等.皮革固体废弃物的高值转化[J].化学通报,2002,(1):29-35.
    [132]Kumaraguru S,Sastry T P.Hydrolysis of tannery fleshing using pancreatic enzymes:A biotechnological tool for solid waste management[J],JALCA,1998,93(2):32-39.
    [133]张铭让,林炜,等.绿色化学与皮革工业的可持续发展,第一届国际绿色化学高级研讨会[C],中国科技大学,1998,12,138-220.
    [134]王学川,任龙芳,强涛涛,等.利用膦鞣革屑制备胶原蛋白类除醛剂的研究.精细化工,2008,25(7):686-690.
    [135]陈武勇,秦涛,辜海兵,等.氧化镁和碱性蛋白酶两步法处理废铬革屑[J].中国皮革,2001,30(15):1-5.
    [136]B.Jamilah,K.G Harvinder.Properties of gelatins from skins of fish-black tilapia(Oreochromis mossambicus) and red tilapia(Oreochromis nilotica)[J].Food Chem.,2002,77:81-84.
    [137]姜锡瑞.酶制剂应用手册[M].中国轻工业出版社,1999,2-9.
    [138]Taylor M.M.Processing of leather waste:pilot scale studies on chrome shavings(Ⅰ):isolation and characterization of protein products and separation of chrome cake.JALCA,1998,93:61-82.
    [139]王远亮.铬废皮屑的脱铬方法.中国皮革,1990,19(10):4-8.
    [140]Myung Chul Chang,Junzo Tanaka.FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde.Biomaterials,2002,23:4811-4818.
    [141]Krimm S,Bandekar J.Vibrational spectroscopy and conformation of peptides,polypeptides and proteins.Adv.Protein Chem.,1986,38:65-81.
    [142]王琳,刘宇,魏汉.高效液相色谱法制备Ⅰ型胶原蛋白及其性质研究氨基酸和生物资源,2004,26(2):35-37.
    [143]蒋挺大.胶原与胶原蛋白[M].北京:化学工业出版社,2006,5.
    [144]周文常.胶原的提取及其复合纺丝液的制备[D].四川:四川大学硕士学位论文,2004.
    [145]蒋维祺.皮革成品理化检验[M].北京:中国轻工业出版社,1999.
    [146]徐润,梁庆华.明胶的生产及应用技术[M].北京:中国轻工业出版社,1988:1-4,27-32,161-193.
    [147]姜萍.明胶测铬方法的更正[J].明胶科学与技术,2004,24(2):85-86.
    [148]Plepis A M D G,Goissis G,Das-Gupta D K.Dielectric and pyroelectric characterization of anionic and native collagen.Polymer Eng.Sci,1996,36:2932-2938.
    [149]Heidemann E.Disposal and recycling of chrome-tanned materials[J].JALCA,1991,86:331-334.
    [150]裴海燕.从废弃铬鞣革屑中提取胶原蛋白类水解物的研究[D].河南:郑州大学硕士学位论文,2002,16-17.
    [151]成都科技大学,西北轻工业学院.制革化学及工艺学[M].北京:轻工业出版社,1987,193.
    [152]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社,2000.
    [153]金成.草鱼鱼鳞胶原蛋白的提取及特性研究[D].湖北:华中农业大学硕士学位论文,2005.
    [154]潘志娟.利用铬革屑提取胶原蛋白及其在创伤敷料中的应用[D].四川:四川大学硕士论文,2002,20.
    [155]White A,Handle P,Smith F L.Principles of biochemistry(Fifth Edition)[M].New York:Mcgraw_Hill Inc,1973.Chapter 7-8.
    [156]余海,廖小宜,周志瑜.鼠尾肌腔胶原蛋白提取及凝胶的制备[J].海南医学,2000,1(3):64-65.
    [157]永井裕,藤本太三郎编,刘永平译.胶原蛋白实验方法[M].上海:上海中医学院出版社,1992.
    [158]鸿巢章二,桥本周久编,郭晓风,邹胜祥译.水产利用化学[M].北京:中国农业出版社,1994.268-279.
    [159]Ledward D.A.Gelation of gelatin.In:Michell J.R.,Leward D.A.Functional properties of Food Macromoleculers.London:Elsevier Applied Science Publishers,1986:171-185.
    [160]张联英.几种主要淡水鱼胶原蛋白的制备及其特性研究[D].山东:中国海洋大学硕士学位论文,2004.
    [161]张子涛.甲壳素脱乙酰化动力学及壳聚糖在抗菌染色中的应用研究[D].上海:东华大学博士学位论文,2003.
    [162]GB/T 5009.1--1996,B15硫代硫酸钠标准滴定溶液C(Na_2S_2O_3.5H+2O)=0.1mol/L.
    [163]GB/T 5009.1--1996,B13,碘标准滴定溶液C(I_2)=0.05mol/L.
    [164]GB/T 5009.1--1996,B11.1.3淀粉指示液.
    [165]冯志川,刘艳红.测量食醋中氨基酸态氮时甲醛用量的探讨[J].中国调味品,2000,(9):27-28.
    [166]王镜岩.生物化学[M].北京:高等教育出版社,2003.
    [167]林立.酶促水解反应的实验和优化[D].上海:华东理工大学硕士论文,2001.
    [168]李岩,班玉凤,郭洪臣,等.pH值渐变条件下双酶协同水解猪皮制备胶原蛋白寡肽的研究[J].食品科学,2003,24(7):74-79.
    [169]于自然,黄熙泰.现代生物化学[M].北京:化学出版社,2001.9.
    [170]刘静,陈均志.微波双酶协同水解大豆分离蛋白制备小分子肽的研究[J].食品研究与开发,2006,27(8):9-12.
    [171]朱少娟.超声波加速胰蛋白酶反应及其机理的探讨[D].江苏:江南大学硕士学位论文,2004.
    [172]侯长军.聚醚砜(PES)改性血液相容性材料的制备及相关生物学特性研究[D].重庆大学博士学位论文,2004.
    [173]Bubnis W.A.,Ofner C.M.The determination of ε-amino groups in soluble and poorly soluble proteinaceous materials by a spectrophotometric method using trinitrobenzene sulfonic acid.Anal.Biochem.1992,207:129-133.
    [174]Leo E.,Vandelli M.A.,Cameroni R.,etal.Doxorubicin-loaded gelatin nanoparticles stabilized by glutaraldehyde:involvement of the drug in the cross-linking process.Int.J.Pharm 1997,155:75-82.
    [175]王健.氨基化明胶的性能及在鼻粘膜给药的应用研究[D].辽宁:沈阳药科大学博士学位论文,2002.
    [176]Toshiyuki Ikoma,Hisatoshi Kobayashi.Physical properties of type Ⅰcollagen extracted from fish scales of Pagrus major and Oreochromis niloticas.International Journal of Biological Macromolecules,2003,32:199-204.
    [177]Masahiro Ogawa,Ralph J.,Portier,etal.Biochemical properties of bone and scale collagens isolated from the subtropical fish black drum(Pogonia cromis) and sheepshead seabream(Archosargus probatocephalus).Food Chemistry,2004,88:495-501.
    [178]李志强.生皮蛋白质化学基础[M].成都:成都科技大学出版社,1988.
    [179]Takeshi Nagai,Masami Izumi,Masahide Ishii.Fish scale collagen.Preparation and partial characterization[J].International Journal of Food Science and Technology.2004,39(3):239-244.
    [180]雷良才,肖恺,沈愚,等.咪唑啉缓蚀剂的合成与缓蚀性能研究[J].腐蚀与防护,2001,22(10):420-423.
    [181]范维玉,杨孟龙,陈树坤,等.SF-103油田注水缓蚀剂的合成及性能考察[J].石油大学学报(自然科学版),1999,23(2):82-85.
    [182]张贵才,马涛,葛际江,等.咪唑啉缓蚀剂合成过程中成环程度与其性能的关系[J].西安石油大学学报(自然科学版),2005,20(2):55-57.
    [183]刘兴玉,范维玉,陈树坤,等.石油酸酰胺系改性乳化剂的研制[J].精细石油化工,1999,(5):14-17.
    [184]谢晖,何文深,周永红.松香基咪唑啉的合成及应用[J].南京工业大学学报,2004,26(6):72-74.
    [185]钟振声,杨兆禧,匡科.阳离子咪唑啉表面活性剂的合成[J].精细化工,2000,17(12):690-692.
    [186]李树安,黄超.咪唑啉型磷酸盐两性表面活性剂的合成[J].精细石油化 工,1996,5:13-16.
    [187]邵双喜,周慧.胶原和明胶的玻璃化转变[J].皮革科学与工程,1996,6(3):31-36.
    [188]王学川,任龙芳,强涛涛.甲醛捕获剂的研究进展及其发展前景[J].中国皮革,2008,37(11):17-19.
    [189]Wang Xuechuan,Ren Longfang,Qiang Taotao.Synthesis of Hyperbranched Polymer with Terminal Amidogen and Its Application as formaldehyde Scavenger in leather.Journal of American Leather Chemists and Association,2008,103(12):416-420.
    [190]俞从正,王坤余.皮革生产过程分析[M].北京:中国轻工业出版社,2006,9:70-73.
    [191]GB/T 40174.16-93.木材胶粘剂及其树脂检验方法游离甲醛含量测定法[S].1993.
    [192]骆鸣汉.毛皮工艺学[M].北京:中国轻工业出版社,2003,382.
    [193]周永香.多功能游离甲醛捕获剂[D].陕西:陕西科技大学硕士学位论文,2006.
    [194]张立芳,李永伟,杨海蜂.银杏木炭降低脲醛树脂游离甲醛的研究[J].中国胶粘剂,2007,16(2):8-9.
    [195]傅英芳,樊祥林.降低人造板中脲醛树脂游离甲醛含量的几种方法[J].木材加工机械,2001,(2):25-26.
    [196]李东光.脲醛树脂胶粘剂[M].北京:化学工业出版社,2002:216.
    [197]Szende B.,Tyihak E.,Trezl L.,et al.Formaldehyde cycle and the natural formaldehyde generators and capturers[J].Acta Biol Hung,1998,49(2-4):225.
    [198]Saito N.,Reilly M.,Yazaki Y.Chemical structures of catechin-formaldehyde reaction products(stiasny precipitates) under strong acid conditions:Part 1.Solid-state 13C-NMR analysis[J].Holzforschung,2001,55(2):205-213.
    [199]Takagaki A.,Fukai K.Reactivity of green tea catechins with formaldehyde [J].J.Wood Sci,2000,46(4):334-338.
    [200]高比表面积纳米.WO3的制备及其光催化降解气相甲醛的研究[D].江苏:南京理工大学工学博士学位论文,2005.
    [201]李凤云.乙二醇醋酸酯化反应动力学研究[J].山东理工大学学报(自然科学版),2006,20(4):77-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700