有机电致发光器件结构优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光器件(OLED)具有低压直流驱动、主动发光、色彩丰富、视角宽、重量轻、能耗低以及响应速度快等诸多优点,被认为是新一代平板显示器的有力竞争者,其在照明光源和光电耦合器领域也具有诱人前景。经过二十多年的研究,有机电致发光技术得到了长足发展,产品化EL显示器件不断出现,然而由于部分关键问题未能得到解决,致使现有器件寿命短、效率低。目前,提升器件效率主要有两方面的工作在做:提高材料效率;改进器件制备工艺,设计新型结构器件。
     本文从改进器件结构这一研究方向出发,设计了两套实验方案:
     1.借鉴已有关于LiF等绝缘材料对OLED性能影响的研究,在器件设计中引入MgF2,系统研究了MgF2插层位置、插层厚度变化对器件性能的影响。首先利用MgF2修饰阴极,制作了器件结构为ITO / NPB / Alq3 / MgF2 / Al,MgF2厚度分别为0.5nm、0.8nm、1.0nm的一组EL器件,研究发现:MgF2厚度的改变对器件性能有很大影响,MgF2厚度为0.8nm的器件与其他两个器件相比,性能最优,器件启亮电压降低到2.1V,最大亮度达到1682cd/m2,电流效率和流明效率分别为1.14cd/A、1.48lm/W;其次我们将MgF2穿插在空穴传输层NPB中,制作了器件结构为ITO / NPB(10nm)/ MgF2(0nm、0.5nm、1.0nm、1.5nm)/ NPB(20nm)/ Alq3(30nm)/ Al(30nm)的一组器件,测试结果表明:合适厚度的MgF2可有效降低器件启亮电压,提高器件效率。本实验中MgF2厚度0.5nm的器件启亮电压只有2.3V,较未穿插MgF2器件降低2V;MgF2厚度1.0nm的器件最大电流效率达到0.86cd/A,最大流明效率达到0.52 lm/W,较未穿插MgF2器件分别提高43%和174%。
     2.从降低启亮电压、稳定器件性能的目的出发,设计了一种界面交互穿插结构器件。新器件将功能层间平直形界面设计为矩形凹凸穿插状,提高了电子注入、传输效率,实现了器件性能提升。实验系统研究了界面交互穿插数目、厚度对器件性能的影响,得出结论:随着交互穿插数目的增加,器件启亮电压降低、发光效率提高,同时,穿插厚度的变化对器件性能有很大影响。所制备器件中,交互穿插厚度7nm、穿插数目3的器件性能最优,启亮电压较普通结构器件降低1V,最大电流效率提高34%,且稳定性显著提高。
Organic light-emitting device (OLED) is a very attractive candidate as the next generation flat panel displays (FPD).The technology exhibits bright prospect in photoelectricity filed owing to its advantages of low DC drive voltage, active luminescence, full color, low power consumption and fast response. After more than twenty years of studies, Organic light-emitting diode technology has been developed by leaps and bounds, the product of EL display devices emerge continually. However, some of the key issues can not be resolved, so that OLEDs still have a short life and low efficiency. At present, enhancing the efficiency of device has two main aspects of work to do: improve the material efficiency; improve preparation process and design new structure of the device.
     Two sets of programs to optimize device performance were designed in this paper:
     1. Based on the research of LiF, MgF2 was inserted in the device. The influence of the location and thickness of the MgF2 layer on device performance was studied, respectively. First, MgF2 was used to modify cathode. The devices of ITO / NPB / Alq3 / MgF2 / Al, herein MgF2 layer thickness is 0.5nm, 0.8nm and 1.0nm, respectively, were made. The study indicate that the change of the thickness of the MgF2 layer has a great impact on device performance. The device with the MgF2 layer thickness of 0.8nm, with the turn on voltage of 2.1V, the maximum brightness of 1682cd/m2, luminous efficiency of 1.14cd/A and power efficiency of 1.48lm/W, is superior to the other two devices. Secondly, we inserted MgF2 into the holes transport layer (NPB). The device structure is ITO/ NPB(10nm)/MgF2(0nm,0.5nm,1.0nm,1.5nm)/NPB(20nm)/Alq3(30nm)/Al(30nm). Tests show that introducing the MgF2 layer of suitable thickness can decrease the turn on voltage and increase the efficiency of the device. In this experiment, the turn on voltage of the device with 0.5nm-thick MgF2 layer is 2.3V, which is 2V lower than that without MgF2 layer. The maximum luminous efficiency and power efficiency of the device with 1.0nm-thick MgF2 layer are 0.86cd/A and 0.52 lm/W, respectively, which are increased by 43% and 174% compared with that without MgF2 layer, respectively.
     2. Aiming to lower turn on voltage and stabilize the performance,a new structure device was designed. We change the straight-shaped interface of the device into rectangular interinserting interface. By doing this, the efficiency of electron injection and transport was improved, and the device performance was promoted. We studied the impact of the number and the thickness of rectangular interinserting structure on device performance. The results indicate that the device with lower turn on voltage and high efficiency, with the increasing of the number of rectangular interinserting structure. Meanwhile, the thickness of interinserting structure has an important influence on the device performance. The interinserting device with the thickness of 7nm and the number of 3 has a much better performance than other devices, whose turn on voltage is 1V lower than the traditional device and the maximum luminous efficiency is improved by 34%. Furthermore, the stability of the devices improved significantly.
引文
[1] Pope M, Kallmann H, Magnante P. Electroluminescence in organic crystals [J]. J Chem. Phys., 1963, 38 (8): 2042-2043.
    [2] Vincett P S, Barlow W A, Hann R A, et al. Electrical conduction and low voltage blue eletroluminescence in vacuum-deposited organic films [J].Thin Solid Film, 1982, 94:171-183.
    [3] Partridge R H. Electroluminescence from polyvinylcarbazole films: 3 Electroluminescent devices [J]. Polymer, 1983, 24 (6): 746-752.
    [4] Adachi C, Tsutsui T, Saito S, et al. Confinement of charge carriers and molecular excitons within 5nm- thick emitter layer in organic electroluminescent devices with a double heterostructure [J]. Appl. Phys.Lett., 1990, 57 (6): 531-533.
    [5] Adachi C, Tokito S, Tsutsui T, et al. Organic electroluminescent device with a three-layer structure [J]. Jpn. J Appl. Phys., 1988, 27 (4): 713-715.
    [6] Adachi C, Tokito S, Tsutsui T, et al. Electroluminescence in organic films with three-layer structure [J]. Jpn. J Appl. Phys., 1988, 27: 269-271.
    [7] Tang C W, VanSlyke S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913- 915.
    [8] Adachi C, Tsutsui T, Tokito S, et al. Organic electroluminescent device having a hole conductor as an emitting layer [J]. Appl. Phys. Lett., 1989, 55 (15): 1489-1491.
    [9] Tang C W, VanSlyke S A, Chen C H, Electroluminescence of doped organic thin film [J]. J. Appl. Phys., 1989, 65(9): 3610-3616.
    [10] Burroughes J H, Braddley D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347: 539-541.
    [11] Wakimoto T, Murayama R, Nagayama K, et al. Organic EL cells with high luminous efficiency[J]. Applied Surface Science, 1997, 113/114: 698-704.
    [12] Miyaguchi S, Ishizuka S, Wakimoto T, et al. Ext. Abs. 9th Int. Workshop on Inorganic and Organic EL, Bend, Oregon, USA, 1998, 137-140.
    [13] Hosokawa C, Eida M, Tokailin H, et al. Ext.Abs.9th Int. Workshop on Inorganic and Organic EL, Bend, Oregon, USA, 1998, 151-154.
    [14] Shimoda T, Kimura M, Miyashita S, et al. Current status and future of light-emitting Polymer display driven by Poly-Si TFT [C]. CA. USA, SID Digest. San Jose. 1999: 372-375.
    [15] Rajeswaran G, Itoh M, Boroson M, et al. Active matrix low temperature poly-Si TFT/OLED full color display: development status [C]. CA. USA, SID Digest. Long Beach. 2000: 974-977.
    [16]黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京:北京大学出版社, 2001, 151.
    [17]黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京:北京大学出版社, 2001, 74-75, 153-155.
    [18]黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京:北京大学出版, 2001, 155-157.
    [19] Era M, Adachi C, Tsutsui T, et al. Double-heterostructure electroluminescent device with cyanine-dye bimolecular layers as an emitter [J].Chem. Phys. Lett., 1991, 178: 488-490.
    [20]黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京:北京大学出版社, 2001, 243.
    [21] Duan Yu, Hou Jing-ying, Wu Zhi-jun, et al. High-efficiency white organic light-emitting devices based on multiple quantum wells structure[J]. Chin. Phys. Lett., 2004, 21(3): 534.
    [22]刘明大,石家纬等,微腔有机发光二极管[J].半导体光电, 2000, 21(3): 166-168.
    [23] Riel H, Karg S, Beierlein T, et al. Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling [J]. Appl. Phys. Lett., 2003, 3(82): 466-468.
    [24] Jung G Y, Pearson Christopher, Kilitziraki Mary, et al. Dual-layer light emitting devices based on polymeric Langmuir–Blodgett films[J]. J. Mater. Chem., 2000, 10: 163-167.
    [25] Kido J, Nakada T, Endo J, et al. Proceedings 11st International Workshop on Inorganic and Organic Electroluminescence and 2002 International Conference on the Science and Technology of Emissive Displays and Lighting, Ghent, Belgium, 2002.
    [26] Matsumoto T, Nakada T, Endo J, et al. Multiphoton organic EL device having charge generation layer[C]. CA. USA, SID Digest, 2003: 979.
    [27]宋文波,陈旭,吴芳等.有机/聚合物材料体系能带结构的表征-电化学方法研究[J].高等学校化学学报, 2000, 21(9): 1422-1426.
    [28] Bard A J, Faulkner L R. Electrochemical methods, fundamental and application[M]. New York: Wiley. 1980: 634.
    [29] Schmitz C, Schmidt H W, Thelakkat M. Lithium-quinolate complexes as emitter and interface materials in organic light-emitting diodes[J] . Chem. Mater., 2000, 12: 3012-3019.
    [30] HO P K H , Kim J S, Burroughes J H, et al. Molecular-scale interface engineering for polymer light- emitting diodes [J]. Nature, 2000, 404: 481.
    [31] Kalinowski J. Electroluminescence in organics[J]. J. Phys. D: Appl. Phys., 1999, 32, R179.
    [32] Wolf U, Arkhipov V I, Bassler H, et al. Current injection from a metal to a disordered hopping system. I. Monte Carlo Simulation[J]. Phys. Rev. B., 1999, 59: 7507.
    [33] Barth S, Muller P, Riel H, et al. Electron injection into an Alq3 single-layer organic light-emitting diode. Synth. Met., 2000, 111: 327.
    [34] Pope M, Swenberg C E. Electronic processes in organic crystals and polymers[M]. New York: Oxford University Press, 1999: 379.
    [35] Miyata S, Nalwa H S. Organic electroluminescence materials and devices[M]. Netherlands: Golden and Breach Science Publishers, 1997: 415.
    [36] Burrows P E, Shen Z, Bulovic V, et al. Relationship between electroluminescence and current transport in organic herterojunction light-emitting devices[J]. J. Appl. Phys., 1996, 79: 7991.
    [37]吴有智.有机薄膜电致发光器件特性及机理研究[D].上海:上海大学, 2003.
    [38]黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京:北京大学出版社, 2001: 256.
    [39]李文连.用于有机EL器件的电极材料[J].液晶与显示, 2000, 15(2): 108-113.
    [40]王丽辉,徐征,孙力,陈小红.有机电致发光器件载流子注入效率的研究[J].半导体光电, 1999, 20: 409-412.
    [41]黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京:北京大学出版社, 2001: 258-260.
    [42] Chen C H, Tang C W, Shi J, et al. Recent developments in the synthesis of red dopants for Alq3 hosted electroluminescence[J]. Thin Solid Films, 2000, 363: 327.
    [43] Zhang X H, Chen B J, Lin X Q, et al. A new family of red dopants based on chromene-containing compounds for organic electroluminescent devices [J]. Chem. Mater., 2001, 13: 1565.
    [44] Thomas K R J, Lin J T, Tao Y T, et al. Star-shaped thieno-[3,4-b]-pyrazines: a new class of red-emitting electroluminescent materials[J]. Adv. Mater., 2002, 14: 822.
    [45] Chen C H, Tang C W. Efficient green organic light-emitting diodes with stericly hindered coumarin dopants[J]. Appl. Phys. Lett., 2001, 79: 3711.
    [46] Kijima Y, Asai N, Tamura S I. A blue organic light emitting diode[J]. Jpn. J. Appl. Phys., 1999, 38: 5274.
    [47] Hosokawa C, Higashi H, Nakamura H, et al. Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant[J]. Appl. Phys. Lett., 1995, 67: 3853.
    [48] Shih H T, Lin C H, Shih H H, et al. High-performance blue electroluminescent devices based on a biaryl[J]. Adv. Mater., 2002, 14: 1409.
    [49] Pons M, Bernard C, Blanquet E, et al. Combined thermodynamic and mass transport modeling for material processing from the vapor phase [J]. Thin Solid Films, 2000, 365(2): 264-274.
    [50] Chang S C, B harathan J ,Yang Y ,et al. Dual-color polymer light-emitting pixels processes by hybrid ink-jet printing[J]. Appl. Phys. Let., 1998, 73 (18): 2561-2563.
    [51] Jayesh B, Yang Y. Polymer electroluminescent devices processed by inkjet printing: I. polymer light-emitting logo [J]. Appl. Phys. Lett., 1998, 72 (21): 2660-2662.
    [52]Hebner T R, Wu C C. Ink-jet printing of doped polymer for organic light-emitting devices [J]. Appl. Phys. Lett., 1998, 72 (5): 519-521.
    [53] Ouyang J M, Zhang Z M. Langmuir-Blodget films and electroluminescent devices of amphiphilic 8-hydroxyquinolinem magnesium [J]. Thin Solid Films, 2000, 363(1-3): 134-137.
    [54] Era M, Tsutsui T, Takehara K, et al. Electroluminescent device with biphenylpyrazine derivative Eu salt LB (Langmuir-Blodget) film as a molecular-size emissive layer [J]. Thin Solid Films, 2000, 363(1-3): 229-231.
    [55] Watakabe A, Kunitake T, et al. Spacial distribution of electroluminescence from oriented phenylenevinylene oligomer Langmuir-Blodget film [J]. Synth. Met., 1997, 91(1-3): 83-85.
    [56]柴天恩.平板显示器件原理及应用[M].北京:机械工业出版社, 1996.
    [57] Hung L S, Tang C W, Mason M G, et al. Enhanced electron injection in organic electroluminescence device using and Al/LiF electrode [J]. Appl. Phys. Lett., 1997, 70: 152-154.
    [58] Ohmori Y, Kurosaka Y, Tada N, et al. Control of emissive layer interfaces with inorganic thin layer between 8-hydroxyquinoline aluminum and diamine layers in organic EL diode[J]. Mater. Res. Soc. Symp. Proc., 1998, 488: 575.
    [59] Kurosaka Y, Tada N, Ohmori Y, et al. Improvement of electrode/organic layer interfaces by the insertion of monolayer-like aluminum oxide film[J]. Jpn. J. Appl. Phys., 1998, 37: 872.
    [60] Li F, Tang H, et al. Fabrication and electroluminescence of double-layered organic light-emitting diodes with the Al2O3/Al cathod [J]. Appl. Phys. Lett. , 1997, 70: 1233-1235.
    [61] Jabbour G E, Kippelen B, Armstrong N R, Peyghambarian N. Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices[J]. Appl. Phys. Lett., 1998, 73: 1185.
    [62] Brown T M, Friend R H, Millard I S, et al. LiF/Al cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes[J]. Appl. Phys. Lett., 2000, 77: 3096.
    [63] Shaheen S E, Jabbour G E, Morrell M M, et al. Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode[J]. J. Appl. Phys., 1998, 84: 2324.
    [64] Heil H, Steiger J, Kang S, et al. Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode[J]. J. Appl. Phys., 2001, 89: 420.
    [65] Zhu F R, Low B, Zhang K, Chua S J. Lithium-fluoride-modified indium tin oxide anode for enhanced carrier injection in phenyl-substituted polymer electroluminescent devices[J]. Appl. Phys. Lett., 2001, 79: 1205-1207.
    [66] Liew Y F, Zhu F R, Chua S J, Tang J X. Tris-( 8-hydroxyquinoline) aluminum-modified indium tin oxide for enhancing the efficiency and reliability of organic light-emitting devices[J]. Appl. Phys. Lett., 2004, 85: 4512- 4513.
    [67] Parker I D. Carrier tunneling and device characteristics in polymer light-emitting diodes[J]. J. Appl. Phys., 1994, 75: 1656.
    [68] Dirr S, Wiese S, Hohannes H H, Kowalsky W. Organic electro- and photoluminescent microcavity devices[J]. Adv. Mater, 1998, 10: 167-171.
    [69]房晓红,张志强,樊文浩,郝玉英,王华,许并社.具有穿插交互结构的绿光二极管及制备方法[P].中国发明专利:公开号CN101369636.
    [70]锁钒,于军胜,黎威志等. NPB/Alq3双层有机电致发光器件薄膜厚度与器件性能的优化[J].电子学报, 2007, 35(11): 2050-2054.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700