西沙海域晚新生代礁相碳酸盐岩形成条件及油气勘探前景
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西沙海域位于南海西北部陆坡区,按照基底构造和上覆沉积地层特征,可分为东部岛礁区和西部盆地区。东部岛礁区为西沙隆起的较高部位,海水较浅,基底之上直接覆盖礁相沉积地层。西部盆地区处于西沙隆起西侧向琼东南盆地延伸部位,海水较深,地质历史时期曾发育生物礁,但目前多被淹没和/或覆盖。
     本文利用西沙海域西部盆地区的二维地震资料和东部岛礁区的西琛1井岩心的薄片、元素、同位素、包裹体、X-衍射、电子探针、背散射、扫描电镜、图像分析、压汞、岩石物性等测试资料,对西沙海域礁相碳酸盐岩进行了研究。取得以下主要结论和认识:
     ① 西沙海域东部岛礁区前寒武纪基底之上地层全部是较纯净的礁相碳酸盐岩,厚度达1250m,未被陆源碎屑岩覆盖;西部盆地区礁相碳酸盐岩面积达2549km~2,累计厚度达1183~1438m。不同礁相碳酸盐岩被砂泥质沉积物分隔或覆盖。西沙海域礁相碳酸盐岩共有6期,时代分别为渐新世、早中新世、中中新世、上中新世、上新世和第四纪。
     ② 西沙海域晚新生代生物礁主要是植物藻礁,其次为珊瑚礁。后者主要出现在第四纪。沉积相包括礁核(礁格架)相、礁前相和礁后(泻湖)相等。岩石成分类型包括石灰岩和白云岩,确定7个岩性段,包括:3个白云岩段和4个石灰岩段。
     ③ 岩石化学分析结果表明,西沙海域礁相碳酸盐岩中主要元素、微量元素和同位素具有明显的分段性。表现在:(a)CaO有四个高值段,三个低值段;相应地,MgO有三个高值段和四个低值段。(b)Sr元素在地层中含量变化在139×10~(-6)~2180×10~(-6)之间,整体上可分七段;Na、K、P三个元素分布特征近于相似,具有上高下低的两段性;Fe、V、B三个元素分布特征近于相似,总体上可分为两段,但富集趋势与Na、K、P元素相反。(c)碳、氧同位素可划分为七个带;~(87)Sr/~(86)Sr比值可划分为四段。西沙海域礁相碳酸盐岩的这些分段性特征是在不同侧面对古气候、青藏高原隆升、幔源火山活动和古海洋事件的记录和表现。其中,中新世南极冰盖的形成、岩石圈减薄引起的幔源岩浆活动和由印度—欧亚板块碰撞引起的大陆隆升对南海古海洋特征影响巨大。中—晚中新世南海曾一度是一个以巴士海峡为开口,与菲律宾海及太平洋时而相连,时而断开的封闭的陆缘海。因此,除中央海盆水体较深外,东沙、中-西沙和南沙等海域水体均较浅,浅滩和泻湖发育。这为礁相碳酸盐岩的形成和同生白云岩化作用创造了条件。
     ④ 南海盆地形成演化构造背景和由周围大陆入海的大型河流三角洲在空间上控制着礁相碳酸盐岩的形成、发育和分布。海平面升降决定生物礁类型和规模。
     ⑤ 古海洋环境决定礁相碳酸盐岩的岩石类型和原始储集性能。而自生矿物胶结、重结晶、淡水淋滤溶蚀和白云岩化等成岩作用决定了该类储层的最终储集性能。根据储层特征参数及其影响因素分析,认为中中新统一上中新统是最有利的礁相碳酸盐岩储层发育带。
     ⑥ 西沙海域东部岛礁区,礁相碳酸盐岩不具备形成圈闭的条件,不能形成油气藏。而西沙海域西部盆地区,礁相碳酸盐岩具备形成油气藏的生油、储层、盖层、圈闭、运移和后期保存等条件,因此,具有广阔的油气勘探前景。南海盆地其它海域具有类似的规律。
Located at the northwestern continent slope of the South China Sea, based on the characteristics of basement structure and the covering sedimentary strata, Xisha sea area consists of eastern reef island area and western basin area. The eastern reef island area, with shallow seawater, is higher parts of Xisha apophysis, where the basement is directly covered with reef facies carbonate rocks. The western basin area, stretching into Qiongdongnan basin and with deep seawater, is the western slope of Xisha apophysis, where reefs developed in geological history, but were covered with clastic rocks or seawater now.By means of 2D seismic data in western basin area and data, in well Xichen 1 of eastern reef island area, of rock flake, major element, trace element, isotope, liquid enclosure, X-ray diffraction, electron probe, back dispersion, SEM, image analysis, capillary pressure curve analysis, porosity, permeability, and so on, reef facies carbonate rocks were studied, and the following understanding and conclusions were acquired.1. All basement rocks in eastern reef island area is covered with pure reef facies carbonate rocks in the thickness of 1250m. The carbonate rock area ascertained by 2D seismic data in western basin area is up to 2549km2 with the thickness of 1183 to 1438m. The reef facies stratum sequence include 6 stages, those are, Oligocene, early-Miocene, middle-Miocene, late-Miocene, Pliocene, and Quaternary.2. The Late-Cenozoic reef in Xisha sea area is mainly plant algae one, and secondly coral one, and the latter are mostly found in Quaternary. Reef facies include reef core (framework or skeleton part), reef front, and reef back (lagoon), and the like. Rock component types include limestone and dolostone. According to Well Xichen 1 in Xisha sea area, 7 lithology segments are confirmed in reef facies stratum sequence, including 3 dolostone segments and 4 limestone segments.3. Petrochemical analysis results of reef facies carbonate rocks in Xisha sea area indicate that the major element, trace element, and isotope in the rocks represent obvious subsection characteristics in stratum profile. These manifest that, (a) CaO, with 4 high value sects and 3 low value sects, and MgO, with 3 high value sects and 4 low value sects, compensate each other. (b) Sr content, varying largely from 139×10~(-6) to 2180×10~(-6), can be marked off 7 sects in strata. The variations of Na、 K、 P are similar, with high value in the upper part of, and low value in the lower part of, this set of strata in well Xichen 1. Fe、 V、 B have similar variation, but the value varies the other way round with Na、 K、 P. (c) Carbon and Oxygen isotopes can be divided into 7 sects in the stratum profile of Well Xichen 1.~(87)Sr/~(86)Sr value, increasing by degrees from bottom to top, can be carved up to 4 stages. These subsection characteristics are the responses or track records, in different aspect, of palaeoclimate, Qinghai-Tibet Plateau upheaving, volcano activities, and palaeo-ocean events. Thereinto, South Pole icecap formation in Miocene, mantle magma activity caused by lithosphere thinning, and continent upheaving brought by
    Indian-Eurasian plate collision influence the ancient South China Sea evidently. The middle- to late-Miocene South China Sea might be occlusive continent edge sea which communicates with the Philippine sea and Pacific ocean only by Bashi Channel, which sometimes opened and sometimes closed, and when, apart from deep sea in central South China Sea basin, all Dongsha, Zhong-Xisha, and Nansha were shallow sea, bank, or lagoon.4. The formation, development, and distribution of reef facies carbonate rocks were controlled in extensity by the South China Sea evolution tectonic setting and great deltas coming from continents. The reef types and dimensions were determined by sea level rising and falling.5. Rock types and original reservoir capability were controlled by palaeo-ocean environment, while the final reservoir performance was determined by mineral cementation, recrystaline, eluviation by freshwater, and dolomitization. The middle- to upper-Miocene is the most favorable reservoir based on reservoir character parameters and the controlling factors mentioned above.6. There exists no enclosure forming condition in eastern reef island area of Xisha sea area. No oil and gas reservoirs there. However, with fecund source rocks, advantaged reservoirs, favorable cap rocks, good trap condition, good oil and gas motion condition, and preservation condition, western basin area of Xisha sea area has a wide oil and gas exploration potential.
引文
[1] 刘昭蜀等.南海地质.北京:科学出版社,2002
    [2] Wei Xi, Deng Jinfu, Zhu Yongjun et al. Coupling between the Qinghai-Tibet Plateau and the South China Sea and its control to the distribution of oil-bearing basins[A]. In: IGCP 430 Continental Dynamics Workshop. Collision-Related Mantle Flow and Lithosphere Deformation Models[C]. Kunming, China, 2004, 52-54
    [3] 赵焕庭.南海诸岛珊瑚礁新构造运动的特征.海洋地质与第四纪地质,1998,18(1):37-44
    [4] 张学光,黄永详,祝有海.海南天然气水合物的成矿远景.海洋地质与第四纪地质,2002,22(1):75-81
    [5] 魏喜,邓晋福,陈亦寒.南海盆地中生代海相沉积地层分布特征及勘探潜力分析.吉林大学学报(地球科学版),2005,35(4):456-461
    [6] 黎昌.西沙、中沙群岛的形成和演化.见:中国科学院南海海洋研究所编.南海海洋科学集刊,第七集.北京:科学出版社,1986,87-102
    [7] 吴作基.西沙群岛某钻孔底部的花子孢粉组合及其地质时代.见:中国孢粉学会编.中国孢粉学会第一届学术会议论文集.北京:科学出版社,1982,81-84
    [8] 房殿勇.南海ODP1148站深海相渐新统硅质成岩作用.海洋地质与第四纪地质,2002,22(2):75-79
    [9] Du Bois E P. Review of principal hydrocarbon-bearing basins of the South China Sea area. Energy, 1981,6(11): 1123-1140
    [10] 周蒂,施小斌,陈汉宗,等.南沙岛礁区中西部海底岩石拖网和发现早第三纪半深海沉积的地质意义.热带海洋学报,2002,21(2):32-42
    [11] 陆钧.南海南部ODPIl43站晚中新世沉积硅藻记录.热带海洋学报,2003,22(5):1-7
    [12] 姚伯初,曾维军,D E Hayes,等.中美合作调研南海地质专报.武汉:中国地质大学出版社,1994
    [13] 金庆焕.南海地质与油气资源.北京:地质出版社,1989,1-417
    [14] P. Tapponnier, G. Peltzer, P. Armijo. On the mechanics of the collision between India and Asia, in Collision Tectonics, M.P. Coward and A.C. Ries, eds. Geol. Soc. London Spec. Public. 1986, 19, 115-157
    [15] 邓晋福,赵海玲,莫宣学,等.中国大陆根—柱构造——大陆动力学的钥匙.北京:地质出版社,1996.1-110
    [16] WEI Xi, DENG Jinfu, ZHU Yongjun, et al. The mechanism of lithosphere thining in Southeast Asia. IUGS-SECE Conference: The Origin, Evolution and Present State of Subcontinental Lithosphere, June 25-30, 2005, Beijing, China, P100-101
    [17] 邓晋福,Martin F J Flowe,苏尚国,等.地中海地区明显反差的岩石圈变形与岩浆活动的共存:陆陆碰撞过程中地幔流的响应与表现.现代地质,2004,18(4):435-442
    [18] Taylor B, Hayes D E. The tectonic evolution of the South China Sea Basin. In: The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Edited by Hayes D E,Geophys. Monogr.AsER., agu Washington D. C, 1980,23: 89-104
    [19] Taylor B, Hayes D E. Origin and history of the South China Sea Basin. In: Hayes D E. (ed.), The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. 2. Am. Geophys. Union,Geophys. Monogr., 1983, 27: 23-56
    [20] 陈圣源.南海磁力异常图.南海地质地球物理图集.广州:广东地图出版社,1987
    [21] 何廉声.南海地质构造图.南海地质地球物理图集.广州:广东地图出版社,1987
    [22] 吕文正.南海中央海盆条带磁异常特征及构造演化.海洋学报,1987,9(10):69-78
    [23] 姚伯初.南海海盆在新生代的构造演化.南海地质研究,1991,3:9-23
    [24] Hayes D E, Spangler S, et al. Age and evolution of the South China Sea southwest subbasin. EOS Trans. AGU, 1987,68:1496
    [25] Hayes D E. The tectonic evolution of the Great South China Sea. AAPG Bull, 1990, 74: 978
    [26] Briais A, Patrial P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Souteeast Asia. J. Goephys.Res., 1993, 98: 6299-6329
    [27] 刘海龄,杨树康,周蒂,等.南沙北部伸展构造的基本特征及其动力学意义.高校地质学报,1998,4(1):64-72
    [28] 何起祥,张明书.中国西沙礁相地质.北京:科学出版社,1986,1-182
    [29] 韩春端.西琛1井礁相沉积碳酸盐矿物及氧碳同位素特征。海洋地质与第四纪地质,1989,9(4):29-40
    [30] 韩春端,孟祥营.西沙晚中新世以来礁相地层中有孔虫动物群的分布及其意义.海洋地质与第四纪地质,1990,10(2):65-80
    [31] 王玉净,勾韵娴,章炳高,等.西沙群岛西琛1井中新世地层、古生物群和古环境研究.微体古生物学报,1996,13(3):215-223
    [32] 邱燕,王英敏.南海第三纪生物礁分布与古构造和古环境.海洋地质与第四纪地质,2001,21(1):65-73
    [33] 龚再升,李思田,谢泰俊,等.南海北部大陆边缘盆地分析与油气聚集.北京:科学出版社,1997,1-510
    [34] 陆基孟等编.地震勘探原理及资料解释.北京:石油工业出版社,1991,1-281
    [35] 孙建孟,王永刚.地球物理资料综合应用.山东东营:石油大学出版社,2001,1-460
    [36] 吕炳全,徐国强,王洪罡,等.南海新生代碳酸盐岩台地淹没事件纪录的海底扩张.地质科学,2002,37(4):405-414.
    [37] 魏喜,祝永军,尹继红,等.南海盆地生物礁形成条件及发育趋势.特种油气藏,2006,13(1):7-13
    [38] 魏喜,邓晋福,谢文彦,等.南海盆地演化对生物礁的控制及礁油气藏勘探潜力分析.地学前缘,2005,12(3):245-252
    [39] 许红.中国海域及邻区含油气盆地生物礁的对比研究.海洋地质与第四纪地质,1992,12(4):41-52
    [40] 何起祥,业治铮,张明书.四川盆地晚二叠世沉积作用的比较沉积学分析.海洋地质与第四纪地质,1990,10(2):1-12
    [41] 张明书等.西沙礁相第四纪地质.海洋地质研究所集刊(一),济南:山东科技出版社,1987,
    [42] 张明书,何起祥,业治铮,等.西沙生物礁碳酸盐沉积地质学研究.科学出版社,1989,6(3)
    [43] 李云通.中国的第三系.中国地层(13),北京:地质出版社,1984
    [44] 王崇友.南海诸岛地层分区.中国地层(13),北京:地质出版社,1984
    [45] 张明书.西沙群岛西永1井礁相第四纪地层的划分.海洋地质与第四纪地质,1990,10(2):57-64
    [46] 许红,王玉净,蔡峰,等.西沙中新世生物地层和藻类的造礁作用与生物礁演变特征.北京:科学出版社,1989,1-134
    [47] 齐文同.生物礁生态系统演化和全球环境变化历史.北京:北京大学出版社,2002,1-168
    [48] Fagerstrom J A.The evolution of reef ecosystems.Wiley,New York,1987
    [49] 王国忠,黄志诚,梁百和,等.生物礁的成岩作用及其孔渗性.见:王英华主编。中、下杨子区还相碳酸盐岩成岩作用研究.北京:科学技术文献出版社,1991,160-178
    [50] 丁连芳,张录易,李勇,等.杨子地台北缘晚震旦世—早寒武世早期生物群研究.见:王英华主 编。中、下杨子区海相碳酸盐岩成岩作用研究.北京:科学技术文献出版社,1991,1-156
    [51] F.Stiller著,潘云堂译.贵州青岩三叠统安尼阶上部群落的综合古生态分析.见项礼文主编.古生物地史学.第30届国际地质大会论文集(第12卷).北京:地质出版社,1999,100-110
    [52] 范嘉松,张维.生物礁的基本概念、分类及识别特征.岩石学报,1985,1(3):45-59
    [53] 余素玉.化石碳酸盐岩.北京:地质出版社,1982,1-139
    [54] 梅冥相,马永生,周丕康,等.碳酸盐沉积学导论.北京:地震出版社,1997,1-306
    [55] 曾鼎乾,刘炳温,黄蕴明.中国各地质历史时期生物礁.北京:石油工业出版社,1988,1-91
    [56] 范嘉松.中国生物礁与油气.北京:海洋出版社,1996,1-329
    [57] 中国石油天然气总公司.SY/T6210-1996.中华人民共和国石油行业标准—沉积岩中粘土矿物总量和常见非粘土矿物x射线衍射定量分析方法.北京:石油工业出版社,1996.12-15
    [58] 赵一阳等.黄海沉积物地球化学特征.海洋与湖沼,1983,14(5):432-445
    [59] 中华人民共和国国土资源部.GB/T14506-1993.中华人民共和国国际标准—硅酸盐岩石化学分析方法.北京:中国标准出版社,1994.12-01
    [60] Elderfield H. Strontium isotope stratigraphy. Paleogeography Palaeoclimatology Paleoecology, 1986,57: 71-90
    [61] Hess J, Bender L M, Schilling J G. Evolution of the ratio of strontium-87 to strontium-86 in seawater from Cretaceous to present. Science, 1988,231: 979-984
    [62] Hodell D A, Woodruff F. Variations in the strontium isotopic ratio of sea water during the Miocene: stratigraphic and geochemical implication. Paleoceanography, 1994,9(3): 405-426
    [63] 韦刚健.海水中Sr同位素组成变化的环境意义与Sr同位素地层学.海洋科学,1995,(1):23-25
    [64] 张明书.西沙事件旋回的发现及其意义.海洋地质与第四纪地质,1990,10(2):83-90
    [65] 何起祥,张明书.西沙群岛新第三纪白云岩的成因与意义.海洋地质与第四纪地质,1990,10(2):45-55
    [66] Berger W H. Ecologic patterns of living planktonic foraminifera. Deep-Sea Research, 1969, 16:1-24
    [67] Kahn M I, Williams D F. Oxygen and carbon isotopic composition of living planktonic foraminifera from the northeast Pacific Ocean. Paleogeography Palaeoclimatology Paleoecology, 1981,33:47-69
    [68] Williams D F, Sommer M A, Bender M L. Carbon isotopic compositions of recent planktonic foraminifera of the Indian Ocean. Earth and Planetary Science Letters, 1977, 36: 391-403
    [69] Bijima J, Faber W W, Hemleben C. Temperature and salinity limits for the growth and survival of some planktonic foraminiferas in laboratory cultures. Journal of Foraminiferal Research, 1990, 20(2): 95-116
    [70] Kroopnick P M. The distribution of 13C of ∑CO_2 in the world oceans. Deep-Sea Research, 1985,32(1):57-84
    [71] Berger W H, Vincent E. Deep-sea carbonates: reading the carbon isotope signal. Geologische Rundschau, 1986,75(1): 249-269
    [72] 陈平富.琼东南盆地晚第三纪浮游有孔虫深度分层意义.地质科技情报,1997,16(2):38-42
    [73] Casperi J T, Kennett J P. Isotopic evidence for depth stratification and paleo-ecology of Miocene planktonic foraminifera: western Equatorial Pacific DSDP Site 289. In: Ryuichi T et al eds. Pacific Neogene: Enviroment, Evolution, and Events. Tokyo: Tokyo University Press, 1992,117-147
    [74] Keller G. Depth stratification of planktonic foraminifera in the Miocene Ocean. In: Kennett P J ed. Miocene Ocean. Paleo-oceanography and biogeography. Geol. Soc. A m. Memoir, 1985,163:177-195
    [75] S Epstein, T K Mayeda. Geoch Cosmoch Acta. 1953,4: 213
    [76] Keith M L, Weber J N. Geoch Cosmoch Acta. 1964,28: 1786-1816
    [77] 刘健,韩春瑞,吴建政,等.西沙更新世礁灰岩大气淡水成岩的地球化学证据.沉积学报,1998,16(4):71-77
    [78] 武汉地质学院地球化学教研室编.地球化学.北京:科学出版社,1979
    [79] Erez J, Luz B. Experimental paleo-temperature equation for planktonic foraminifera. Geochem.Cosmoshim. Acta, 1983,(47): 1025-1031
    [80] Ingle J C. Origin on Neogene dolomites around the North Pacific Rim. In: The Montery Formation and Related Siliceous Rocks of California(Edited by R E Garrison and R G Douglas et al). Spec. Publ. Sect.Sod. Econ Paleont. Miner., Los Angeles, 1981
    [81] J D Milliman. Modern sediment carbonate, Vol 1, Marine carbonate, translated by Institute of Geology,Chinese Academy of Sciences, Beijing: Geology Publishing House, 1978
    [82] Kyger L C, Hanafy H. Dolomitization and dedolomitization of upper Cretaceous carbonates, Bahariya Oasis, Egypt. SEPM special publication, 1991, (34): 1720-1735
    [83] 覃建雄,曾允孚.鄂尔多斯盆地东部下奥陶统白云岩地球化学研究.矿物学报,1994,14(1):22-31
    [84] Friedman G M, Ward W R. Origin of dolomitization on the Barbwire Terrace, Canning basin, west Austrilia. Sedimentology, 37(1): 35-43
    [85] Nelson G S, Harris R C. Epigenetic and deep--burial dolomitization of middle Ordovician Antelope Valley limestone, central Nevada. AAPG, 1991, 75(2): 357-401
    [86] Chipley D B, Kyser T K. Multiple dolomitization events in Triassic Latener buildup, the dolomite, north Italy. AAPG, 1990, 72(7): 837-845
    [87] 于津生,陈毓蔚,桂训唐,等.南永1井礁相碳酸盐C、O、Sr、Pb同位素组成及其古环境意义探讨.中国科学B集,1994,24(7):757-765
    [88] 赵焕庭,沙庆安,朱袁智,等.南沙群岛永暑礁第四纪珊瑚礁地质.北京:海洋出版社,1992
    [89] Elderfield H. Strontium isotope stratigraphy. Paleogeography Palaeoclimatology Paleoecology, 1986,57: 71-90
    [90] Hess J, Bender L M, Schilling J G. Evolution of the ratio of strontium-87 to strontium-86 in seawater from Cretaceous to present. Science, 1988,231: 979-984
    [91] Hodell D A, Woodruff F. Variations in the strontium isotopic ratio of sea water during the Miocene: stratigraphic and geochemical implication. Paleoceanography, 1994, 9(3): 405-426
    [92] 韦刚健.海水中Sr同位素组成变化的环境意义与Sr同位素地层学.海洋科学,1995,(1):23-25
    [93] Palmer M R, Edmond J M. The strontium isotopic budget of morden ocean. Earth Planet Sci. Lett.,1989,92: 11-12
    [94] Palmer M R, Elderfield H. Sr isotopic composition of sea water over the past 75 Ma. Nature, 1985, 314:526-528
    [95] Dasch E J. Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks.Geochimica Cosmochimica Acta, 1969,33: 1521-1552
    [96] 韦刚健,桂训唐,李献华,等.南沙NS90-103钻孔沉积物Sr-Nd同位素组成及其气候环境信息探讨.中国科学(D辑),2000,30(3):249-255
    [97] 孙嘉诗.南海北部及广东沿海新生代火山活动.海洋地质与第四纪地质,1991,11(3):45-65
    [98] 朱炳泉,王慧芬.雷琼地区MORB-OIB过渡型地幔源火山作用的Nd-Sr-Pb同位素证据.地球化学,1989,(3):193-201
    [99] McArthur J M, Burnett J, Hancock J M. Strontium isotopes at K/T boundary: discussion, nature, 1992,355(6355): 28
    [100] Burke W H, Bennison R E, Hehterington E A, et al. Variation of seawater ~(87)Sr~(86)Sr throughout Phanerozoic time. Geology, 1982, 10: 516-519
    [101] DePaolo D J, Ingram G R. Science, 1985, 227: 38-41
    [102] 金庆焕.南海地质与油气资源.北京:地质出版社,1989,1-417
    [103] 魏喜,祝永军.南中国海构造框架和储层地质特征概述.特种油气藏,2004,11(4):1-6
    [104] 汪品先.地球科学进展,1995,10(3):254-257
    [105] 付建明.琼北新生代火山作用与构造环境.桂林工学院学报,1997,17(1):26-33
    [106] 付建明.海南岛蓬莱地区超镁铁岩包体及其寄主玄武岩的研究.矿物岩石,1991,11(4):22-3
    [107] 刘公民.琼北第四纪玄武岩.广东地质科技,1985,51(1):54-59
    [108] 李兆麟,丘志力,泰社彩,等.南海海山玄武岩形成条件研究.矿物学报,1991,11(4):325-333
    [109] 孙嘉诗.南海北部及广东沿海新生代火山活动.海洋地质与第四纪地质,1991,11(3):45-65
    [110] 邹和平,李平鲁,饶春涛.珠江口盆地新生代火山岩地球化学特征及其动力学意义.地球化学,1995,24(Suppl.):33-45
    [111] 朱炳泉,张玉泉,谢应雯.滇西洱海东第三纪超K质火山岩系的Nd-Sr-Pb同位素特征与西南大陆地幔演化.地球化学,1992,(3):201-212
    [112] 赵海玲,邓晋福,李凯明,等.东南沿海及南海新生代火山作用与南海的形成演化.地质论评,1999,45(Sup.):809-815
    [113] 黄镇国,蔡福祥,韩中元,等.雷琼第四纪火山.北京:科学出版社,1993,1-281
    [114] Johnson M R W. Volume balance of erosional loss and sediment deposition related to Himalayan uplift.Journal of the Geological Society, London, 1994,151(2): 217-220
    [115] Stow D A V, et al. Sediment facies and processes on the Bengal Fan, Leg 116. Proc Ocean Drilling Program, Scientific Results. 1990, 116: 337-396
    [116] Prell W L, Nittouma N, et al. Site 720, Proceedings of the Ocean Drilling Program. Initial Results.1989,117: 157-195
    [117] 王国芝,王成善,曾允孚,等.滇西高原的隆升与莺歌海盆地的沉积响应.沉积学报,2000,18(2):234-240.
    [118] Davies T A, Hay W W, Southam J R, et al. Estimates of Cenozoic oceanic sedimentation rates. Science,1977, 197: 53-55
    [119] Richter F M, Rowley D B, DePaolo D J. E.P.S.L., 1992, 109: 11-23
    [120] 孙志国,蓝先洪,刘宝柱,等.西沙珊瑚礁中青藏高原隆升的锶同位素记录.海洋科学,1996,(3):35-41
    [121] Clemens S C, Farnell J W, Gromet L P. Synchronous charges in seawater strontium isotope composition and global climate. Nature, 1993, 363: 607-610
    [122] 李荣西,魏家庸,杨卫东,等.用~(87)Sr/~(86)Sr研究海平面变化与全球对比问题.地球科学进展,2000,15(6):729-733
    [123] 蓝先洪.海洋锶同位素研究进展.海洋地质动态,2001,17(10):1-3
    [124] 赵海玲.东南沿海地区晚第三纪.第四纪大陆裂谷型火山作用及深部作用过程.武汉:中国地质大学出版社,1990,1-163
    [125] 黄镇国,蔡福祥,韩中元,等.雷琼第四纪火山.北京:科学出版社,1993,1-281
    [126] 吴世敏,周蒂,丘学林.南海北部陆缘的构造属性问题.高校地质学报,2001,7(4):419-426
    [127] 段威武,黄永样.珠江口盆地海相上渐新统.海洋地质与第四纪地质,1988,8(2):47-52
    [128] 段威武,黄永样.南海北部陆缘中、晚第三纪古地理、古环境研究.地质学报,1989,(4):363-372
    [129] Mller C. Climates evolution during the Neogene and Quaternary by marine microfossil assemblages.Palaeobiologic Continent, 1983, 14(2): 359-369
    [130] Sun S C. The Tertiary basin of offshore Taiwan. The 2nd ASCOPE Conference Exhibition, Manila,1981. Tech. Progr. Commit, ASCOPE '81', Manila, P125-135
    [131] Rede J. Otway basin, Austria: use of calcareous nannoplankton and palynology determine depositional environment. AAPG, 54(11): 2196-2199
    [132] 许靖华.晚中新世地中海的干化作用.何起祥译.大地构造与沉积作用.北京:地质出版社,1985
    [133] 王崇友.西沙群岛晚第三纪超微化石及其地质意义.中国地质科学院地质研究所所刊,1985,(11):81-100
    [134] Mckeezie J A, Oberhansli H. Paleoceanographic expressions of the Messinan Salinity Crisis. In K J Hsu, et al. South Atlantic Paleoceanography, Cambridge: Cambridge University Press, 1985,99-123
    [135] 许靖华著,何起祥译.地学革命风云录,北京:地质出版社,1992,122-130
    [136] Steers J A, Stoddart D R. The nature and origin of coral reef islands. Biology and Geology of Coral Reefs, 1977, 1(2): 59-102
    [137] 钟晋粱,陈欣树,张乔民等.南沙群岛珊瑚礁地貌研究.北京:科学出版社,1996,1-84
    [138] 中国科学院《中国自然地理》编辑委员会.中国自然地理—海洋地理.北京:科学出版社,1979
    [139] 韩舞鹰,黄西能,容荣贵等.海水化学环境.见:南沙群岛及其邻近海区综合调查研究报告(一),下卷.北京:科学出版社,1984
    [140] 黄企洲、邱章.南沙群岛调查海区的温、盐度分布和水团.见:南沙群岛海区物理海洋学研究论文集Ⅰ.北京:海洋出版社,1994
    [141] 施和生,杨少坤.珠江口盆地大型礁油田地质特征.中国工程院等.21世纪中国暨国际油气勘探展望.北京:中国石化出版社,2003.415-419.
    [142] 夏戡原.南沙群岛及其邻近海区地质地球物理与油气资源.北京:科技出版社,1996.
    [143] 张莉,李文成,曾祥辉.礼乐盆地地层发育特征及其与油气的关系.石油试验地质,2003, 25(5):469-480.
    [144] 徐行,姚永坚,王立非.南海南部海域南薇西盆地新生代沉积特征.中国海上油气(地质),2002,17(3):170-175.
    [145] 钟建强,黄慈流,詹文欢等.南海曾母盆地新生代晚期构造沉降分析.黄渤海海洋,1994,12(2):40-46.
    [146] 陈玲.南沙海域曾母盆地西部地质构造特征.石油地球物理勘探,2002,37(4):354-362.
    [147] Nguyen Trong Tin, Nguyen Dinh Ty. Petroleum geology of the Nam Con Son Basin. Geol. Soc. Malaysia, Bulletin 37, July 1995, 1-11.
    [148] 吕炳全,徐国强,王洪罡,等.南海新生代碳酸盐岩台地淹没事件纪录的海底扩张.地质科学,2002,37(4):405-414.
    [149] 曾鼎乾.南海北部大陆架第三系.广州:广东科技出版社,1981
    [150] 蔡峰,许红,郝先锋,等.西沙-南海北部晚第三纪生物礁的比较沉积学研究.沉积学报,199614(4):61-69
    [151] 王国忠.南海北部大陆架现代礁源碳酸盐与陆源碎屑的混合沉积作用.古地理学报,2001,3(2:47-54
    [152] Hays J D, et al. Plio-Pleistocene sediments of the Eguatorial pacific: their palaeo-magnetic, biostratigraphic and climatic record. Geol. Soc. Am. Bull., 1969,80: 1481-1514
    [153] Olausson E. Quarternary correlation and the geochemistry of ooxes. In Microlalaeontology of the oceans. B M Funnel, W R Riedee(eds). Cambridge University Press, 1971,375-398
    [154] 严军.西太平洋陆缘海沉积物中碳酸钙旋回.海洋科学,1989,5:28-32
    [155] 李铁钢,薛胜吉.全新世/冰期西赤道太平洋边缘海碳酸钙沉积旋回及其古海洋学意义.海洋地质与第四纪地质,1994,14(4):25-32
    [156] 魏喜,李学万.大民屯凹陷砂岩储层成岩作用及孔隙演化.石油科技进展,东营:石油大学出版社,1995,47
    [157] 孙洪斌,魏喜,黄毅,等.辽河坳陷辽南地区下第三系东营组砂岩成岩作用研究.地学探索,武汉:中国地质大学出版社,1993,(9):48-52
    [158] 魏喜,李学万.大民屯凹陷下第三系砂岩储层孔隙特征及成因.辽宁省第三届青年学术年会论文集,辽宁大学出版社,1998:705
    [159] 国家发展与改革委员会.SY/T6103-2004.中华人民共和国石油天然气行业标准—岩石孔隙结构特征的测定 图像分析法.北京:石油工业出版社,2004-07-03
    [160] 中国石油天然气总公司.SY/T5336-1996.中华人民共和国石油天然气行业标准—岩心常规分析方法.北京:石油工业出版社,1996-12-15
    [161] 中国石油天然气总公司.SY/T5346-1994.中华人民共和国石油天然气行业标准—岩石毛管压力曲线的测定.北京:石油工业出版社,1995-01-18
    [162] 施和生,杨少坤.珠江口盆地大型礁油田地质特征.中国工程院,环太平洋能源与矿产资源理事会,中国石油学会.21世纪中国暨国际油气勘探展望,北京:中国石化出版社,2003:415-419.
    [163] 张莉,李文成,曾祥辉.礼乐盆地地层发育特征及其与油气的关系.石油实验地质,2003,25(5):469-480.
    [164] CAO Chang-gui, WENG Rong-nan, YANG Zhao-mu, et al. Mesozoic oil and gas potential study and application in Tainan Basin[J]. Mining & Metallurgy, 1992, 36(1): 32-45.
    [165] 吴进民.南沙群岛地质构造特征与油气远景展望.广州海洋地质调查局情报研究室.南海地质研究(三).广州:广东科技出版社,1991,24-38.
    [166] 黄保家.莺—琼盆地天然气的成因特征及烃源岩的生气能力.中国工程院,环太平洋能源与矿产资源理事会,中国石油学会.21世纪中国暨国际油气勘探展望,北京:中国石化出版社,2003:442-452.
    [167] 郑之逊.南海南部海域第三系沉积盆地石油地质概况.国外海上油气,1993,40(3):124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700