胶州湾李村河口区沉积物有机碳、酸可挥发硫化物及重金属的环境响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以胶州湾李村河口区为研究对象,通过4个沉积柱样的分析测试,对港湾内河口区沉积物中的有机质(TOC)、酸可挥发硫化物(AVS)及重金属的环境响应进行了系统的探讨,发现由于湾内河流流量较小、水动力较弱,且港湾有机生产力较强,只有紧贴河口的细粒(泥质粉砂)区域的有机质才受陆源控制,有机碳含量较高(JZB-2柱平均为1.87%),TOC、AVS与多数重金属(Cd、Cr、Cu、Fe、Pb、Sr、Zn等)呈正相关性,且重金属含量高,反映了在高重金属污染的情况下,有机质对重金属的吸附呈无选择性。而离河口稍远处,沉积物粒度较粗(粉砂),有机碳含量相对较低(JZB-4柱平均为1.02%),C/N大(>>20),C与N的相关性不强,受海、陆双源控制,重金属含量相对较低,TOC仅与Cd、Cu、Sr的活性部分呈正相关,N与Cd、Cr、Pb、Zn的活性部分呈正相关,说明部分重金属组分受陆源有机碳控制,而AVS与Fe、Hg、Zn的SEM部分呈正相关,表明在S的循环中,一些类Fe重金属往往参与其中。并分析了李村河口区的粒度变化特征,并根据有机质、酸可挥发硫化物及重金属的分布规律将河口区三角洲划分为三个区域、五种相带,总结了不同的沉积模式下其不同的环境响应,从而为海陆交互相地区的沉积物早期成岩作用与环境响应研究提供指导与参考。而且在研究的过程中还发现了目前国际通用的沉积物有机碳测定方法中存在着很大的人为误差,并通过系统实验改正了沉积物有机碳的测定方法。
Carbon, sulfur and heavy metals are some of the most reactive components of coastal marine sediments during early diagenesis. In this study, we examined the Total Organic Carbon (TOC), organic carbon to nitrogen ratio (C/N), Acid Volatile Sulfide (AVS), and heavy metal contents of four sediment cores collected from the Licun Estuary in the northeast of Jiaozhou Bay near Qingdao, China. Near the entrance of the river, sediment (argillaceous siltstone) TOC content was relatively high (TOC average of JZB-2 core was 1.87%) and was controlled by terrestrial input. The relatively low stream flow, weak water dynamics, and high biological productivity in the water column in this area favored the preservation and burial of organic carbon in the sediment. The concentrations of heavy metals (i.e., Cd, Cr, Cu, Fe, Pb, Sr, Zn, etc.) were high and correlated positively with both TOC and AVS contents. A short distance away from the entrance of the river, sediment was coarser (siltstone) and its TOC content was lower (TOC average of JZB-2 core was 1.02%) than sediment near the entrance. The relatively high C/N ratio (i.e., >>20) and weak C to N correlation indicated that sediment organic carbon content was controlled by both marine and terrestrial sources. The concentrations of heavy metals in sediment were low. The reactive fractions of Cd, Cu and Sr correlated positively with sediment TOC content, while the reactive fractions of Cr, Pb and Zn correlated positively with sediment organic nitrogen. This observation suggested that the mobility of some heavy metals was controlled by terrestrial organic matter. The SEM fractions of Fe and Zn correlated positively with sediment AVS content, indicating strong influence of sulfur cycling on the mobility of this group of heavy metals. In addition, a careful examination of the current methods of sediment organic content determination revealed an important artifact. A revised the method was presented.
引文
Ab-Razak I. A., Li a. Christensen E R, et al.. Association of PAHs,PCBs,137Cs, and 210Pb with clay,silt,and organic carbon in sediments. Water Sci Tech,1996,34(7-8): 29-35.
    Abdollahi, H., and Nedwell, D. B., Seasonal temperature as a factor influencing bacterial sulfate reduction in a salt marsh sediment, Microbial Ecology, 1979. 5: 73-79.
    Abril G., Nogueira M., Etcheber H. et al., Behaviour of Organic Carbon in Nine Contrasting European Estuaries, Estuarine, Coastal and Shelf Science (2002) 54, 241–262.
    Aharon, P., Fu, B., Microbial sulfate reduction rates and sulfur isotope fractionations at the oil and gas seeps in deepwater Gulf of Mexico. Geochimica et Cosmochimica Acta 2000, 64, 233- 246.
    Alexander, C.R., DeMaster, D.J., Nittrouer, C.A., Sediment accumulation in a modern epicontinental-shelf setting: the Yellow Sea. Mar. Geol. 1991, 98, 51–72.
    Aller, R. C., and Yingst, J. Y., Relationship between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound, USA: Narine biology, 1980, 56: 29-42.
    Ankley, G. T., Leonard, E. N. and Mattson, V. R., Prediction of bioaccumulation of metals from contaminated sediments by the oligochaete, Lumbriculus Variegatus, Water Res., 1994, 28: 1071-1076.
    Ankley, G. T., Liber, K., et al, A field investigation of the relationship between zinc and acid volatile sulfide concentration in fresh water sediments. J. Aquat. Ecosyst. Health, 1996, 5(4): 255-264.
    Ankley, G. t., Phipps, G. L., Leonard, E. N., et al, Acid-volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments, Environmental Toxicology and Chemistry, 1991, 10: 1299-1307.
    Arthur, M. A., Sageman, B. B., Marine black shales: depositional mechanisms and environments of ancient deposits, Annu Rev Earthplanet Sci, 1994, 22: 499-551.
    Bilinski H., Kwokal Z., Plavsica M. ea al, Mercury distribution in the water column of the stratified krka river estuary (croatia): importance of natural organic matter and of strong winds, Wat. Res. 2000, 34(7):2001-2010.
    Berner, R.A., Iron sulfides from aqueous solution at low temperatures and atmospheric pressure, J. Geol. 1964, 72, 293–306.
    Berner, R. A., Sedimentary pyrite formation, American Journal of Science, 1970, 268: 1-23.
    Berner, R. A., Early diagenesis, Princeton university press,Princeton, New Jersey. 1980.
    Berner, R.A., Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. American Journal of Science 1982, 282:451–473.
    Berner, R. A., Sedimentary pyrite formation: an update. Geochimical et Cosmochimica Acta, 1984,48: 605~615.
    Brassell, S.C., Lewis, C.A., de Leeuw, J.W., de Lange, F., Sinninghe-Damste, J.S., Isoprenoid thiophenes: novel products of sediment diagenesis. Nature 1986, 320:160–162.
    Brwchert V., Early diagenesis of sulfur in estuarine sediments: the role of sedimentary humic and fulvic acids. Geochimica et Cosmochimica Acta, 1998, Vol. 62, No. 9: 1567-1586.
    Brwchert V.,. Pratt L. M, Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St. Andrew Bay, Florida, USA, Geochimica et Cosmochimica Acta, 1996, Vol. 60, No. 13: 2325-2332.
    Calvert, S. E., Pederson, T. F., Geochemistry of recent oxic and anoxic marine sediments: implication for the geological record. Chemical Geology, 1993, 113: 67-88.
    Canfield D. E., Reactive iron in marine sediments, Geochim. Cosmochim. Acta 1989, 53:619–632.
    Canfield, D.E., Organic matter oxidation in marine sediments.In:Wollast,R., et al., Interaction of C,N,P and S Biogeochemical Cycles.Springer,Berlin, 1993:333 –363.
    Chen, K.Y., Morris, J.C., Kinetics of oxidation of aqueous sulfide by O . Am. J. Sci. 1972,6: 529–537.
    Cline, J.D., Richards, F.A., Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature, and pH, Environ, Sci. Technol. 1969, 3:838–843.
    Crusius J., Calvert S., Pedersen T., and Sage D. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet. Sci. Lett, 1996, 145:65–78.
    Cummings, D. E., March, A. W., Bostick, B., et al, Evidence for microbial Fe(Ⅲ) reduction in anoxic, mining-impacted lack sediments(lake Coeur d’Alene, Idaho). Applied and Environmental Microbiology, 2000,66(1): 154-162.
    D’ Angelo E. M., Reddy K. R., Diagenesis of organic matter in a wetland receiving hypereutrophic lake water: II, role of inorganic electron acceptors in nutrient release. J environ Qual, 1994, 23(5):937-943
    Deely J. M., Fergusson J. E., Heavy metal and organic matter concentrations and distributions in dated sediments of a small estuary adjacent to a small urban area, The Science of The Total Environment , 1994, Volume 153, Issues 1-2 : 97-111.
    Dean W. E., Gardner J. W., Piper D. Z., Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin, Geochim. Cosmochim. Acta, 1997, 61, 4507–4518.
    Devol A. H., Anderson J. J., Kuivila K., et al. A model for coupled sulfate reduction and methane oxidation in the sediments of saanich Inlet, Geochimica et Cosmochimica acta, 1984, 48: 993~1004.
    Dickens, G.R., Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir. Geochimica et Cosmochimica Acta, 2001, 65(4): 529~543
    Dillon, W.P., Fehlhaber, K., Coleman, D.W., Lee, M.W., Hutchinson, D.R., Maps showing the distribution off the east coast of the United States. USGS Miscellaneous Field Studies Map MF-2268, United States Geological Survey, 1995.
    Dillon, W.P., Lee, M.W., Coleman, D.F., Identification of marine hydrates in situ and their distribution off the Atlantic coast of the United States, Annals New York Academy of Sciences 1994, 715:364–380.
    Ditoro, D. M., Mahony, J. D., Hansen, D. J., et al, Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ. Sci. Technol., 1992, 26: 96-101.
    Ditoro, D. M., Mahony, J. D., Hansen, D. J., et al, Toxicity of cadmium in sediments: the role of acid volatile sulfide, Environmental Toxicology and Chemistry, 1990, 9: 1487~1502.
    Doeglas, D. T., Grain-size indices, Classifications and environment, Sedimentology, 1968, 10: 83-100.
    Edenborn H. M., Mucci A., Silverberg N., and Sundby B. Sulfate reduction in deep coastal marine sediments. Mar. Chem. 1987, 21, 329–345.
    EI Bilali, L., Rasmussen, P. E., Hall, G. E. M., et al, Role of sediment composition in trace metal distribution in lake sediments, Applied Geochemistry, 2002, 17: 1171-1181.
    Emerson S.,Hedges J. I., Processes Controlling the Organic Carbon Content of Open Ocean Sediments. Paleoceanography, 1988m 3: 62l-634.
    Fang, T., Zhang, X. H., Xu, X. Q., Seasonal and vertical distribution of acid volatile sulphide (AVS) in Lake DongHu sediments. Acta Hydrobiologica Sinica, 2002, 26(3): 239~245.
    Fang, G., Fang, W., Fang, Y., et al, A survey of studies on the South China Sea upper ocean circulation. [J]Acta Oceanographica Taiwanica, 1998, 37: 1~6.
    Farias L., Remineralization and accumulation of organic carbon and nitrogen in marine sediments of eutrophic bays: the case of the Bay of Concepcion, Chile, Estuarine, Coastal and Shelf Science, 2003,57:829–841
    Faure, G., Principles of isotope geology: John Wiley & Sons, New York, 1986:531.
    Faure, G., Principles of Isotope Geology. Wiley, New York, 1977:464.
    Fenchel, T., and Blackburn, T. H., Bacteria and Mineral Cycling, Academic Press, N. Y., 1979:225.
    Gagnon, C., Mucci, A., Pelletier, E., Anomalous accumulation of acid-volatile sulphides AVS in a coastal marine sediment, Saguenay Fjord, Canada, Geochimica Acta, 1995, 59 (13): 2663-2675.
    Gao, S., Shallow marine sedimentation and physical environment evolution as a part of global change: an example from the Bohai, Yellow and East China Sea regions. Earth Sci. Frontiers 2002, 9:330– 335.
    Gao, S., Collins, M., Analysis of Grain Size trends, for defining sediment transport pathways in marine environments. Journal of Coastal Research, 1994, 10(1): 70-78.
    Gobeil C., Macdonald R. W., Sundby B., Diagenetic separation of cadmium and manganese in suboxic continental margin sediments, Geochim. Cosmochim. Acta 1997, 61, 4647–4654.
    Goldhaber, M. B., and Kaplan, I. R., The sulfur cycle: The Sea, 1974, 5, p. 569-655.
    Gon M. A., Teixeira M. J., Perkey D. W., Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA), Estuarine, Coastal and Shelf Science 2003,57:1023–1048.
    Griethuysen, C. V., Meijboom, E. W., Koelmans, A. A., Spatial variation of metals and acid volatile sulfide in flood plain lake sediment, Environmental Toxicology and Chemistry, 2003, 3: 457~465.
    Hansen, D. J., Berry, W. J., Boothman, W. S., et al., Predicting the toxicity of metal-contaminated field sediments using interstitial concentration of metals and acid-volatile sulfide normalizations , Environmental Toxicology and Chemistry, 1996, 15(12): 2080-2094.
    Harrison, A. G., and Thod, H. G., Mechanism of the bacterial reduction of sulfate from isotopic fractionation studies: Transaction of faraday, Society, 1958,54: 84-92.
    Hatch, J. R., Leventhal, J. S., Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsyvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A., Chemical Geology, 1992, 99: 65-82.
    Herlihy, A. T., Mills, A. L., Sulfate reduction in freshwater sediments receiving acid mine drainge. Appl, Environ. Microbiol., 1985, 49: 179~186.
    Hirner, A.V., Kritsotakis, K., Tobschall, H.J., Metal-organic associations in sediments––I. Comparison of unpolluted recent and ancient sediments and sediments a.ected by anthropogenic pollution, Applied Geochemistry 1990, 5: 491–505.
    Howard, D. E., Evans, R. D., Acid-volatile sulfide (AVS) in a seasonally anoxic mesotrophic lake: seasonal and spatial change in sediment AVS, Environmental Toxicology and Chemistry, 1993, 12: 1051~1057.
    Hsieh Y P, Chung S W, Tsau Y J, et al, Analysis of sulfides in the presence of ferric minerals by diffusion methods, Chemical Geology 2002, 182: 195-201.
    Hsieh, Y.P. and Yang, C.H., Diffusion methods for the determination of reduced inorganic sulfur species in sediments, Limnol. Oceanogr., 1989, 34: 1126-l 130.
    Hsieh, Y.P., Shieh, Y.N., Analysis of reduced inorganic sulfur by diffusion methods: improved apparatus and evaluation for sulfur isotopic studies,Chem. Geol. 1997, 137, 255–261.
    Huerta-Diaz, M. A., and Morse, J. W., A quantitative method for determination of trace metal concentrations in sedimentary pyrite, Marine Chemistry, 1989, 29: 119-144.
    Jeroen, W. M., Jack, J. M., Peter, M. J., et al, Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea, Marine Chemistry, 2001, 74:261-278.
    Jia G. D.,Peng P. A., Temporal and spatial variations in signatures of sedimented organic matter in Lingding Bay (Pearl estuary), southern China, Marine Chemistry, 2003,82: 47– 54。
    Jian, Z., Wang, L., Kienast, M., et al, Benthic foraminiferal pa;eoceanogrphy of the South China Sea over the last 40000 years, Marine Geology, 1999, 156: 159-186.
    Jorgensen, B. B., Bacterial sulfate reduction within reduced microinches of oxidized marine sediments: Marine Biology, 1977: 41: 7-17.
    Jorgensen B. B., The sulfur cycle of a coastal marine sediment. Limnol. Oceanogr. 1977,22,: 814–832.
    Jorgensen, B. B., The sulfur cycle of freshwater sediments: role of thiosulfate. Limnol. Oceanogr. 1990, 35:1329-1342.
    Jorgensen, B. B., Mineralization of organic matter in the sea bed-the role of sulfate reduction. Nature, 1982,296: 643-645.
    Jorgensen N. O., 1992. Methane-derived carbonate cemention of marine sediments from the Kattegate, Denmark: geochemical and geological evidence, Marine Geology, 103: 1-13.
    Kemp, A.L.W., and Thode, H.G., The mechanism of bacterial reduction of sulfate and of sulfite from isotope fractionation studies, Geochimica et Cosmochimica Acta, 1968, 32: 71-91.
    Kim, D., Park, B.K., Shin, I.C., Paleoenvironmental changes of the Yellow Sea during the late Quaternary, Geo-Mar. Lett. 1999, 18:189– 194.
    Kohnen, M.E.L., Sinninghe-Damste, J.S., ten Haven, H.L., de Leeuw, J.W., Early incorporation of polysulfides in sedimentary organic matter, Nature 1989, 341:640–641.
    Kohnen, M.E.L., Sinninghe-Damste, J.S., Kock-Van Dalen, A.C., ′ de Leeuw, J.W., ten Haven, H.L., Origin and diagenetic transformations of C and C highly branched isoprenoid C25 and C30 sulphur compounds: further evidence for the formation of organically bound sulphur during early diagenesis. Geochim, Cosmochim. Acta 1990, 54: 3053–3063.
    Kohnen, M.E.L., Sinninghe-Damste, J.S., ten Haven, H.L., Kock-Van Dalen, A.C., Schouten, S., de Leeuw, J.W., Identification and geochemical significance of cyclic di- and trisulphides with linear and acyclic isoprenoid carbon skeletons in immature sediments, Geochim. Cosmochim. Acta 1991, 55: 3685–3695
    Kostka, J.E., Luther, G.W., Seasonal cycling of Fe in saltmarsh sediments, Biogeochemistry 1995, 29, 159–181.
    Krom, M. D., Mortimer, R. J. G., Poulton, S. W., et al, In –situ determination of dissolved iron production in recent marine sediments, Aquat Sci, 2002, 64: 282-291.
    Kuivila K. M., Murray J. W., Devol A. H.. Methane production, sulfate reduction and competition for substrates in the sediments of lake Washington. Geochimica et Cosmochimica acta, 1989, 53: 409~416.
    Kulm L. D., Suess E., Moore J. C., et al. Oregon subduction zone: venting, fauna, and carbonates, Science, 1986, 231: 561~566.
    LaLonde, R., Polysulfide reactions in the formation of organosulfur and other organic compounds in the geosphere. In: Orr, W.L., White, C.M. Eds. , Geochemistry of Sulfur in Fossil Fuels. ACS Symp. Series, American Chemical Society: Washington, DC, 1990, 429: 68–82.
    LaLonde, R.T., Ferrara, L.M., Hayes, M.P., Low-temperature, polysulfide reactions of conjugated ene carboxyls: a reaction model for the geologic origin of S-heterocycles. Org. Geochem. 1987, 11: 563–571.
    Lasorsa, B., Casas, A., A comparision of sample handling and analytical methods for determination of acid volatile sulfides in sediment, Marine Chemistry, 1996. 52: 211~220.
    Laurier F. J. G., Cossa D., Gonzalez J. L. , et al., Mercury transformations and exchanges in a high turbidity estuary: The role of organic matter and amorphous oxyhydroxides, Geochimica et Cosmochimica Acta, 2003, 67(18): 3329-3345.
    Lee, G., Bigham, J. M., Faure, G., Removal of trace metals by co-precipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Applied Geochenistry, 2002, 17: 569-581.
    Lee, H.J., Chough, S.K., Sediment distribution, dispersal and budget in the Yellow Sea, Mar. Geol. 1989, 87:195– 205.
    Lee, H.J., Chu, Y.S., Origin of inner-shelf mud deposit in the southeastern Yellow Sea: Huksan Mud Belt. J. Sediment, Res. 2001, 71: 144– 154.
    Lin, S., Morse, J.W., Sulfate reduction and iron sulfide mineral formation in Gulf of Mexico anoxic sediments, American Journal of Science, 1991. 291, 55-89.
    Lin, S., Huang, K. M., Chen, S. K., Organic carbon deposition and its control on iron sulfide formation of the southern east china sea continental shelf sediments, Continental Shelf Research, 2000, 20: 619-635.
    Louchouarn P., Lucotte M., Canuel R., et al., Sources and early diagenesis of lignin and bulk organic matter in the sediments of the Lower St. Lawrence Estuary and the Saguenay Fjord, Marine Chemistry , 1997, 58(1-2) : 3-26
    Machado, W., Carvalho, M. F., Santelli, R. E., et al, Reactive sulfides relationship with metals in sediments from an eutrophicated estuary in Southeast Brazil. Marine Pollution Bulletin, 2004, 49: 89-92.
    Mackey, A. P., Mackay, S., Spatial distribution of acid-volatile sulphide concentration and metal bioavailability in mangrove sediments from the Brisbane River, Australia, Environmental Pollution, 1996, 93(2): 205~209.
    MacKay, M.E., Jarrard, R.D., Westbrook, G.K., Hyndman, R.D., ODP Leg 146 Scientific Party, Origin of bottom-simulating reflectors: geophysical evidence from the Cascadia accretionary prism. Geology 1994, 22, 459–462.
    Madureira, M. J., Vale, C., et al, Effect of plants on sulfur geochemistry in the Tagus salt-marshes sediments, Marine Chemistry 1997, 58, 27-37.
    Magenheim, A.J., Gieskes, J.M., Hydrothermal discharge and alteration in near-surface sediments from the Guaymas Basin, Gulf of California, Geochim, Cosmochim. Acta 1992, 56, 2329–2338.
    Malcolm, W. C., Mcconchie, D., Lewis, D. W., et al, Redox stratification and heavy metal patitioning in Avicennia-dominated mangrove sediments: a geochemical model. Chemical Geology, 1998, 149: 147-171.
    Maria J. B., Oihana S., Javier F. et al.. Accumulation of organic matter, heavy metals and organic compounds in surface sediments along the Nervion Estuary (Northern Spain), Marine Pollution Bulletin, 2001, 42(12): 1407-1411.
    McLaren, P. A., A interpretation of trends in grain size measurements. Journal of Sedimentary Petrology, 1981, 51: 611-624.
    Meriane, E., Metal and aquatic cantanmination workshop, Environ Sci Technol, 1994, 28(3): 144-146(A)
    Meyem P. A.,Preservation of Elemental an d Isotopic Source Identification of Sedimentary Organic Matter, Chemical Geology,1994,144:289-302.
    Middelburg, J. J., Organic carbon, sulphur, and iron in recent semi-euxinic sediments of Kau Bay, Indonesia, Geochimica et Cosmochimica Acta, 1991, 55: 815~828.
    Middelburg, J. J., Calvert, S. E., Organic-rich transitional facies in silled basins: response to sea-level change, Geology, 1991, 19: 679~682.
    Milliman, J.D., Qin, Y.S., Ren, M.E., Saito, Y., Man’s influence on the erosion and transport of sediment by Asian rivers: the Yellow River (Huanghe) example. J. Geol. 1987, 95: 751–762.
    Milliman, J. D., Syvitski, J. P., Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers, Journal of Geology, 1992, 100: 525~544.
    Mortimer R. J. G., Rae J. E., Metal speciation (Cu, Zn, Pb, Cd) and organic matter in oxic to suboxic salt marsh sediments, severn estuary, southwest Britain, Marine Pollution Bulletin, 2000, Vol. 40, No. 5: 377-386.
    Morse, J.W., Arakaki, T., Adsorption and coprecipitation of divalent metals with mackinawite (FeS), Geochimica et Cosmochimica Acta 1993, 57:3635–3640.
    Morse, J.W., Cornwell, J.C., Analysis and distribution of iron sulphide minerals in recent anoxic sediments, Mar. Chem, 1987, 22: 55-69
    Morse, J.W., Luther, G.W., Chemical influences on trace metalsulfide interactions in anoxic sediments, Geochimica et Cosmochimica Acta 1999, 62: 3373–3378.
    Moers, M.E.C., de Leeuw, J.W., Cox, H.C., Schenck, P.A., Interaction of glucose and cellulose with hydrogen sulphide and polysulphides, Org. Geochem. 1987, 13: 1087–1091.
    Nealson, K. H., Saffarini, D., Iron and manganese in anaerobic respiration: environmental significance, physiology and regulation. Annu. Rev. Microbial, 1994, 48: 311-343.
    Nedwell, D. D., Abram, J. W., Bacterial sulfate reduction in relation to sulfur geo-chemistry in two contrasting areas of salt marsh sediment, Estuary Coastal Marine Science, 1978, 6: 341-351.
    Neretin, L. N., BOTTCHER, M. E., Jorgensen, B. B., et al., Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea. Geochimica et Cosmochimica Acta, 2004, 68(9): 2081-2093.
    Nevin, K. P., Lovley, D. P., Mechanisms for accessing insoluble Fe(Ⅲ) oxide during dissimilatory Fe(Ⅲ) reduction by Geothrix fermentans. Applied and Environmental Microbiology, 2002, 68(5): 2294-2299.
    Nisbet, E.G., The end of the ice age, Canadian Journal of Earth Science 1989, 27, 148–157.
    Nissenbaum, A., Kaplan, I.R., 1972. Chemical and isotopic evidence for the in situ origin of marine humic substances. Limnol. Oceanogr. 17, 570–582.
    Oehm, N. J., Luben, T. J., Ostrofsky, M. L., 1997. Spatial distribution of acid volatile sulfur in the sediments of Canadohta Lake PA, Hydrobiologia, 345:79-85.
    Olmez I, et al., Rare earth elements in sediments off Southern California: A new anthropogenic indicator. Hydrobiologia, 1991, 25: 310-316
    Perry, K. A., Sulfate-reducing bacteria and immobilization of metals. Marine Georesources and Geotechnology, 1995, 13: 33-39.
    Pedreros, R., Howa, H. L., Michel, D., Application of grain size trend analysis for the determination of sediment transport pathways in intertidal areas. Marine Geology, 1996.135: 35-49.
    Perry, K. A., Sulfate-reducing bacteria and immobilization of metals. Marine Georesources and Geotechnology, 1995.13: 33-39.
    Pesch, C. E., Hansen, D. J., Boothman, W. S., et al, The role of acid-volatile sulfide and interstitial water metal concentrations in determining bioavailability of cadmium and nickel from contaminated sediments to the marine Polychaete Neanthes arenaceodentata, Environmental Toxicology and Chemistry, 1995, 14:129-141.
    Prins M.A., Postma G., Weltje G.J. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Makran continental slope. Marine Geology, 2000, 169, 351-371.
    Pyzik, A.J., Sommer, S.E., Sedimentary iron monosulfides: kinetics and mechanism of formation. Geochim. Cosmochim, Acta 1981, 45:687–698.
    Ramm, A. E., and Bella, P. A., Sulfate production in anaerobic microcosms, Limnology Oceanography, 1974.19: 425-441.
    Rea D.K., Hovan S.A., Grain-size distribution and depositional processes of the Mineal component of abyssal sediments:Lessons from the North Pacific. Paleoceanography, 1995.12: 251-258.
    Rea, D. K., Janecek, T. R., Mass-accumulation rates of the non-authigenic inorganic crystalline (eolian) component of deep-sea sediments from the western mid-pacific mountains, deep sea drilling project site 436. Initial Reports of the Deep Sea Drilling Project, 1981.62:653-659.
    Renato S. Carreira, Angela L.R. Wagener, James W. Readman et al., Changes in the sedimentary organic carbon pool of a fertilized tropical estuary, Guanabara Bay, Brazil: an elemental, isotopic and molecular marker approach, Marine Chemistry, 2002, 79:207– 227.
    Rey, J. R., Shafer, J., Kain, T., et al, Sulfide variation in the pore and surface water of artificial salt marsh ditches and a natural tidal creek, Estuary, 1992, 15: 257~269.
    Rickard, D.T., Kinetics and mechanism of sulfidation of goethite, Am. J. Sci. 1974, 274: 941–952. Roden, E. E., Tuttle, J. H., Sulfide release from estuarine sediments underlying anoxic bottom water. Limnol Oceanogr, 1992.37(4): 725-738.
    Rosenthal Y., Lam P., Boyle E. A., and Thomson J. Authigenic cadmium enrichment in suboxic sediments: Precipitation and postdepositional mobility, Earth Planet. Sci. Lett. 1995, 132:99–111.
    Sicre M. A., Broyelle I.,Saliot A., Sources and transport of particulate hydrocarbons in the meso-tidal Changjiang Estuary, Estuarine coastal and shelf science, 1993, 37:557-573.
    Sinninghe-Damste, J.S., Rijpstra, W.I.C., Kock-Van Dalen, A.C., de Leeuw, J.W., Schenck, P.A., Quenching labile functionalized lipids by inorganic sulphur species: evidence for the formation of sedimentary organic sulphur compounds at the early stages of diagenesis. Geochim. Cosmochim. Acta. 1989.53: 1343–1355.
    Stein R, Accumulation of Organic Carbon in Marine Sediments, Springer-Verlag, Berlin, 1991:217.
    Stone M, droppol G. distribution of lead, Copper and zinc in size-fractionated river bed sediment in two agricultural catchments of southern Ontrario, Canada Environ Pollut, 1996, 93(3):353-362.
    Sun D., Bloemendal J., Rea D.K., et al. Grain-size distribution function of polymodal sediments in hydraulic and Aeolian environments, and numerical partitioning of the sedimentary components. Sediment Geology, 2002, 152: 263-277.
    Sweeney, R.E., Kaplan, I.R., Pyrite framboid formation: laboratory synthesis and marine sediments. Econ. Geol. 1973, 68, 618–634.
    Ten Haven, H.L., Rullkotter, J., Sinninghe-Damste, J.S., de Leeuw, J.W., Distribution of organic sulfur compounds in Mesozoic and Cenozoic sediments from the Atlantic and Pacific Oceans and the Gulf of California. In: Orr, W.L., White, C.M., Eds. , Geochemistry of Sulfur in Fossil Fuels. ACS Symp, Series, American Chemical Society, Washington, DC, 1990. 429:613–632.
    Thod-Anderson, S., Jorgensen, B. B., Sulfate reduction and the formation of 35S-labeled FeS, FeS2, and S0 in coastal marine sediments, Limnol. Oceanogr, 1989. 34:793~806.
    Thornton S. F., McManus J.,Application of Organic Carbon and Nitrogen Stable Isotope and C/N Ratios as Source Indicators of Organic Matter Provenance in Estuarine Systems: Evidence from the Tay Estuary, Scotland, Estuarine, Coastal and Shelf Science,1994, Volume 38, Issue 3:219-233.
    Usero, J., Gamero, M., Morillo, J., et al, Comparative study of three sequential extraction procedures for metals in marine sediments. Environmental International, 1998.24(4): 487~496.
    Vairavamurthy, A., Mopper, K., Mechanistic studies of organosulfur(thiol) formation in coastal marine sediments. In: Saltzman, C.M., Cooper, E.S., W.J., (Eds.), Biogenic Sulfur in the Environment. ACS Symp. Series No. 393, American Chemical Society, Washington, DC, 1989: 231–242.
    Van den Berg G A, et al.. Vertical distribution of acid volatile sulfide and simultaneously extracted metals in a recent sedimentation area of the river Meuse in the Netherlands, Environmental Toxicology and Chemistry, 1998, 17: 758-763.
    Van den Hoop M A G T. Spatial and seasonal variations of acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) in Dutch marine and freshwater sediments, Chemosphere, 1997, 35: 2307-2316.
    Van Valin R, Morse J W, An investigation of methods commonly used for the selective removal and characterization of trace metals in sediments, Marine Chemistry, 1982, 11, 535-564.
    Visher, G. S., Grain size distribution and depositional processes. Journal of sedimentary petrology, 1969.39: 1074-1106.
    Vojaak, P. W. L., Ebidence for microbiological manganese oxidation in the River Tamar Estuary, South West England. Estuary, Coastal and Shelf Science, 1985.20: 661-671.
    Wallschlager D., desai M. V. M., Spengler M., er al., How humic substances dominate mercury geochemistry in contaminated floodplain soils and sediments. J Environ Qual, 1998, 27(5):1044-1054.
    Wangersky, P. J., Gordon. J. D. C., Particulate carbonate, organic carbon, and Mn++ in the open ocea, Limnol. Oceanogr, 1965.10: 544-550.
    Wells M. L. , Kozelka P. B., Bruland K. W.,The complexation of ‘dissolved’ Cu, Zn, Cd and Pb by soluble and colloidal organic matter in Narragansett Bay, RI, Marine Chemistry,1998(62): 203–217.
    Westrich, J. T., The consequences and controls of the bacterial sulfate reduction in marine sediments. PhD dissertation, Yale University, 1983:530.
    Westrich J. T. and Berner R. A. The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested, Limnol. Oceanogr, 1984, 29:236–249.
    Wijsman J. W. M., Middelburg J. J., Herman P. M. J., B?ttcher M. E., and Heip C. H. R. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea. Mar. Chem. 2001, 74 (4), 261–278.
    Wu W. Z., Schramm K. W., Henkelmann B.,et al.. PCDD/Fs, PCBs, HCHs and HCB in sediments and soils of Ya-Er Lake area in China: results on residual levels and correlation to the organic carbon and the particle size. Chemosphere, 1997,34(1): 191-202。
    Yan, J. X., Zhang, H. Q., Paleo-oxygenation facies: A new research field in sedimentology, Geological science and Technology Information, 1996.15(3): 7-13.
    Yu, K. C., Tsal, L. J., Chen, S. H., et al, Chemical binding of heavy metals in anoxic river sediments, Wat. Res., 2001.35(17); 4086~4094.
    Zachara, J. M., Fredrickson, J. K., Smith, S. C., et al, Solubilization of Fe(Ⅲ) oxide-bound trace metals by a dissimilatory Fe(Ⅲ) reducing bacterium. Geochimica et Acta, 2001.65(1): 75-93.
    Zhang J, Huang W W, Liu S M, et al. . Transport of particulate heavy metals towards the China sea: a preliminary study and comparision. Marine Chemistry, 1992, 40: 161-178.
    Zhang J, Huang W W, Liu M G, et al. . Eco-social impact and chemical regimes of large Chinese rivers-a short discussion, Water Research, 1994, 28 (3): 609-617.
    Zhao, Y.Y., Park, Y.A., Qin, Y.S., Choi, J.Y., Gao, S., Li, F.Y., Cheng, P., Jiang, R.H., Material source for the Eastern Yellow Sea Mud: evidence of mineralogy and geochemistry from China–Korea joint investigations, The Yellow Sea, 2001.7:22– 26.
    Zheng Y., Anderson R. F., van Geen A., and Kuwabara J. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin. Geochim. Cosmochim. Acta, 2000, 64:4165–4178.
    Zheng Y., Anderson R. F., van Geen A., and Fleisher M. Q., Remobilization of authigenic uranium in marine sediments by bioturbation. Geochim. Cosmochim. Acta, 2002, 66:1722–1759.
    Zimmerman A. R., Canuel E. A, A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition, Marine Chemistry, 2000,69(1-2):117-137.
    Zimmermana A. R.,Canuel E. A.,Bulk Organic Matter and Lipid Biomarker Composition of Chesapeake Bay Surficial Sedimentsas Indicators of Environmental Processes,Estuarine, Coastal and Shelf Science, 2001, 53: 319–341.
    陈道公,支霞臣,杨海涛, 地球化学. 合肥:中国科学技术大学出版社. 1994, 307-313.
    陈吉余.中国河口海岸研究回顾与展望.华东师范大学学报(自然科学版),1996,1:1-5.
    陈静生等.环境地球化学.海洋出版社,1990.
    陈淑梅,王菊英,马德毅,等.酸溶硫化物与沉积物中重金属化学活性的关系.海洋环境科学,1999,18(3):16-21.
    陈水土,杨慧辉.九龙江口和厦门西港海域若干重金属元素的生物地球化学特性.台湾海峡,1993,12(4):376-384.
    崔毅,陈碧鹃,宋云利.胶州湾海水、海洋生物体内重金属含量的研究.应用生态学报,1997,8(6):650-654.
    程鹏, 高抒, 李徐生, 2001. 激光粒度仪测试结果及其与沉降法、筛析法的比较. 沉积学报,19(3): 449-455.
    丁曰堂,李村河污水处理厂生物除磷脱氮工艺的运行,中国给水排水,2000,16(4):49-51。
    段毅,罗斌杰,钱吉盛,等.南沙海洋沉积物中脂肪酸地球化学研究.海洋地质与第四纪地质, 1996, 16(2), 23-31.
    段毅,罗斌杰,徐雁前,等.南沙海洋沉积物中生物标志化合物的组成及地化意义.海洋与湖沼, 1996,27(3): 258-263.
    段毅,罗斌杰,深海现代沉积有机质碳同位素组成变化的古气候证据,海洋地质与第四纪地质,1998,4:53-58。
    方涛,张晓华,徐小清.东湖沉积物中酸挥发性硫化物的季节、深度分布特征研究.水生生物学报,2002, 26(3):239-245.
    高抒, 海细颗粒沉积物通量与循环过程. 世界科技研究与发展, 2000.22(5): 73-77.
    高抒. 示踪沉积物方法的理论框架. 科学通报, 2000.45(3):329-334.
    国家海洋局第一海洋研究所港湾室, 1984.胶州湾自然环境[M].北京: 海洋出版社.
    郭志刚,杨作升,陈致林等,东海陆架泥质区沉积有机质的物源分析,地球化学,2001,5:416-424。
    贾国东,彭平安,房殿勇等,南海南部约30ka来沉积有机质的生物输入特征,海洋地址与第四纪地址,2001,1:7-11。
    贾振邦,梁涛,林健枝 等.酸可挥发硫对香港河流沉积物中重金属的毒性作用.北京大学学报(自然科学版),1998, 34(2-3):379-385.
    胶州湾及其近岸地区环境概况.海洋通报,1992,11(3):6-15.
    蓝先洪,中国主要河口沉积有机地球化学研究,海洋地质动态,2003,19(9):1-4。
    刘春莲,杨建林,白雁等,珠江三角洲全新统横栏组淤泥沉积中的有机碳、总氮和碳氮比值记录,中山大学学报,2003,1:127-128。
    刘飞,胶州湾李村河口沉积物中重金属的赋存及其环境意义,中国科学院海洋研究所硕士论文,2005。
    李广玉,叶思源,高宗军等,胶州湾底层水营养盐的分布特征及有机污染状况分析,世界地质,2005,24(2):194-199。
    李凤业, 高抒, 贾建军等, 黄、渤海泥质沉积区现代沉积速率. 海洋与湖沼, 2002.33(4),364-369.
    李风业,宋金明,李学刚,汪亚平,齐君, 胶州湾现代沉积速率和沉积通量研究. 海洋地质与第四纪地质, 2003. 23(4): 29-33.
    李凤业, 史玉兰, 申顺喜等,同位素记录南黄海现代沉积环境. 海洋与湖沼, 1996. 27(6), 584-589.
    李学刚,宋金明,李宁等,胶州湾沉积物中氮与磷的来源及其生物地球化学特征,海洋与湖沼,2005,36(6):562-571。
    李玉,胶州湾主要重金属和有机污染物的分布及特征研究,中国科学院海洋研究所博士论文,2005。
    李善为,从海湾沉积物特征看胶州湾的形成演变,海洋学报,1983. 5: 328-339.
    李淑媛,刘国贤, 杜瑞芝等.渤海湾及其邻近河口区重金属环境背景值和污染历史.环境科学学报,1984,12(4):427-438.
    刘福寿,王揆洋,胶州湾沿岸河流及其地质作用,海洋科学,1992,1:25-28。
    刘竟春, 严重玲, 胡俊, 2004. 水体沉积物中酸可挥发性硫化物(AVS)研究进展. 生态学报, V24(4): 812-818.
    刘现明,徐学仁,张笑天等,大连湾沉积物中的有机氯农药和多氯联苯,海洋环境科学。2001,4:40-44。
    卢博,张福生,黄韶健等,大亚湾表层沉积物性质及其对海水养殖的影响,台湾海峡,2002,21(4):489-495。
    吕晓霞,翟世奎,牛丽凤,长江口柱状沉积物中有机质 C/N 比的研究,环境化学,2005,24(3):255-259。
    马德毅,王菊英,闫启仑,等.酸溶硫化物(AVS)对沉积物孔隙水中二价有毒金属化学活动性的影响.海洋学报,1997,19(5):83-90.
    马嘉蕊,邵秘华.锦州湾沉积物芯样中重金属污染及变化动态.中国环境科学,1994,14(1):23-27.
    麦碧娴,林峥,张干,等。珠江三角洲沉积物中毒害有机物的污染现状几评价。 环境科学研究,2001,14:19-23。
    孟可,孙廷智.胶州湾东岸沉积物重金属含量分布与污染源判别.曲阜师范大学学报,1996,22(1):77-81.
    孟诵,刘苍字.长江口区沉积地球化学特征的定量研究.华东师范大学学报(自然科学版),1996,1:73-84.
    蒲晓强,中国边缘海典型海域沉积物早期成岩过程中硫的循环,中国科学院海洋研究所博士论文,2005。
    齐君,胶州湾现代沉积速率与沉积物中重金属的累积分析,中国科学院海洋研究所硕士论文,2005。
    秦蕴珊等主编,东海地质,科学出版社,1987:112-114。
    宋进喜,李金成,王晓蓉等,太湖梅梁湾沉积物中酸挥发性硫化物垂直变化特征研究,环境科学学报,2004,24(2): 271-274.
    宋金明,中国近海沉积物-海水界面化学.海洋出版社,1997 年:150-152.
    唐运千,卢冰,徐濂,南海北部沉积物的萘、菲和芴化合物.海洋通报,1994,13(4),41-48.
    王贵,姚德,胶州湾东岸表层沉积物重金属污染研究,内蒙古石油化工,2005,7:1-3。
    王菊英,马德毅,等.海洋沉积物中酸溶硫化物对二价金属镉的地球化学特征及生物毒性的影响.海洋与湖沼,2001,32(5):483-488.
    王文海, 王润玉, 张书欣. 胶州湾的泥沙来源及其自然沉积速率.海岸工程, 1982,1(1): 83-90.
    吴时国,涂霞,罗又郎等,南沙群岛海区有机碳沉积作用与古生产力估算,热带海洋,1995,4:58-66。
    吴莹,张经,唐运千,南海表层沉积物中有机物分布研究,热带海洋,1998,3:43-51。
    吴莹,张经,唐运千,中国海洋有机地球化学研究的若干进展,地球科学进展,1999 年,第 14 卷,第 3 期。
    鲜本忠,黄河三角洲环境沉积学研究,中国石油大学博士论文,2004。
    杨永亮,麦碧娴,潘静等,胶州湾表层沉积物中多环芳烃的分布及来源,海洋环境科学,2003,4:38-43。
    叶思源,胶州湾水生系统痕量金属生物地球化学循环及其生态效应,中国矿业大学博士论文,2005。
    殷效彩,杨永亮,余季金等.胶州湾表层沉积物重金属分布研究.青岛大学学报,2001,14(1):76-80.
    袁华茂,吕晓霞,李学刚等,自然粒度下渤海沉积物中有机碳的地球化学特征,环境化学,2003,2:115-120。
    张经.中国主要河口的生物地球化学研究.北京:海洋出版社,1996.
    张丽洁, 王责, 姚德, 段国政,胶州湾李村河口沉积物重金属污染特征研究. 山东理工大学学报, 2003. V17(1): 8-14.
    赵一阳,鄢明才著, 中国浅海沉积物地球化学. 北京: 科学出版社, 1994:179-193.
    郑兆勇,殷效彩,胡学.浅析胶州湾底质重金属分布与污染防治对策.中山大学研究生学刊(自然科学、医学版),2003,24(3):54-59.
    朱纯,潘建明,卢冰等,长江、老黄河口及东海陆架沉积有机质物源指标及有机碳的沉积环境,海洋学研究,2005,23(3):36-46。
    中国海湾志编纂委员会,中国海湾志,海洋出版社,1993,第四分册。
    周启星,朱荫湄.西湖底泥不同供氧条件下有机质降解及CO2 与CH4 释放速率的模拟研究.环境科学学报,1999,19(1):11-15。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700