机械零件图像跟踪与识别关键技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机器视觉是现代制造的一个及其重要的组成部分,涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理、模式识别等多个领域的交叉学科。机器视觉实现制造过程中的运动目标检测和智能控制已成为现代制造领域的研究热点,例如,自动线生产和装配监测、机器人和机械手引导、产品检测和分类、视觉伺服系统、零件图像的自动理解和识别等。因此,现代制造中运动零件图像跟踪和识别研究有着十分重要的意义。
     本文在分析已有的运动目标跟踪与识别算法的基础上,以机械运动零件图像为对象,将改进遗传算法、神经网络、小波变换、数学形态学的基本定义和基本算法、证据理论有机运用,研究新的机械运动目标跟踪与识别算法,主要研究工作包括如下三个方面:
     首先,针对成像系统在三维场景转换成二维图像的空间变换过程中存在的非线性几何失真问题,研究了图像非线性失真原理,提出了基于改进遗传算法优化神经网络进而实现图像非线性几何失真的校正算法,实验结果表明了该算法能够增强神经网络的全局搜索能力,提高了收敛速度和稳定性,能够较好地对图像在空间变换过程中存在的非线性几何失真进行校正。
     其次,探讨基于运动分析和基于图像匹配分析的机械运动目标的跟踪方法,深入分析了帧间差分法、光流法和典型的自由型变形Snake模型,重点解析了帧间差分法因背景变化而造成质心坐标的不稳定性、光流法所存在的背景遮档及孔径问题和Snake的收敛性等问题。提出了基于形态学的机械运动目标跟踪方法,实验结果表明应用数学形态学的基本定义和基本算法的目标跟踪方法为有效地检测出机械运动目标,正确获取运动目标的质心坐标,实现运动目标跟踪提供了可行的方案。
     最后,研究了机械运动零件图像识别算法。充分利用图像像素之间的空间相关信息,提出了基于Hilbert-小波扫描的图像分割方法,提高了图像分割的效率;应用小波变换方法进行了图像的边缘检测,较好地处理抑制了噪声和边缘定位的矛盾;将被分割的图像和边缘图像划分为子矩阵图像,以获取相对像素系数作为特征向量,将相对像素系数作为神经网络的输入样本,由神经网络实现识别,大大降低了运算的工作量;针对图像传感器在获取零件图像时,由于传感器固有的缺陷、环境因素的影响,有可能难以获取图像较完整的信息,不利于机械零件图像的特征提取和零件的识别,提出了根据证据理论的融合推理规则识别零件的方法。利用LabVIEW软件平台,设计了零件图像识别虚拟仪器,实验结果表明了论文的设计思想和方法达到了预期结果。
Machine vision is one of the most important parts in modern manufacture. And it involves multi-region intersection subjects including artificial intelligence, neurobiology, psychophysics, computer science, image processing, pattern recognition and so on. Machine vision achieving moving target inspection and intelligent control has become hot research in modern manufacturing field, such as automation line production and assembling monitoring, robot and manipulator guiding, product testing and classification, vision servo system, automatic understanding and recognition of part image and so on. Therefore, the tracking and recognition research of moving part image is important to modern manufacture.
     In this paper, on the basis of analyzing existing tracking and recognition algorithms of moving part object, new algorithms of mechanical part moving object have been studied by combining improved Genetic Algorithm, Neural Network, Wavelet transformation and the basic definitions and algorithms of Mathematic Morphology. The main researches include three aspects.
     Firstly, for solving the problem of nonlinear geometry distortion that three-dimensional scene is converted into two-dimensional image in image-forming system, the nonlinear distortion principal is studied and the correction algorithm based on an improved genetic algorithm optimizing neural network to implement image nonlinear geometry distortion is proposed. The experiment results show the proposed method could enhance the global searching capability of neural network, improve the convergence speed and stability and calibrate image nonlinear geometry distortion in the processing of space transformation.
     Secondly, tracking methods of mechanical part moving object based on motion analysis and based on image matching analysis are investigated. And inter-frame difference method, optical flow method and typical free deformation model (snake) are analyzed. The problems of centroid coordinate instability resulted from background change in inter-frame difference method, background covering and aperture in optical flow method and the convergence in snake are mainly analyzed. Tracking method of moving object based on Morphology is proposed. The experiment results show the tracking method based on the basic definition and algorithm in Mathematics Morphology provide feasible scheme for effectively detecting moving object, correctly acquiring its centroid and finishing its tracking.
     Finally, the recognition algorithms of mechanical moving part image are studied. In order to decrease calculation, the image segment method based on wavelet-Hilbert by adequately using the space relative information of pixels is proposed and it improves the efficiency of image segment. In the meantime, the wavelet transform method is also used to detect image edge and solve the contradiction between suppressing noise and edge location. Then, the images segmented and edge images are divided into sub-matrix images in order to get relative pixel coefficients as eigenvectors. And the relative pixel coefficients are the input sets of neural network and the recognition is carried out and it greatly reduces calculation. Because of the inherent drawbacks of sensors and the affects of environment factors, it is difficult to get the complete image information of mechanical part. It makes the feature extraction of part image and part recognition inaccurate. In order to solve this problem, the recognition algorithm based on merging reasoning rules in evidential theory is proposed. In the end, the virtual instrument of part image recognition is designed by using Labview software platform and the experiment results verify the design idea and methods of the dissertation reach expectant results.
引文
1.E Mouaddib,J Batle,J Salvi.Recent progress in structured light in order to solve the correspondence problem in stereo vision.Proceedings of the 1997 IEEE International Conference on Robotics and Automation,130-136
    2.G Xu,Z Zhang.Epipolar geometry in stereo,motion and object recognition.The Netherlands:Kluwer Academic Publishers.1996,79-204
    3.Y Zhang,R Kovacevic.Real-time sensing of sag geometry during GTA welding.Journal of Manufacturing Science and Engineering.1997,119(2):151-160
    4.Collins Retal.A system for video surveillance and monitoring:VSAM final report.Carnegie Mellon University:Technical Report CMU-RI-TR-00-12,2000
    5.http://www.yjbys.com/Job-seeker/html/show1-20901.html
    6.http://www.china-vision.net/research/xstt/200609/1862.html
    7.http://www.csai.tsinghua.edu.cn
    8.http://www.aiar.xjtu.edu.cn
    9.http://www.zju.edu.cn/kxyj/yjzx/yjzx2.html
    10.http://www.nudt.edu.cn/
    11.http://www.hust.edu.cn/content_13230.html
    12.R Yang,L Yin,M Gabbouj,J Astola,and Y Neuvo.Optimal weighted median filters under structural constraints.IEEE Trans.Signal Processing,1995(43):591-604
    13.S G Mallat,W L Hwang.Singularity detection and processing with wavelets.IEEE Trans Inform.Theory.1992(38):617-643
    14.D L Donoho.De-noising by soft-thresholding.IEEE Trans Information Theory.1995(41):613-627
    15.J H Wang,W J Liu and L D Lin.Histogram-based fuzzy filter for image restoration.IEEE Transactions on Systems,Man and Cybernetics.2002(32):230-238
    16.吴传庆,赵永超,童庆禧等.基于光谱信息的遥感图像空间域自适应滤波[J].遥感学报,2004(8):51-55
    17.梁亮,张定华,赵歆波等.一种基于网格图像的几何畸变修正方法[J].计算机工程与应用,2004.2
    18.廉明,赵淑清.基于RBF人工神经网络的遥感图像校正算法[J].遥感技术应用,2006,Vol.21 No.6
    19.N.Friedman and S.Russell,"Image segmentation in video sequences:a probabilistic approach," in Proc.13th Conf.Uncertainty in Artificial Intelligence, 1997, pp.1-3
    20.D.Koller, J.Weber, T.Huang, J.Malik, G.Ogasawara, B.Rao, and S.Russel, "Toward robust automatic traffic scene analysis in real-time," in Proc.Int.Conf.Pattern Recognition, Israel, 1994, pp.126-131
    21.M.Kohle, D.Merkl, and J.Kastner, "Clinical gait analysis by neural networks: Issues and experiences," in Proc.IEEE Symp.Computer-Based Medical Systems, 1997, pp.138-143.
    22.H.Z.Sun, T.Feng, and T.N.Tan, "Robust extraction of moving objects from image sequences," in Proc.Asian Conf.Computer Vision, Taiwan, R.O.C., 2000, pp.961-964.
    23.W.E.L.Grimson, C.Stauffer, R.Romano, and L.Lee, "Using adaptive tracking to classify and monitor activities in a site," in Proc.IEEE Conf.Computure Vision and Pattern Recognition, Santa Barbara, CA, 1998, pp.22-31.
    24.C.Ridder, 0.Munkelt, and H.Kirchner, "Adaptive background estimation and foreground detection using Kalman-filtering," in Proc.Int.Conf.Recent Advances in Mechatronics, 1995, pp.193-199.
    25.C.Stauffer andW.Grimson, "Adaptive background mixture models for real-time tracking," in Proc.IEEE Conf.Computer Vision and Pattern Recognition, vol.2, 1999,pp.246-252.
    26.W.E.L.Grimson, C.Stauffer, R.Romano, and L.Lee, "Using adaptive tracking to classify and monitor activities in a site," in Proc.IEEE Conf.Computure Vision and Pattern Recognition, Santa Barbara, CA, 1998, pp.22-31.
    27.K.Toyama, J.Krumm, B.Brumitt, and B.Meyers, "Wallflower: principles and practice of background maintenance," in Proc.Int.Conf.Computer Vision, 1999, pp.255-261.
    28.1.Haritaoglu, D.Harwood, and L.S.Davis, "W : Real-time surveillance of people and their activities," IEEE Trans.Pattern Anal.Machine Intell., vol.22, pp.809-830, Aug.2000.
    29.S.McKenna, S.Jabri, Z.Duric, A.Rosenfeld, and H.Wechsler, "Tracking groups of people," Comput.Vis.Image Understanding, vol.80, no.1, pp.42-56, 2000.
    30.H.-Y.Shum, M.Han, and R.Szeliski, "Interactive construction of 3D models from panoramic mosaics," in Proc.IEEE Conf.Computer Vision and Pattern Recognition,Santa Barbara, CA, 1998, pp.427-433.
    31.T.Tian and C.Tomasi, "Comparison of approaches to egomotion computation," in Proc.IEEE Conf.Computer Vision and Pattern Recognition, 1996, pp.315-320.
    32.Z.Y.Zhang, "Modeling geometric structure and illumination variation of a scene from real images," in Proc.Int.Conf.Computer Vision, Bombay, India, 1998, pp.4-7.
    33.J.Barron, D.Fleet, and S.Beauchemin, "Performance of optical flow techniques," Int.J.Comput.Vis., vol.12, no.1, pp.42-77,1994.
    34.N.Friedman and S.Russell, "Image segmentation in video sequences: a probabilistic approach," in Proc.13th Conf.Uncertainty in Artificial Intelligence, 1997, pp.1-3.
    35.R.T.Collins, A.J.Lipton, T.Kanade, H.Fujiyoshi, D.Duggins, Y Tsin, D.Tolliver, N.Enomoto, O.Hasegawa, P.Burt, and L.Wixson, "A system for video surveillance and monitoring," Carnegie Mellon Univ., Pittsburgh, PA, Tech.Rep., CMU-RI-TR-00-12,2000.
    36.E.Stringa, "Morphological change detection algorithms for surveillance applications,"in Proc.British Machine Vision Conf, 2000, pp.402-42.pp.68-72.
    37.A.J.Lipton, H.Fujiyoshi, and R.S.Patil, "Moving target classification and tracking from real-time video," in Proc.IEEE Workshop Applications of Computer Vision, 1998,pp.8-14.
    38.Y Kuno, T.Watanabe, Y Shimosakoda, and S.Nakagawa, "Automated detection of human for visual surveillance system," in Proc.Int.Conf.Pattern Recognition, 1996,pp.865-869.
    39.R.Cutler and L.S.Davis, "Robust real-time periodic motion detection, analysis, and applications," IEEE Trans.Pattern Anal.Machine Intell., vol.22, pp.781-796, Aug.2000.
    40.A.J.Lipton, "Local application of optic flow to analyze rigid versus nonrigid motion,"in Proc.Int.Conf.Computer Vision Workshop Frame-Rate Vision, Corfu, Greece,1999.
    41.C.Stauffer, "Automatic hierarchical classification using time-base co-occurrences," in Proc.IEEE Conf.Computer Vision and Pattern Recognition, vol.2, 1999, pp.335-339.camera system," IEEE Trans.Pattern Anal.Machine Intell., vol.21, no.11, pp.1241-1247, 1999.
    42.O.Javed and M.Shah, "Tracking and object classification for automated surveillance,"in Proc.European Conf.Computer Vision, vol.4, 2002, pp.343-357.
    43.M.Kilger, "A shadow handler in a video-based real-time traffic monitoring system," in Proc.IEEE Workshop Applications of Computer Vision, Palm Springs, CA, 1992, pp.11-18.
    44.C.R.Wren, A.Azarbayejani, T.Darrell, and A.P.Pentland, "Pfinder: real-time tracking of the human body," IEEE Trans.Pattern Anal.Machine Intell., vol.19, pp.780-785, July 1997.
    45.A.Baumberg and D.C.Hogg, "Learning deformable models for tracking the human body," in Motion-Based Recognition, M.Shah and R.Jain, Eds.Norwell, MA: Kluwer,1996, pp.39-60.
    46.A.Mohan, C.Papageorgiou, and T.Poggio, "Example-based object detection in images by components," IEEE Trans.Pattern Recognit.Machine Intell., vol.23, pp.349-361,Apr.2001.
    47.A.Galata, N.Johnson, and D.Hogg, "Learning variable-length Markov models of behavior," Comput.Vis.Image Understanding, vol.81, no.3, pp.398-413, 2001.
    48.Y.Wu and T.S.Huang, "A co-inference approach to robust visual tracking," in Proc.Int.Conf.Computer Vision, vol.Ⅱ, 2001, pp.26-33.measures," IEEE Trans.Syst,Man, Cybern.B, vol.31, pp.557-571, Aug.2001.
    49.N.Paragios and R.Deriche, "Geodesic active contours and level sets for the detection and tracking of moving objects," IEEE Trans.Pattern Anal.Machine Intell., vol.22, pp.266-280, Mar.2000.
    50.N.Peterfreund, "Robust tracking of position and velocity with Kalman snakes," IEEE Trans.Pattern Anal.Machine Intell., vol.22, pp.564-569, June 2000.
    51.M.Isard and A.Blake, "Contour tracking by stochastic propagation of conditional density," in Proc.European Conf.Computer Vision, 1996, pp.343-356.
    52.D.Roller, J.Weber, T.Huang, J.Malik, G.Ogasawara, B.Rao, and S.Russel, "Toward robust automatic traffic scene analysis in real-time," in Proc.Int.Conf.Pattern Recognition, Israel, 1994, pp.126-131.
    53.J.Malik and S.Russell, "Traffic Surveillance and Detection Technology Development: New Traffic Sensor Technology," Univ.of California, Berkeley, California PATH Research Final Rep, UCB-ITS-PRR-97-6,1997.
    54.C.A.Pau and A.Barber, "Traffic sensor using a color vision method," in Proc.SPIE—Transportation Sensors and Controls: Collision Avoidance, Traffic Management,and ITS, vol.2902, 1996, pp.156-165.
    55.B.Schiele, "Vodel-free tracking of cars and people based on color regions," in Proc.IEEE Int.Workshop Performance Evaluation of Tracking and Surveillance, Grenoble,France, 2000, pp.61-71.
    56.R.Polana and R.Nelson, "Low level recognition of human motion," in Proc.IEEE Workshop Motion of Non-Rigid and Articulated Objects, Austin, TX, 1994, pp.77-82.
    57.B.Coifman, D.Beymer, P.McLauchlan, and J.Malik, "Areal-time computer vision system for vehicle tracking and traffic surveillance," Transportation Res.: Part C, vol.6,no.4, pp.271-288, 1998.
    58.J.Malik and S.Russell, "Traffic surveillance and detection technology development (new traffic sensor technology)," Univ.of California, Berkeley, 1996.
    59.D.-S.Jang and H.-I.Choi, "Active models for tracking moving objects," Pattern Recognit., vol.33, no.7, pp.1135-1146,2000.
    60.J.K.Aggarwal, Q.Cai,W.Liao, and B.Sabata, "Non-rigid motion analysis: articulated & elastic motion," Comput.Vis.Image Understanding, vol.70, no.2, pp.142-156,1998.
    61.T.Zhao, T.S.Wang, and H.Y.Shum, "Learning a highly structured motion model for 3D human tracking," in Proc.Asian Conf.Computer Vision, Melbourne, Australia,2002, pp.144-149.
    62.J.C.Cheng and J.M.F.Moura, "Capture and representation of human walking in live video sequence," IEEE Trans.Multimedia, vol.1, pp.144-156, June 1999.
    63.C.Bregler, "Learning and recognizing human dynamics in video sequences," in Proc.IEEE Conf.Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 1997, pp.568-574.
    64.Q.Delamarre and O.Faugeras, "3D articulated models and multi-view tracking with physical forces," Comput.Vis.Image Understanding, vol.81, no.3, pp.328-357,2001.
    65.D.G Lowe, "Fitting parameterized 3-D models to images," IEEE Trans.Pattern Anal.Machine Intell., vol.13, pp.441-450, May 1991.
    66.J.Hoshino, H.Saito, and M.Yamamoto, "A match moving technique for merging CG cloth and human video," J.Visualiz.Comput.Animation, vol.12, no.1, pp.23-29,2001.
    67.J.E.Bennett, A.Racine-Poon, and J.C.Wakefield, "MCMC for nonlinear hierarchical models," in Markov Chain Monte Carlo in Practice,W.R.Gilks, S.Richardson, and D.J.Spiegelhalter, Eds.London, U.K.: Chapman and Hall, 1996, pp.339-357.
    68.M.Isard and A.Blake, "CONDENSATION—Conditional density propagation for visual tracking," Int.J.Comput.Vis., vol.29, no.1, pp.5-28, 1998.
    69.T.N.Tan, G D.Sullivan, and K.D.Baker, "Model-based localization and recognition of road vehicles," Int.J.Comput.Vis., vol.29, no.1, pp.22-25,1998.
    70.- "Recognizing objects on the ground-plane," Image Vis.Comput., vol.12, no.3, pp. 164-172,1994.
    71.H.Yang, J.G.Lou, H.Z.Sun, W.M.Hu, and T.N.Tan, "Efficient and robust vehicle localization," in Proc.IEEE Int.Conf.Image Processing, 2001, pp.355-358.
    72.J.G Lou, H.Yang, W.M.Hu, and T.N.Tan, "Visual vehicle tracking using an improved EKF," in Proc.Asian Conf.Computer Vision, 2002, pp.296-301.
    73.D.Koller, K.Daniilidis, and H.-H.Nagel, "Model-based object tracking in monocular image sequences of road traffic scenes," Int.J.Comput.Vis., vol.10, no.3, pp.257-281, 1993.
    74.H.Kollnig and H.-H.Nagel, "3D pose estimation by directly matching polyhedral models to gray value gradients," Int.J.Comput.Vis., vol.23, no.3, pp.283-302,1997.
    75.M.Haag and H.-H.Nagel, "Combination of edge element and optical flow estimates for 3D-model-based vehicle tracking in traffic image sequences," Int.J.Comput.Vis.,vol.35, no.3, pp.295-319,1999.
    76.T.N.Tan and K.D.Baker, "Efficient image gradient based vehicle localization," IEEE Trans.Image Processing, vol.9, pp.1343-1356, Aug.2000.
    77.T.N.Tan, G.D.Sullivan, and K.D.Baker, "Pose determination and recognition of vehicles in traffic scenes," in European Conf.Computer Vision—Lecture Notes in Computer Science, vol.1, J.O.Eklundh, Ed., Stockholm, Sweden, 1994, pp.501-506.
    78.-, "Fast vehicle localization and recognition without line extraction,"in Proc.British Machine Vision Conf, 1994, pp.85-94.
    79.A.E.C.Pece and A.D.Worrall, "Tracking without feature detection," in Proc.IEEE Int.Workshop Performance Evaluation of Tracking and Surveillance, Grenoble, France,2000, pp.29-37.
    80.R.K.Srihari, "A statistically-based Newton method for pose refinement," Image Vis.Comput, vol.16, no.8, pp.541-544, June 1998.
    81.H.Yang, J.G.Lou, H.Z.Sun, W.M.Hu, and T.N.Tan, "Efficient and robust vehicle localization," in Proc.IEEE Int.Conf.Image Processing, 2001, pp.355-358.
    82.J.G.Lou, H.Yang, W.M.Hu, and T.N.Tan, "Visual vehicle tracking using an improved EKF," in Proc.Asian Conf.Computer Vision, 2002, pp.296-301.
    83.D.Koller, K.Daniilidis, and H.-H.Nagel, "Model-based object tracking in monocular image sequences of road traffic scenes," Int.J.Comput.Vis., vol.10, no.3, pp.257-281, 1993.
    84.H.Kollnig and H.-H.Nagel, "3D pose estimation by directly matching polyhedral models to gray value gradients," Int.J.Comput.Vis., vol.23, no.3, pp.283-302, 1997.
    85.M.Haag and H.-H.Nagel,"Combination of edge element and optical flow estimates for 3D-model-based vehicle tracking in traffic image sequences," Int.J.Comput.Vis.,vol.35,no.3,pp.295-319,1999.
    86.D P Casasent,J S smokelin,A Ye.Wavelet and Gabor transforms for detection.Opt Eng,1992,32(4):1893-1898
    87.Stephane,G Mallat.A Theory for Multi-resolution Signal decomposition.The Wavelet Representation.IEEE.Pattern Analysis and Machine Intelligenee.1989(7):674-693
    88.F Mujiea,J P Leduc,M J T Smith.Spatio-temporal continuous Wavelets applied to missile warhead detection and tracking.SPIE 3024.787-798
    89.S K Rogers,J M Colombi,C E Martin,et al.Neural networks for automatic target recognition.Neural Networks,1995,18(7/8):1153-1184
    90.M.Dahmane and J.Meunier,Real-Time Video Surveillance with Self-Organizing Maps Proceedings of the Second Canadian Conference on Computer and Robot Vision (CRV'05),2005
    91.K.Takaya and R.Malhotra.Tracking Moving Objects in a Video Sequence by the Neural Network Trained for Motion Vectors:153-156
    92.W.m Hu,T.n Tan,L.Wang,and S.Maybank,A Survey on Visual Surveillance of Object Motion and Behaviors IEEE Transactions on System,Man,and Cybernetics-Part C:Applications and Review,2004,34(3):334-352
    93.L.J Latecki,R.Mieziank,Object Tracking with Dynamic Template Update and Occlusion Detection Proceedings of the 18th International Conference on Pattern Recognition(ICPR'06)
    94.S.C.Pei,W.Yi Kuo,and W.Ting Huang,Tracking Moving Objects in Image Sequences Using 1-D Trajectory Filter,IEEE Signal Processing Letters,2006,13(1):13-16
    95.T.S.Wang,Y.H.G.Irene,P.F.Shi,Object Tracking Using Incremental 2D-PCA Learning and ML Estimation,ICASSP 2007:933-936
    96.Serra J.Image Analysis and Mathematical Morphology,Academic,New York,1982.
    97.卢官明,毕厚杰.基于数学形态学的图像序列分割[J].南京邮电学院学报(自然科学版),1997,17(2):54-57
    98.Maragos P,Sun F K.Measuring the fractal dimensions of signals;moprho-Logical coves and iterative optimization.IEEE Trans.On Signal Processing,1993,41(1):108-121
    99.孙亦南,刘伟军,王越超.基于分形理论和数学形态学的图像边缘检测方法.计 算机工程,2003,29(20):20-21
    100.Koskinen,Astola J,Neuvo Y.Soft morphological filters.SPIE Symp.In:Image Algebra and Morphological Image Processing E,San Doego,USA,1991,262-270
    101.Pu Christopher C,Shih Frnak Y.Threshold Decomposition of Gray-Scale Soft Morphology into Binary Soft Morphology.Graphical Models and Image Proc essing,1995,57(6):522-526
    102.舒昌献,莫玉龙.基于软化形态学的边缘检测[J].中国图像图形学报,1999,4A(2):139-142
    103.黄凤岗,杨国,宋克欧.柔性形态学在图像边缘检测中的应用[J].中国图像图形学报,2000,5A(4):254-287
    104.戴青云,余英林.一种基于小波与形态学的车牌图像分割方法[J].中国图像图形学报,2000,5A(5):411-415
    105.张文琴,狄红卫.一种基于小波和形态学的边缘检测方法[J].暨南大学学报(自然科学版),2004,25(5):585-559
    106.V Vapnik.Statistical Learning Theory[M].New York.John Wiley & Sons,1998
    107.张守娟,周诠.基于不变性特征的SVM遥感图像飞机类型识别[J].现代电子技术.2007,12(251):115-118
    108.翟俊海,王熙照,张素芳.基于小波变换和多类支持向量机的图像分类[J].计算机工程与应用.2007,43(16):47-49
    109.任国全,张培林,李国璋等.磨损颗粒的模糊神经网络识别研究[J].润滑与密封.2006,2
    110.冯晓华,马坚,郑岗.基于模糊距离的RBF神经网络板形模式识别[J].西安工业大学学报.2006,Vol.26 No.5:427-430
    111.杨照华,房建成,吴琳.基于模糊神经网络的涡结构识别方法研究[J].航天控制.2006,Vol 124,No.5:4-9
    112.姜大志,郁倩,王冰洋等.计算机视觉成像的非线性畸变研究与综述[J].计算机工程,2001,27(12):108-110
    113.廖士中,高培焕,苏艺等.一种光学镜头摄像机图像几何畸变的校正方法[J].中国图象图形学报,2000,5(7):593-595
    114.R Y Tsai.A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J].IEEE Journal of Robotics Automation,1987,3(4):323-344
    115.曾峦.短焦距摄像机镜头的畸变校正方法[J].装备指挥技术学院学报,2000, 13(2):53-55
    116.张艳珍,欧宗瑛,薛斌党.一种基于斜率的摄像机畸变校正方法[J].小型微型计算机系统,2002,23(5):625-627
    117.杨行峻,郑君里.人工神经网络与盲信号处理[M].北京:清华大学出版社.2003
    118.王珂娜,邹北骥,黄文梅.一种基于神经网络的畸变图像校正方法[J].中国图象图形学报,2005.(5)
    119.R H Nielsen.Theory of the back propagation neural network[C].Proc IJCNN 1989,Washington D.C.,1989,1:593-603
    120.J H Holland.Adaptation in natural and artificial system[M].The university of Michigan Press,Ann Arbor,1975
    121.徐宗本,张讲设,郑亚林.计算智能中的仿生学:理论与算法[M].北京:科学出版社.2003
    122.G.Rudolph.Convergence properties of canonical genetic algorithms.IEEE Trans.on Neural Networks.1994.5(1):96-101
    123.盛党红,夏庆观,温秀兰.基于遗传神经网络的零件图像非线性校正研究.数据采集与处理.2007.22(4):304-307
    124.H.Satoh.et al.Minimal Generation Gap Model for Gas Considering Both Exploration and Exploitation.Proc.IIZUKA.1996.494-497
    125.L.J.Eshelman.and J.D.Schaffer.Real-Coded Genetic Algorithms and Interval-Schemata.Foundations of Genetic Algorithms 2.1993.187-202
    126.T Meier,K N Ngun.Video segmentation for content based coding.IEEE Trans.on Circuits and Systems for Video Technology.1999,9(8):1190-1203
    127.B.K.P Horn,B.G.Schunc.Determining optical flow.Artificial Intelligence.1981,17:185-203
    128.B.D Lucas,T Kanade.An iterative image registration technique with an application to stereo vision.1981,in Proceeding of the International Joint Conf.on Artificial Intelligence
    129.H.H Nagel Displacement vectors derived from second-order intensity variations in image sequences.Computer Graphics and Image Processing.1983,21:85-117
    130.李培华,张田文.主动轮廓模型(蛇模型)综述[J].软件学报.2000,11(6)
    131.M Kass,A Witkinm,D Terzopoulos.Snakes:Active contour models.International Journal on Computer Vision.1998,1(4):321-331
    132.A.A Amini,S.Tehran,T.E Weymouth.Using Dynamic Programming for Minimizing the Energy of Active Contours in the Presence of Hard Constrains.The 2~(nd)International Conference of Computer Vision,Tampa,Florida,1988:95-99
    133.D.J Williams,M.Shah.A Fast Algorithm for Active Contours and Curvature Estimation.CVGIP:Image Understanding,1992,55(1):14-26
    134.赵全邦,董慧颖,李泉富.Snake算法在运动目标检测中的应用[J].沈阳理工大学学报.2006,25(5)
    135.聂煊,赵荣椿,沈亚萍.基于Snake技术的运动目标轮廓提取[J].计算机工程.2005,31(23)
    136.李峰,刘国彦,章登勇等.基于Snake模型的虹膜定位算法[J].小型微型计算机系统.2006,27(8)
    137.王长军,朱善安.基于统计模型和GVF-Snake的彩色目标检测与跟踪[J].中国图象图形学报.2006,11(1)
    138.胡炯炯,于慧敏,房波.基于形态学约束的B-Snake模型的细胞图像自动分割方法[J].中国图象图形学报.2005,10(1)
    139.R.M Haralick,L.G Shapiro.Survey:Image Segmentation.Computer Vision.Graphics.Image Proceeding.1985,29:100-132
    140.N Ostu.A threshold Selection Method from Gray Level Histogram.IEEE Trans.On Syst.Man,Cybern,1979,9(1):62-66
    141.C.Rafael,Conzalez.Digital image processing.Second edition.Published by arrangement with the original publisher,Pearson Education,Inc.,Publishing as Prentice Hall,2002
    142.Sei-ichiro Kamata,Michiharu Niimi.A Gray Image Compression Using a Hilbert Scan.IEEE Proceedings of ICPR'96,1996,905-909
    143.Xian Liu.Four alternative patterns of the Hilbert curve.Mathematics and Computation,2004,147:741-752
    144.张荣祥,郑世杰,夏庆观.基于Hilbert扫描和小波变换的自适应图像分割[J].中国图象图形学报,2008,4:666-671
    145.S.Mallat.AWavelet Tour of Signal Processing(Second Edition)[M].机械工业出版社,2003
    146.Zhao Fangwei,C.J.S.deSilva,Use of the Laplacian of Gaussian operator in prostate ultrasound image processing.Processing of the 20~(th) Annual International Conference of the IEEE Engineer in Medicine and Biology Society,Vol.20,No.2,1998:812-815
    147.Jain A K,Duin Robert P W,Mao Jianchang.Statistical pattern recognition,IEEE Transactions on pattern analysis and machine intelligence,2000,22(1):4-37
    148.Y.Y.Tang,L.H.Yang,J.Liu and H.Ma.Wavelet Theory and Its Application to Pattern Recognition.World Scientific,2000
    149.Martin T.Hagan,Howard B.Demuth,Mark H.Beal著.神经网络设计[M].北京:机械工业出版社,2005
    150.夏庆观,盛党红,路红等.零件图像特征提取和识别的研究[J].中国机械工程.2005,16(22)
    151.盛党红,夏庆观,温秀兰.基于小波神经网络和证据理论的零件图像识别[J].中国机械工程.2006,17:58-61
    152.National Instrument.LabVIEW8.2 Express(User Manual),2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700