基于啁啾极化铌酸锂晶体电光效应和自适应时域脉冲整形方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪90年代,超短激光脉冲得到稳定产生,如皮秒激光( 10 ?1 2s)和飞秒激光( 10 ?1 5s)脉冲。随着超短脉冲的诞生,超短脉冲整形这个领域就开始出现。在光通讯系统以及其它各个领域中,各种新型的脉冲整形器和脉冲整形方法层出不穷,使人们能够获得不同的复杂脉冲波形。
     本课题的研究内容是一种新型的超短脉冲整形器,它基于啁啾极化的铌酸锂晶体的电光效应和布拉格衍射进行超快脉冲的整形。我们给出了脉冲相位调制与振幅调制的理论公式,并利用基于遗传算法的带反馈的自适应脉冲整形系统在时域对脉冲形状优化,对脉冲压缩与方波整形进行了模拟计算。这种基于电光效应和遗传算法的脉冲整形方式具有较低的调制电压,较快的响应时间和较高的脉冲整形效率的优点,对于新型脉冲整形器件的创新和探索研究具有一定现实意义。
Since the 1990s, the ultrafast laser pulse can be obtained stably, such as the laser pulse in picosecond and femtosecond range. Very soon, the ultrafast laser pulse shaping came into being along with the ultrafast pulse generation. In the range of optical communication system and other different circles, many new kinds of pulse shapers and pulse shaping methods have being developed, which allow generation of complicated ultrafast optical waveforms according to user specification.
     In this thesis, we will mainly introduce a new kind of pulse shaping method, which is based on the electro-optic effect and Bragg diffraction of chirped periodically poled lithium niobate and adaptive time-domain pulse shaping system. We gave out the relevant equations of phase and amplitude modulation and optimize the pulse shape by means of adaptive time-domain pulse shaping system based on generic algorithm. We did the theoretic simulation of pulse compression and square pulse shaping. This new pulse shaping method based on electro-optic effect and generic algorithm has the advantages of lower external drive voltage, faster response time and high pulse shaping efficiency, which has some significance to our study and innovation of new kinds of optical tools.
引文
[1] R. L Fork, B.I Greene and C.V Shank, "Generation of optical pulses shorter than 0.1ps by colliding pulse mode locking", Appl. Phys. Lett., Vol. 38 p.671 (1981)
    [2] 俞本立,毛红敏,光学超短脉冲整形的研究进展, 安徽大学学报(自然科学版),Vol.29, 45, (2005)
    [3] 朱鹏飞,杨镜新,薛绍林,超短脉冲的光谱整形,中国激光,Vol. 30,1075(2003)
    [4] 邓冬梅,郭弘,飞秒非线性光学的最新进展-几个周期超短超强激光脉冲的非线性光学,强激光与粒子束,Vol.14,365(2002)
    [5] A. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High-resolution femtosecond pulse shaping," J. Opt. Soc. Am. B 5, 1563- (1988)
    [6] "Use of Femtosecond Square Pulses to Avoid Pulse Breakup in All-Optical Switching", A.M. Weiner, Y. Silberberg, H. Fouckhardt, D.E. Leaird, M.A. Saifi, M.J. Andrejco, and P.W. Smith, IEEE J. Quantum Electron QE-25, 2648 (1989)
    [7] A. M. Weiner, J. P. Heritage, and J. A. Salehi, "Encoding and decoding of femtosecond pulses," Opt. Lett. 13, 300- (1988)
    [8] D. Meshulach, D. Yelin, and Y. Silberberg, "Adaptive real-time femtosecond pulse shaping," J. Opt. Soc. Am. B 15, 1615-1619 (1998)
    [9] T. Baumert, T. Brixner, V. Seyfried, M. Strehle, G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779 (1997)
    [10] T. Brixner, M. Strehle, and G. Gerber, “Feedback-controlled optimization of amplified femtosecond laser pulses,” Appl. Phys. B 68, 281–284 (1999)
    [11] D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22, 1793–1795 (1997)
    [12] A. Efimov, M. D. Moores, N. M. Beach, J. L. Krause, and D. H. Reitze, “Adaptive control of pulse phase in a chirped-pulse amplifier,” Opt. Lett. 23, 1915–1917 (1998)
    [13] E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H.Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24, 493–495 (1999)
    [14] M. A. Dugan, J. X. Tull, and W. S. Warren, “High resolution acoustooptic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Amer. B, vol. 14, no. 9, pp. 2348–2358, (1997)
    [15] C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, "Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses," Opt. Lett. 19, 737- (1994)
    [16] M. Fetterman, D. Goswami, D. Keusters, W. Yang, J. -K. Rhee, and W. Warren, "Ultrafast pulse shaping: amplification and characterization," Opt. Express 3, 366-375 (1998)
    [17] A·亚里夫, P·叶著,于金荣, 金锋译,《晶体中的光波》,科学出版社
    [18] M. Yamada, M. Saitoh, and H. Ooki, “Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996)
    [19] 李凡,黄数林,张东风,一种改进的多倍体遗传算法,华中科技大学学报(自然科学版),Vol.33,17(2005)
    [20] 田方,谢里阳,陶柯,改进遗传算法在压缩机优化设计中的应用,东北大学学报(自然科学版),Vol.26,73(2005)
    [21] 房磊,张焕春,经亚枝,一种模糊自适应遗传算法,西南交通大学学报,Vol.40,22(2005)
    [22] 芦金婵,李乃成,王伟东,基于最佳进化方向的多目标遗传算法,计算机工程与应用,73(2005)
    [23] 李敏强,寇纪淞,林丹等,遗传算法的基本理论与应用,科学出版社,2002
    [24] 周明,孙树栋,遗传算法原理及应用,国防工业出版社,1999
    [25] M. Yamada, “Electrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices,” Rev. Sci. Instrum. 71, 4010–4016 (2000)
    [26] J. A. Abernethy, C. B. E. Gawith, R. W. Eason, and P. G. R. Smith,“Demonstration and optical characteristics of electrooptic Bragg modulators in periodically poled lithium niobate in the near-infrared,” Appl. Phys. Lett. 81, 2514–2516 (2002)
    [27] D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22, 23 (1997)
    [28] Anatoly Efimov, Mark D. Moores, Nicole M. Beach, Jeffrey L. Krause, and David H. Reitze, “Adaptive control of pulse phase in a chirped-pulse amplifier,” Opt. Lett. 23, 24 (1998)
    [29] Kimihisa Ohno, Takasumi Tanabe, and Fumihiko Kannari, “Adaptive pulse shaping of phase and amplitude of an amplified femtosecond pulse laser by direct reference to frequency-resolved optical gating traces,” J. Opt. Soc. Am. B. 19, 11 (2002)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700