综合征型先天性心脏病与拷贝数变异遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨中国汉族人群中拷贝数变异与综合征型先天性心脏病的关系,发现其新的致病性拷贝数变异。同时尽可能的缩小拷贝数缺失或者重复的致病区间,寻找与先天性心脏病相关的候选致病基因。
     研究对象:2009年4月到2011年8月就诊于中南大学湘雅二医院小儿心脏外科的140例综合征型先天性心脏病患儿。该140例患儿排除了常见的三体综合征及GATA4,NKX2.5,TBX5和TBXl基因突变。其中,男性患儿75例,女性患儿65例。
     研究方法:利用美国QIAGEN公司gDNA抽提试剂盒,按照其标准抽提流程对上述140例患儿进行全外周静脉血gDNA抽提。利用美国illumina公司生产的Human660W-Quad及Human Omni1-quad芯片,采用Array-SNP高通量测序技术对这其进行全基因组CNVs分析。我们从中选出四例国内较少报道的综合征型患儿gDNA样本,利用美国Applied Biosystems公司生产的ABI Stepone定量PCR仪实行SYBR(?) Green I嵌合荧光法实时定量PCR,并利用Applied Biosystems的StepOne Software v2.1软件进行数据分析验证芯片结果。
     结果:在140例综合征型先天性心脏病患儿中共发现21个致病性CNVs,其发生比率约为15%。其中22q11.2微缺失9例,发生比率约为6.7%,在综合征型先天性心脏病中最为常见。同时,发现4例国内研究较少的综合征型先天性心脏病致病性CNVs,包括13q33.1-34,17p11.2缺失各一例及2例11q24-25缺失。对其关键基因进行实施定量PCR,其结果发现这4个致病性CNVs中的关键基因拷贝数约为正常对照组的0.5倍,与芯片结果一致。
     结论:1)illumina公司生产的Human660W-Quad及Human Omni1-quad芯片可对综合征型先天性心脏病患儿致病性CNVs进行快速而准确的分析,并提供可靠的遗传学信息;
     2)13q33.1-34缺失,17p11.2缺失及11q24-25为综合征型先天性心脏病的致病性CNVs区间。
     背景:利用美国illumina公司的高通量Array-SNP从140例综合征型先天性心脏病筛选出21个致病性CNVs。从这21个致病性CNVs中选出EFNB2, ZFPM2/FOG2为先天性心脏病的候选致病基因。
     目的:本研究旨在探讨EFNB2,FOG2两种候选基因与先天性心脏病的相关性。
     研究对象:2009年4月到2011年8月就诊于中南大学湘雅二医院小儿心脏外科的孤立型先天性心脏病患儿。从中选出孤立型房间隔缺损15例,室间隔缺损15例,完全性房室间隔缺损15例,共45例患者进行EFNB2基因突变筛选;右室双出口患儿38例进行ZFPM2/FOG2基因突变筛选,上述83例孤立型先天性心脏病gDNA样本已排除常见的GATA4,NKX2.5,TBX5,TBXl基因突变。
     研究方法:利用美国QIAGEN公司gDNA抽提试剂盒,按照其标准抽提流程对上述83例患儿进行外周静脉血gDNA抽提。对EFNB2, ZFPM2/FOG2分别设计相应的特异性引物扩增,利用ABI公司BigDye Terminator v1.1测序试剂盒及其3100测序仪对其PCR扩增产物进行测序分析。
     结果:在38例孤立型右室双出口中共发现5例ZFPM2/FOG2错意突变,其发生比率约为13.2%。其中c.G1015A(p.V339I)、c.G1831A(p.A611T)、c.A2209G(p.K737E)3例为新发的错意突变,而另外两例突变(c.A2107C(p.M703L)及c.C2665G(p.Q889E))常见于先天性膈疝,目前在先天性心脏病中尚无报道。以上5种突变都未收录于1000genomes或者the Single Nucleotide Polymor Polymorphism数据库(dbSNP)中。在对45例先天性间隔型缺损进行EFNB2突变筛查时发现1个同义突变,余样本未发现突变。
     结论:1)ZFPM/FOG2在先天性右室双出口的发生中起着重要的作用,然而不能确定其突变与某种类型先天性右室双出口相关联。
     2)EFNB2不是先天性间隔型缺损的候选致病基因,在13q33.1-34区域中仍存在有其他的候选致病基因。
Chapter-1Identification of the causative CNVs in Chinese syndromic congenital heart defects
     Objective:The aim of the study was to identify the causative CNVs in Chinese syndromic congenital heart defects patients.
     Method:140syndromic congenital heart defects cases, including75male and65female, were selected for CNVs analysis. These cases were all excluded the common chromosome abnormities and genes mutations such as NKX2.5, TBX1, TBX5, and GATA4. Genomic DNA was isolated from peripheral blood leukocytes using a QIAamp DNA Blood Mini Kit (Qiagen, Valencia, CA) according to the manufacturer's instructions. The Human660w-Quad and Human Omni1-Quad Chip (illumina Inc, CA,USA) and the illumina BeadScan genotyping system (Beadstation Scanner) were employed to obtain the signal intensities of probes (SNP) following the manufacturer's instructions. The BeadStudio3.3.7software was used to analyze the genotypes and evaluate the experimental quality. The call rates of the samples are greater than99.0%. Among the21CNVs,4CNVs were validated by Real-Time PCR.
     Result:21pathogenic CNVs were explored in140syndromic congenital heart defects cases and the22q11.2microdeletion (9/140) was common in the causative CNVs. The4pathogenic CNVs regions were confirmed by the Real-time PCR and all of them were microdeletion variations. The results of the Real-Time PCR were equal to micro arrays'.
     Conclusion:1) high resolution Array-SNP was useful for the identification of the causative CNVs in syndromic congenital heart defects
     2)11q24-25,13q33.1-34and17p11.2were the causative CNVs regions for the syndromic congenital heart defects
     Objective:The aim of the study was to explore the relationship between the two candidate causative genes and non-syndromic congenital heart defects.
     Method:45nonsyndromic congenital septum defect cases, including congenital atrium septum defect in15cases, congenital ventricle septum defect in15cases and complete atrioventricular septum defects in15cases were selected for the EFNB2mutation sequencing. We also chose38congenital double outlet of right ventricle (DORV) for the ZFPM/FOG2mutation sequencing. Before the mutation sequencing, we had excluded the common genes mutations such as NKX2.5, TbXl, TbX5and GATA4. Genomic DNA was isolated from peripheral blood leukocytes using a QIAamp DNA Blood Mini Kit (Qiagen, Valencia, CA) according to the manufacturer's instructions. Primers were designed for the Polymerase Chain Reaction (PCR). The PCR products were used for the mutation sequencing by ABI3100Genetic Analyzer according to its protocol. The test would be repeated for3times once the causative gene mutations were discovered.
     Result:5ZFPM/FOG2mutations were found in38DORV cases. Three novel mutations (p.V339I.p.K737E, and p.A611T) were reported for the first time. The other two mutations (p.M703L and p.Q889E) were reported in patients with congenital diaphragmatic hernia but not in patients with CHD. Besides that, one EFNB2mutations were found in45congenital septum defects cases. This synonymous mutation was found in a congenital ventricular septum defects case
     Conclusion:1) variants of the ZFPM2/FOG2gene might be a common cause of DORV, but the ZFPM2/FOG2mutations could not used in distinguishing the types of the DORV.
     2) We suggest that EFNB2should not be the candidate causative gene for congenital heart defects and there would be some other genes which are responsible for the CHD.
引文
1. Rosamond W, Flegal K, Friday G et al:Heart disease and stroke statistics--2007 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2007; 115:e69-171.
    2. Oyen N, Poulsen G, Boyd HA et al:Recurrence of congenital heart defects in families. Circulation 2009; 120:295-301.
    3. Cambien F, Tiret L:Genetics of cardiovascular diseases:from single mutations to the whole genome. Circulation 2007; 116:1714-1724.
    4. Kurnit DM, Layton WM, Matthysse S:Genetics, chance, and morphogenesis. Am J Hum Genet 1987; 41:979-995.
    5. Jenkins KJ, Correa A, Feinstein JA et al:Noninherited risk factors and congenital cardiovascular defects:current knowledge:a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 2007; 115: 2995-3014.
    6. Bruneau BG:The developmental genetics of congenital heart disease. Nature 2008; 451:943-948.
    7. Ferencz C, Neill CA, Boughman JA et al:Congenital cardiovascular malformations associated with chromosome abnormalities:an epidemiologic study. J Pediatr 1989; 114:79-86.
    8. Johnson MC, Hing A, Wood MK et al:Chromosome abnormalities in congenital heart disease. Am J Med Genet 1997; 70:292-298.
    9. Mitchell SC, Korones SB, Berendes HW:Congenital heart disease in 56,109 births. Incidence and natural history. Circulation 1971; 43:323-332.
    10. Spicer RL:Cardiovascular disease in Down syndrome. Pediatr Clin North Am 1984; 31:1331-1343.
    11. Lin AE, Basson CT, Goldmuntz E et al:Adults with genetic syndromes and cardiovascular abnormalities:clinical history and management. Genet Med 2008; 10:469-494.
    12. Sarkozy A, Conti E, Neri C et al:Spectrum of atrial septal defects associated with mutations of NKX2.5 and GATA4 transcription factors. J Med Genet 2005; 42: e16.
    13. Schott JJ, Benson DW, Basson CT et al:Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 1998; 281:108-111.
    14. Barriot R, Breckpot J, Thienpont B et al:Collaboratively charting the gene-to-phenotype network of human congenital heart defects. Genome Med 2010; 2:16.
    15. Lee JA, Carvalho CM, Lupski JR:A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 2007; 131: 1235-1247.
    16. Freeman JL, Perry GH, Feuk L et al:Copy number variation:new insights in genome diversity. Genome Res 2006; 16:949-961.
    17. Xu B, Roos JL, Levy S et al:Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 2008; 40:880-885.
    18. McCarroll SA, Altshuler DM:Copy-number variation and association studies of human disease. Nat Genet 2007; 39:S37-42.
    19. Alkan C, Coe BP, Eichler EE:Genome structural variation discovery and genotyping. Nat Rev Genet 2011; 12:363-376.
    20. Pinto D, Darvishi K, Shi X et al:Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nat Biotechnol 2011; 29:512-520.
    21. Ionita-Laza I, Rogers AJ, Lange C et al:Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis. Genomics 2009; 93: 22-26.
    22. Redon R, Ishikawa S, Fitch KR et al:Global variation in copy number in the human genome. Nature 2006; 444:444-454.
    23. Zhang F, Gu W, Hurles ME et al:Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 2009; 10:451-481.
    24. Breckpot J, Thienpont B, Peeters H et al:Array comparative genomic hybridization as a diagnostic tool for syndromic heart defects. J Pediatr 2010; 156: 810-817,817 e811-817 e814.
    25. Koolen DA, Pfundt R, de Leeuw N et al:Genomic microarrays in mental retardation:a practical workflow for diagnostic applications. Hum Mutat 2009; 30: 283-292.
    26. Greenway SC, Pereira AC, Lin JC et al:De novo copy number variants identify-new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet 2009; 41: 931-935.
    27. Vissers LE, van Ravenswaaij CM, Admiraal R et al:Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nature genetics 2004; 36:955-957.
    28. Henrichsen CN, Chaignat E, Reymond A:Copy number variants, diseases and gene expression. Hum Mol Genet 2009; 18:R1-8.
    29. Tuzun E, Sharp AJ, Bailey JA et al:Fine-scale structural variation of the human genome. Nat Genet 2005; 37:727-732.
    30. Sebat J, Lakshmi B, Troge J et al:Large-scale copy number polymorphism in the human genome. Science 2004; 305:525-528.
    31. Stranger BE, Forrest MS, Dunning M et al:Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 2007; 315: 848-853.
    32. Meberg A, Hals J, Thaulow E:Congenital heart defects--chromosomal anomalies, syndromes and extracardiac malformations. Acta Paediatr 2007; 96:1142-1145.
    33. Richards AA, Santos LJ, Nichols HA et al:Cryptic chromosomal abnormalities identified in children with congenital heart disease. Pediatr Res 2008; 64: 358-363.
    34. Rauch R, Hofbeck M, Zweier C et al:Comprehensive genotype-phenotype analysis in 230 patients with tetralogy of Fallot. J Med Genet 2010; 47:321-331.
    35. Greenberg F, Guzzetta V, Montes de Oca-Luna R et al:Molecular analysis of the Smith-Magenis syndrome:a possible contiguous-gene syndrome associated with del(17)(p11.2). Am J Hum Genet 1991; 49:1207-1218.
    36. Smith AC, McGavran L, Robinson J et al:Interstitial deletion of (17)(p11.2p11.2) in nine patients. Am J Med Genet 1986; 24:393-414.
    37. Stratton RF, Dobyns WB, Greenberg F et al:Interstitial deletion of (17)(p11.2p11.2):report of six additional patients with a new chromosome deletion syndrome. Am J Med Genet 1986; 24:421-432.
    38. Myers SM, Challman TD:Congenital heart defects associated with Smith-Magenis syndrome:two cases of total anomalous pulmonary venous return. Am J Med Genet A 2004; 131:99-100.
    39. Greenberg F, Lewis RA, Potocki L et al:Multi-disciplinary clinical study of Smith-Magenis syndrome (deletion 17p11.2). Am J Med Genet 1996; 62: 247-254.
    40. Sweeney E, Peart I, Tofeig M et al:Smith-Magenis syndrome and tetralogy of Fallot. J Med Genet 1999; 36:501-502.
    41. Wong JT, Chan DK, Wong KY et al:Smith-Magenis syndrome and cyanotic congenital heart disease:a case report. Clin Dysmorphol 2003; 12:73-74.
    42. Slager RE, Newton TL, Vlangos CN et al:Mutations in RAIl associated with Smith-Magenis syndrome. Nat Genet 2003; 33:466-468.
    43. Lee JA, Lupski JR:Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron 2006; 52:103-121.
    44. Lucas RE, Vlangos CN, Das P et al:Genomic organisation of the approximately 1.5 Mb Smith-Magenis syndrome critical interval:transcription map, genomic contig, and candidate gene analysis. Eur J Hum Genet 2001; 9:892-902.
    45. Edelman EA, Girirajan S, Finucane B et al:Gender, genotype, and phenotype differences in Smith-Magenis syndrome:a meta-analysis of 105 cases. Clin Genet 2007; 71:540-550.
    46. Girirajan S, Vlangos CN, Szomju BB et al:Genotype-phenotype correlation in Smith-Magenis syndrome:evidence that multiple genes in 17p11.2 contribute to the clinical spectrum. Genet Med 2006; 8:417-427.
    47. Kalay E, Uzumcu A, Krieger E et al:MYO15A (DFNB3) mutations in Turkish hearing loss families and functional modeling of a novel motor domain mutation. Am J Med Genet A 2007; 143A:2382-2389.
    48. Neumann SA, Tingley WG, Conklin BR et al:AKAP10 (I646V) functional polymorphism predicts heart rate and heart rate variability in apparently healthy, middle-aged European-Americans. Psychophysiology 2009; 46:466-472.
    49. Girirajan S, Truong HT, Blanchard CL et al:A functional network module for Smith-Magenis syndrome. Clin Genet 2009; 75:364-374.
    50. Kirchhoff M, Bisgaard AM, Stoeva R et al:Phenotype and 244k array-CGH characterization of chromosome 13q deletions:an update of the phenotypic map of 13q21.1-qter. Am J Med Genet A 2009; 149A:894-905.
    51. Allderdice PW, Davis JG, Miller OJ et al:The 13q-deletion syndrome. Am J Hum Genet 1969; 21:499-512.
    52. Van Buggenhout G, Trommelen J, Hamel B et al:13q deletion syndrome in an adult mentally retarded patient. Genet Couns 1999; 10:177-181.
    53. Ngo CT, Alhady M, Tan AK et al:Chromosome 13q deletion with Cornelia de Lange syndrome phenotype. Med J Malaysia 2007; 62:74-75.
    54. Quelin C, Bendavid C, Dubourg C et al:Twelve new patients with 13q deletion syndrome:genotype-phenotype analyses in progress. Eur J Med Genet 2009; 52: 41-46.
    55. Slavotinek AM:Novel microdeletion syndromes detected by chromosome microarrays. Hum Genet 2008; 124:1-17.
    56. Brown S, Gersen S, Anyane-Yeboa K et al:Preliminary definition of a "critical region" of chromosome 13 in q32:report of 14 cases with 13q deletions and review of the literature. Am J Med Genet 1993; 45:52-59.
    57. Ballarati L, Rossi E, Bonati MT et al:13q Deletion and central nervous system anomalies:further insights from karyotype-phenotype analyses of 14 patients. J Med Genet 2007; 44:e60.
    58. Walczak-Sztulpa J, Wisniewska M, Latos-Bielenska A et al:Chromosome deletions in 13q33-34:report of four patients and review of the literature. Am J Med Genet A 2008; 146:337-342.
    59. Perry DJ:Factor VII Deficiency. Br J Haematol 2002; 118:689-700.
    60. Uprichard J, Perry DJ:Factor X deficiency. Blood Rev 2002; 16:97-110.
    61. Pfeiffer RA, Ott R, Gilgenkrantz S et al:Deficiency of coagulation factors VII and X associated with deletion of a chromosome 13 (q34). Evidence from two cases with 46,XY,t(13;Y)(q11;q34). Hum Genet 1982; 62:358-360.
    62. Gilgenkrantz S, Briquel ME, Andre E et al:Structural genes of coagulation factors VII and X located on 13q34. Ann Genet 1986; 29:32-35.
    63. Kurosawa H, Suzumura H, Okuya M et al:Haemostatic management of surgery for imperforate anus in a patient with 13q deletion syndrome with combined deficiency of factors VII and X. Haemophilia 2009; 15:398-400.
    64. Grossfeld PD, Mattina T, Lai Z et al:The 11q terminal deletion disorder:a prospective study of 110 cases. Am J Med Genet A 2004; 129A:51-61.
    65. Schinzel A, Auf der Maur P, Moser H:Partial deletion of long arm of chromosome 11[del(11)(q23)]:Jacobsen syndrome. Two new cases and review of the clinical findings. J Med Genet 1977; 14:438-444.
    66. Bernaciak J, Szczaluba K, Derwinska K et al:Clinical and molecular-cytogenetic evaluation of a family with partial Jacobsen syndrome without thrombocytopenia caused by an approximately 5 Mb deletion del(11)(q24.3). Am J Med Genet A 2008; 146A:2449-2454.
    67. Mattina T, Perrotta CS, Grossfeld P:Jacobsen syndrome. Orphanet J Rare Dis 2009; 4:9.
    68. Leegte B, Kerstjens-Frederikse WS, Deelstra K et al:11q-syndrome:three cases and a review of the literature. Genet Couns 1999; 10:305-313.
    69. Wenger SL, Grossfeld PD, Siu BL et al:Molecular characterization of an 11q interstitial deletion in a patient with the clinical features of Jacobsen syndrome. Am J Med Genet A 2006; 140:704-708.
    70. Ye M, Hamzeh R, Geddis A et al:Deletion of JAM-C, a candidate gene for heart defects in Jacobsen syndrome, results in a normal cardiac phenotype in mice. Am J Med Genet A 2009; 149A:1438-1443.
    71. Ye M, Coldren C, Liang X et al:Deletion of ETS-1, a gene in the Jacobsen syndrome critical region, causes ventricular septal defects and abnormal ventricular morphology in mice. Hum Mol Genet 2010; 19:648-656.
    72. Aurrand-Lions M, Duncan L, Ballestrem C et al:JAM-2, a novel immunoglobulin superfamily molecule, expressed by endothelial and lymphatic cells. J Biol Chem 2001; 276:2733-2741.
    73. Luo Y, Ferreira-Cornwell M, Baldwin H et al:Rescuing the N-cadherin knockout by cardiac-specific expression of N-or E-cadherin. Development 2001; 128: 459-469.
    74. Phillips HM, Renforth GL, Spalluto C et al:Narrowing the critical region within 11q24-qter for hypoplastic left heart and identification of a candidate gene, JAM3, expressed during cardiogenesis. Genomics 2002; 79:475-478.
    75. Praetor A, McBride JM, Chiu H et al:Genetic deletion of JAM-C reveals a role in myeloid progenitor generation. Blood 2009; 113:1919-1928.
    76. Ferencz C, Boughman JA, Neill CA et al:Congenital cardiovascular malformations:questions on inheritance. Baltimore-Washington Infant Study Group. J Am Coll Cardiol 1989; 14:756-763.
    77. Li QY, Newbury-Ecob RA, Terrett JA et al:Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet 1997; 15:21-29.
    78. Basson CT, Bachinsky DR, Lin RC et al:Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 1997; 15: 30-35.
    79. Benson DW, Silberbach GM, Kavanaugh-McHugh A et al:Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 1999; 104:1567-1573.
    80. Garg V, Kathiriya IS, Barnes R et al:GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 2003; 424:443-447.
    81. Garg V, Muth AN, Ransom JF et al:Mutations in NOTCH1 cause aortic valve disease. Nature 2005; 437:270-274.
    82. Bleyl SB, Moshrefi A, Shaw GM et al:Candidate genes for congenital diaphragmatic hernia from animal models:sequencing of FOG2 and PDGFRalpha reveals rare variants in diaphragmatic hernia patients. Eur J Hum Genet 2007; 15: 950-958.
    83. De Luca A, Sarkozy A, Ferese R et al:New mutations in ZFPM2/FOG2 gene in tetralogy of Fallot and double outlet right ventricle. Clin Genet 2011; 80:184-190.
    84. Al-Mesned A, Al Akhfash AA, Sayed M:Incidence of Severe Congenital Heart Disease at the Province of Al-Qassim, Saudi Arabia. Congenit Heart Dis 2011.
    85. Walters HL,3rd, Mavroudis C, Tchervenkov CI et al:Congenital Heart Surgery Nomenclature and Database Project:double outlet right ventricle. Ann Thorac Surg 2000;69:S249-263.
    86. Calcagni G, Digilio MC, Sarkozy A et al:Familial recurrence of congenital heart disease:an overview and review of the literature. Eur J Pediatr 2007; 166: 111-116.
    87. McElhinney DB, Geiger E, Blinder J et al:NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol 2003; 42:1650-1655.
    88. Tomita-Mitchell A, Maslen CL, Morris CD et al:GATA4 sequence variants in patients with congenital heart disease. J Med Genet 2007; 44:779-783.
    89. Tevosian SG, Deconinck AE, Tanaka M et al:FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 2000; 101:729-739.
    90. Tevosian SG, Albrecht KH, Crispino JD et al:Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 2002; 129: 4627-4634.
    91. Svensson EC, Huggins GS, Lin H et al:A syndrome of tricuspid atresia in mice with a targeted mutation of the gene encoding Fog-2. Nat Genet 2000; 25: 353-356.
    92. Ackerman KG, Herron BJ, Vargas SO et al:Fog2 is required for normal diaphragm and lung development in mice and humans. PLoS Genet 2005; 1: 58-65.
    93. Tibboel D, Gaag AV:Etiologic and genetic factors in congenital diaphragmatic hernia. Clin Perinatol 1996; 23:689-699.
    94. Fishman MC, Chien KR:Fashioning the vertebrate heart:earliest embryonic decisions. Development 1997; 124:2099-2117.
    95. Gerety SS, Anderson DJ:Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development 2002; 129:1397-1410.
    96. Kim YH, Hu H, Guevara-Gallardo S et al:Artery and vein size is balanced by Notch and ephrin B2/EphB4 during angiogenesis. Development 2008; 135: 3755-3764.
    97. Adams RH, Wilkinson GA, Weiss C et al:Roles of ephrinB ligands and EphB receptors in cardiovascular development:demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 1999; 13: 295-306.
    98. Gale NW, Yancopoulos GD:Growth factors acting via endothelial cell-specific receptor tyrosine kinases:VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev 1999; 13:1055-1066.
    99. Gerety SS, Wang HU, Chen ZF et al:Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell 1999; 4:403-414.
    100. Gory-Faure S, Prandini MH, Pointu H et al:Role of vascular endothelial-cadherin in vascular morphogenesis. Development 1999; 126:2093-2102.
    101. Wang HU, Chen ZF, Anderson DJ:Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 1998; 93:741-753.
    1. Rosamond W, Flegal K, Friday G et al:Heart disease and stroke statistics--2007 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2007; 115:e69-171.
    2. Oyen N, Poulsen G, Boyd HA et al:Recurrence of congenital heart defects in families. Circulation 2009; 120:295-301.
    3. Cambien F, Tiret L:Genetics of cardiovascular diseases:from single mutations to the whole genome. Circulation 2007; 116:1714-1724.
    4. Kurnit DM, Layton WM, Matthysse S:Genetics, chance, and morphogenesis. Am J Hum Genet 1987; 41:979-995.
    5. Jenkins KJ, Correa A, Feinstein JA et al:Noninherited risk factors and congenital cardiovascular defects:current knowledge:a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 2007; 115: 2995-3014.
    6. Bruneau BG:The developmental genetics of congenital heart disease. Nature 2008; 451:943-948.
    7. Ferencz C, Neill CA, Boughman JA et al:Congenital cardiovascular malformations associated with chromosome abnormalities:an epidemiologic study. J Pediatr 1989; 114:79-86.
    8. Johnson MC, Hing A, Wood MK et al:Chromosome abnormalities in congenital heart disease. Am J Med Genet 1997; 70:292-298.
    9. Mitchell SC, Korones SB, Berendes HW:Congenital heart disease in 56,109 births. Incidence and natural history. Circulation 1971; 43:323-332.
    10. Spicer RL:Cardiovascular disease in Down syndrome. Pediatr Clin North Am 1984; 31:1331-1343.
    11. Lin AE, Basson CT, Goldmuntz E et al:Adults with genetic syndromes and cardiovascular abnormalities:clinical history and management. Genet Med 2008; 10:469-494.
    12. Sarkozy A, Conti E, Neri C et al:Spectrum of atrial septal defects associated with mutations of NKX2.5 and GATA4 transcription factors. J Med Genet 2005; 42: e16.
    13.Schott JJ, Benson DW, Basson CT et al:Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 1998; 281:108-111.
    14. Barriot R, Breckpot J, Thienpont B et al:Collaboratively charting the gene-to-phenotype network of human congenital heart defects. Genome Med 2010; 2:16.
    15. Ferencz C, Boughman JA, Neill CA et al:Congenital cardiovascular malformations:questions on inheritance. Baltimore-Washington Infant Study Group. J Am Coll Cardiol 1989; 14:756-763.
    16. Li QY, Newbury-Ecob RA, Terrett JA et al:Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet 1997; 15:21-29.
    17. Basson CT, Bachinsky DR, Lin RC et al:Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 1997; 15:30-35.
    18. Benson DW, Silberbach GM, Kavanaugh-McHugh A et al:Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 1999; 104:1567-1573.
    19. Garg V, Kathiriya IS, Barnes R et al:GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 2003; 424:443-447.
    20. Garg V, Muth AN, Ransom JF et al:Mutations in NOTCH1 cause aortic valve disease. Nature 2005; 437:270-274.
    21. Bruneau BG, Nemer G, Schmitt JP et al:A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor TBX5 in cardiogenesis and disease. Cell 2001; 106:709-721.
    22. Biben C, Weber R, Kesteven S et al:Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene NKX2-5. Circ Res 2000; 87:888-895.
    23. Dietz HC, Cutting GR, Pyeritz RE et al:Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 1991; 352:337-339.
    24. Chen J, Li B, Yang Y et al:Mutations of the TGFBR2 gene in Chinese patients with Marfan-related syndrome. Clin Invest Med 2010; 33:E14-21.
    25. Marino B, Digilio MC, Toscano A et al:Congenital heart diseases in children with Noonan syndrome:An expanded cardiac spectrum with high prevalence of atrioventricular canal. J Pediatr 1999; 135:703-706.
    26. Tartaglia M, Mehler EL, Goldberg R et al:Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 2001; 29: 465-468.
    27. Gremer L, Merbitz-Zahradnik T, Dvorsky R et al:Germline KRAS mutations cause aberrant biochemical and physical properties leading to developmental disorders. Hum Mutat 2011; 32:33-43.
    28. Schubbert S, Zenker M, Rowe SL et al:Germline KRAS mutations cause Noonan syndrome. Nature genetics 2006; 38:331-336.
    29. Roberts AE, Araki T, Swanson KD et al:Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet 2007; 39:70-74.
    30. Pandit B, Sarkozy A, Pennacchio LA et al:Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet 2007; 39:1007-1012.
    31. Nava C, Hanna N, Michot C et al:Cardio-facio-cutaneous and Noonan syndromes due to mutations in the RAS/MAPK signalling pathway:genotype-phenotype relationships and overlap with Costello syndrome. J Med Genet 2007; 44: 763-771.
    32. Zhu L, Belmont JW, Ware SM:Genetics of human heterotaxias. Eur J Hum Genet 2006; 14:17-25.
    33. Pierpont ME, Basson CT, Benson DW, Jr. et al:Genetic basis for congenital heart defects:current knowledge:a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young:endorsed by the American Academy of Pediatrics. Circulation 2007; 115:3015-3038.
    34. Bentham J, Bhattacharya S:Genetic mechanisms controlling cardiovascular development. Ann N Y Acad Sci 2008; 1123:10-19.
    35. Cremer T, Landegent J, Bruckner A et al:Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques:diagnosis of trisomy 18 with probe L1.84. Hum Genet 1986; 74:346-352.
    36. Johnson MC, Watson MS, Strauss AW:Chromosome 22q11 monosomy and the genetic basis of congenital heart disease. J Pediatr 1996; 129:1-3.
    37. Ewart AK, Morris CA, Atkinson D et al:Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nat Genet 1993; 5:11-16.
    38. Wu YQ, Nickerson E, Shaffer LG et al:A case of Williams syndrome with a large, visible cytogenetic deletion. J Med Genet 1999; 36:928-932.
    39. Li DY, Toland AE, Boak BB et al:Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis. Hum Mol Genet 1997; 6: 1021-1028.
    40. Khositseth A, Tocharoentanaphol C, Khowsathit P et al:Chromosome 22q11 deletions in patients with conotruncal heart defects. Pediatr Cardiol 2005; 26: 570-573.
    41. Saccone S, De Sario A, Della Valle G et al:The highest gene concentrations in the human genome are in telomeric bands of metaphase chromosomes. Proc Natl Acad Sci U S A 1992; 89:4913-4917.
    42. Knight SJ, Flint J:Perfect endings:a review of subtelomeric probes and their use in clinical diagnosis. J Med Genet 2000; 37:401-409.
    43. Clarkson B, Pavenski K, Dupuis L et al:Detecting rearrangements in children using subtelomeric FISH and SKY. Am J Med Genet 2002; 107:267-274.
    44. Lee JA, Carvalho CM, Lupski JR:A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 2007; 131: 1235-1247.
    45. Freeman JL, Perry GH, Feuk L et al:Copy number variation:new insights in genome diversity. Genome Res 2006; 16:949-961.
    46. Xu B, Roos JL, Levy S et al:Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 2008; 40:880-885.
    47. McCarroll SA, Altshuler DM:Copy-number variation and association studies of human disease. Nat Genet 2007; 39:S37-42.
    48. Vissers LE, de Vries BB, Veltman JA:Genomic microarrays in mental retardation: from copy number variation to gene, from research to diagnosis. J Med Genet 2010; 47:289-297.
    49. Koolen DA, Pfundt R, de Leeuw N et al:Genomic microarrays in mental retardation:a practical workflow for diagnostic applications. Hum Mutat 2009; 30: 283-292.
    50. Greenway SC, Pereira AC, Lin JC et al:De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet 2009; 41: 931-935.
    51. Greenberg F, Guzzetta V, Montes de Oca-Luna R et al:Molecular analysis of the Smith-Magenis syndrome:a possible contiguous-gene syndrome associated with del(17)(p11.2). Am J Hum Genet 1991; 49:1207-1218.
    52. Slager RE, Newton TL, Vlangos CN et a!:Mutations in RAI1 associated with Smith-Magenis syndrome. Nat Genet 2003; 33:466-468.
    53. Stratton RF, Dobyns WB, Greenberg F et al:Interstitial deletion of (17) (p11.2p11.2):report of six additional patients with a new chromosome deletion syndrome. Am J Med Genet 1986; 24:421-432.
    54. Smith AC, McGavran L, Robinson J et al:Interstitial deletion of (17)(p11.2p11.2) in nine patients. Am J Med Genet 1986; 24:393-414.
    55. Greenberg F, Lewis RA, Potocki L et al:Multi-disciplinary clinical study of Smith-Magenis syndrome (deletion 17p11.2). Am J Med Genet 1996; 62: 247-254.
    56. Gropman AL, Duncan WC, Smith AC:Neurologic and developmental features of the Smith-Magenis syndrome (del 17p11.2). Pediatr Neurol 2006; 34:337-350.
    57. Ruggieri VL, Arberas CL:[Behavioural phenotypes. Biologically determined neuropsychological patterns]. Rev Neurol 2003; 37:239-253.
    58. Myers SM, Challman TD:Congenital heart defects associated with Smith-Magenis syndrome:two cases of total anomalous pulmonary venous return. Am J Med Genet A 2004; 131:99-100.
    59. Sweeney E, Peart I, Tofeig M et al:Smith-Magenis syndrome and tetralogy of Fallot. J Med Genet 1999; 36:501-502.
    60. Wong JT, Chan DK, Wong KY et al:Smith-Magenis syndrome and cyanotic congenital heart disease:a case report. Clin Dysmorphol 2003; 12:73-74.
    61. Lee JA, Lupski JR:Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron 2006; 52:103-121.
    62. Lucas RE, Vlangos CN, Das P et al:Genomic organisation of the approximately 1.5 Mb Smith-Magenis syndrome critical interval:transcription map, genomic contig, and candidate gene analysis. Eur J Hum Genet 2001; 9:892-902.
    63. Edelman EA, Girirajan S, Finucane B et al:Gender, genotype, and phenotype differences in Smith-Magenis syndrome:a meta-analysis of 105 cases. Clin Genet 2007; 71:540-550.
    64. Girirajan S, Vlangos CN, Szomju BB et al:Genotype-phenotype correlation in Smith-Magenis syndrome:evidence that multiple genes in 17p11.2 contribute to the clinical spectrum. Genet Med 2006; 8:417-427.
    65. Kalay E, Uzumcu A, Krieger E et al:MYO15A (DFNB3) mutations in Turkish hearing loss families and functional modeling of a novel motor domain mutation. Am J Med Genet A 2007; 143 A:2382-2389.
    66. Neumann SA, Tingley WG, Conklin BR et al:AKAP10 (1646V) functional polymorphism predicts heart rate and heart rate variability in apparently healthy, middle-aged European-Americans. Psychophysiology 2009; 46:466-472.
    67. Girirajan S, Truong HT, Blanchard CL et al:A functional network module for Smith-Magenis syndrome. Clin Genet 2009; 75:364-374.
    68. Kirchhoff M, Bisgaard AM, Stoeva R et al:Phenotype and 244k array-CGH characterization of chromosome 13q deletions:an update of the phenotypic map of 13q21.1-qter. Am J Med Genet A 2009; 149A:894-905.
    69. Allderdice PW, Davis JG, Miller OJ et al:The 13q-deletion syndrome. Am J Hum Genet 1969; 21:499-512.
    70. Van Buggenhout G, Trommelen J, Hamel B et al:13q deletion syndrome in an adult mentally retarded patient. Genet Couns 1999; 10:177-181.
    71. Ngo CT, Alhady M, Tan AK et al:Chromosome 13q deletion with Cornelia de Lange syndrome phenotype. Med J Malaysia 2007; 62:74-75.
    72. Quelin C, Bendavid C, Dubourg C et al:Twelve new patients with 13q deletion syndrome:genotype-phenotype analyses in progress. Eur J Med Genet 2009; 52: 41-46.
    73. Slavotinek AM:Novel microdeletion syndromes detected by chromosome microarrays. Hum Genet 2008; 124:1-17.
    74. Brown S, Gersen S, Anyane-Yeboa K et al:Preliminary definition of a "critical region" of chromosome 13 in q32:report of 14 cases with 13q deletions and review of the literature. Am J Med Genet 1993; 45:52-59.
    75. Ballarati L, Rossi E, Bonati MT et al:13q Deletion and central nervous system anomalies:further insights from karyotype-phenotype analyses of 14 patients. J Med Genet 2007; 44:e60.
    76. Walczak-Sztulpa J, Wisniewska M, Latos-Bielenska A et al:Chromosome deletions in 13q33-34:report of four patients and review of the literature. Am J Med Genet A 2008; 146:337-342.
    77. Adams RH, Diella F, Hennig S et al:The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis but not cranial neural crest migration. Cell 2001; 104:57-69.
    78. Kim YH, Hu H, Guevara-Gallardo S et al:Artery and vein size is balanced by Notch and ephrin B2/EphB4 during angiogenesis. Development 2008; 135: 3755-3764.
    79. Twigg SR, Kan R, Babbs C et al:Mutations of ephrin-B1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome. Proc Natl Acad Sci U S A 2004; 101:8652-8657.
    80. Wieland I, Reardon W, Jakubiczka S et al:Twenty-six novel EFNB1 mutations in familial and sporadic craniofrontonasal syndrome (CFNS). Hum Mutat 2005; 26: 113-118.
    81.Gerety SS, Anderson DJ:Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development 2002; 129:1397-1410.
    82. Pfeiffer RA, Ott R, Gilgenkrantz S et al:Deficiency of coagulation factors Ⅶ and X associated with deletion of a chromosome 13 (q34). Evidence from two cases with 46,XY,t(13;Y)(q11;q34). Hum Genet 1982; 62:358-360.
    83. Gilgenkrantz S, Briquel ME, Andre E et al:Structural genes of coagulation factors Ⅶ and Ⅹ located on 13q34. Ann Genet 1986; 29:32-35.
    84. Perry DJ:Factor Ⅶ Deficiency. Br J Haematol 2002; 118:689-700.
    85. Uprichard J, Perry DJ:Factor Ⅹ deficiency. Blood Rev 2002; 16:97-110.
    86. Kurosawa H, Suzumura H, Okuya M et al:Haemostatic management of surgery for imperforate anus in a patient with 13q deletion syndrome with combined deficiency of factors Ⅶ and X. Haemophilia 2009; 15:398-400.
    87. Krantz ID, Piccoli DA, Spinner NB:Alagille syndrome. J Med Genet 1997; 34: 152-157.
    88. Watson GH, Miller V:Arteriohepatic dysplasia:familial pulmonary arterial stenosis with neonatal liver disease. Arch Dis Child 1973; 48:459-466.
    89. Li L, Krantz ID, Deng Y et al:Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet 1997; 16:243-251.
    90. Oda T, Elkahloun AG, Pike BL et al:Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet 1997; 16:235-242.
    91.McDaniell R, Warthen DM, Sanchez-Lara PA et al:NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 2006; 79:169-173.
    92. McElhinney DB, Krantz ID, Bason L et al:Analysis of cardiovascular phenotype and genotype-phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation 2002; 106:2567-2574.
    93. Kamath BM, Bason L, Piccoli DA et al:Consequences of JAG1 mutations. J Med Genet 2003; 40:891-895.
    94. Krantz ID, Rand EB, Genin A et al:Deletions of 20p12 in Alagille syndrome: frequency and molecular characterization. Am J Med Genet 1997; 70:80-86.
    95. Warthen DM, Moore EC, Kamath BM et al:Jagged1 (JAG1) mutations in Alagille syndrome:increasing the mutation detection rate. Hum Mutat 2006; 27:436-443.
    96. Krantz ID, Smith R, Colliton RP et al:Jaggedl mutations in patients ascertained with isolated congenital heart defects. Am J Med Genet 1999; 84:56-60.
    97. Turnpenny PD, Ellard S:Alagille syndrome:pathogenesis, diagnosis and management. Eur J Hum Genet 2012; 20:251-257.
    98. Krantz ID, Colliton RP, Genin A et al:Spectrum and frequency of jagged1(JAG1) mutations in Alagille syndrome patients and their families. Am J Hum Genet 1998; 62:1361-1369.
    99. Crosnier C, Driancourt C, Raynaud N et al:Mutations in JAGGED1 gene are predominantly sporadic in Alagille syndrome. Gastroenterology 1999; 116: 1141-1148.
    100. Colliton RP, Bason L, Lu FM et al:Mutation analysis of Jaggedl (JAG1) in Alagille syndrome patients. Hum Mutat 2001; 17:151-152.
    101. McCright B, Lozier J, Gridley T:A mouse model of Alagille syndrome:Notch2 as a genetic modifier of Jagl haploinsufficiency. Development 2002; 129: 1075-1082.
    102. Dyack S, Cameron M, Otley A et al:An autosomal recessive form of Alagille-like syndrome that is not linked to JAG1. Genet Med 2007; 9:544-550.
    103. Sanlaville D, Verloes A:CHARGE syndrome:an update. Eur J Hum Genet 2007; 15:389-399.
    104. Hall BD:Choanal atresia and associated multiple anomalies. J Pediatr 1979; 95: 395-398.
    105. Hittner HM, Hirsch NJ, Kreh GM et al:Colobomatous microphthalmia, heart disease, hearing loss, and mental retardation--a syndrome. J Pediatr Ophthalmol Strabismus 1979; 16:122-128.
    106. Pagon RA, Graham JM, Jr., Zonana J et al:Coloboma, congenital heart disease, and choanal atresia with multiple anomalies:CHARGE association. J Pediatr 1981; 99:223-227.
    107. Graham JM, Jr.:A recognizable syndrome within CHARGE association: Hall-Hittner syndrome. Am J Med Genet 2001; 99:120-123.
    108. Morgan D, Bailey M, Phelps P et al:Ear-nose-throat abnormalities in the CHARGE association. Arch Otolaryngol Head Neck Surg 1993; 119:49-54.
    109. Ozeki H, Shirai S, Nozaki M et al:Maldevelopment of neural crest cells in patients with typical uveal coloboma. J Pediatr Ophthalmol Strabismus 1999; 36: 337-341.
    110. Wyse RK, al-Mahdawi S, Burn J et al:Congenital heart disease in CHARGE association. Pediatr Cardiol 1993; 14:75-81.
    111. Ragan DC, Casale AJ, Rink RC et al:Genitourinary anomalies in the CHARGE association. J Urol 1999; 161:622-625.
    112. Mitchell JA, Davenport SL, Hefner MA et al:Use of an expert model to test diagnostic criteria in CHARGE syndrome. J Med Syst 1985; 9:425-436.
    113. Lalani SR, Safiullah AM, Fernbach SD et al:Spectrum of CHD7 mutations in 110 individuals with CHARGE syndrome and genotype-phenotype correlation. Am J Hum Genet 2006; 78:303-314.
    114. Jongmans MC, Admiraal RJ, van der Donk KP et al:CHARGE syndrome:the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet 2006; 43: 306-314.
    115. Vissers LE, van Ravenswaaij CM, Admiraal R et al:Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet 2004; 36:955-957.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700