实时三维超声心动图评价右心室整体和节段容积及收缩功能的临床与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分实时三维超声心动图评价正常人右心室整体和节段容积及收缩功能的临床研究
     目的运用实时三维超声心动图(RT3DE)方法,分析正常人整体和节段容积及收缩功能特点,及其与性别、年龄及常规超声心动图参数之间的相关性,探讨RT3DE在评价正常人右心室整体和节段容积及收缩功能中的应用价值。
     方法应用PHILIPS-iE33超声显像仪及匹配的X3-1探头,对53名正常成年人进行常规超声心动图及RT3DE检查。应用TomTec软件定量分析右心室RT3DE图像,获得右心室整体及流入道、体部和流出道三个节段的EDV、ESV、SV、EF,计算各节段容积达最小值时间(Tmsv)及其所占心动周期的百分率(Tmsv%)的标准差(SD)和最大差(dif)作为右心室收缩同步性参数。
     结果51例(96%)正常人RT3DE图像成功运用TomTec软件进行分析。正常人男性组右心室体部、流出道及整体EDV及SV大于女性组(P均<0.05)。男性组右心室三个节段及整体ESV均大于女性组(P均<0.05)。男性组流入道EF略低于女性组(P<0.05),两组右心室整体和体部、流出道节段EF无显著差异。两组右心室整体和三个节段Tmsv、 Tmsv%及收缩同步性参数均无显著差异。组内比较结果显示,男性组和女性组流入道EDV和SV均大于流出道和体部(P均<0.05),两组流入道节段容积占整体容积百分比均大于其余两个节段,节段EF值大小关系均为流入道>流出道>体部(P均<0.05)。相关性分析结果显示,正常人右心室整体EDV与右心室舒张末期内径及面积正相关(P均<0.05),右心室整体ESV与右心室收缩末期内径及面积正相关(P均<0.05),右心室整体SV与常规超声方法测定的右心室每搏输出量正相关(P<0.05),右心室RT3DE参数与年龄无显著相关性。右心室RT3DE参数观察者内和观察者间变异度较低,一致性较高。
     结论正常人右心室三个节段容积和收缩功能具有不同的特点,男性和女性右心室整体和节段容积及收缩功能存在一定的差异, RT3DE分析右心室整体和节段容积和收缩功能具有较高的准确性和可重复性。
     第二部分实时三维超声心动图评价病理状态右心室整体和节段容积及收缩功能的临床研究
     第一节实时三维超声心动图评价房间隔缺损患者右心室整体和节段容积及收缩功能的临床研究
     目的运用实时三维超声心动图(RT3DE)方法,分析房间隔缺损(房缺)患者整体和节段容积及收缩功能特点,及其与超声心动图估测的肺动脉收缩压(PASP)和肺血管阻力(PVRe)及房缺内径(ASD-D)之间的相关性。
     方法应用PHILIPS-iE33超声显像仪及匹配的X3-1探头,对22名房缺患者及性别年龄匹配的正常对照者行常规超声心动图及RT3DE检查。应用TomTec软件定量分析右心室RT3DE图像,获得右心室整体及流入道、体部和流出道三个节段的EDV、 ESV、 SV、 EF,以各节段容积达最小值时间(Tmsv)及其所占心动周期的百分率(Tmsv%)的标准差(SD)和最大差(dif)为右心室收缩同步性参数。
     结果22例房缺患者RT3DE图像均成功运用TomTec软件进行分析。与正常对照组相比,房缺组右心室整体及三个节段的EDV、 ESV和SV均增大(P均<0.001),体部节段EDV和ESV占整体容积的百分比增加,流出道和流入道节段EDV和ESV占整体容积的百分比减小,右心室整体及三个节段的EF均降低(P均<0.05)。两组间右心室整体和各节段Tmsv、 Tmsv%及右心室收缩同步性参数无显著差异。组内比较结果显示,房缺组右心室流出道EDV低于流入道(P<0.05),流出道ESV低于其他两个节段(P<0.05),流入道SV和EF高于其他两个节段(P<0.05),余节段容积参数无显示差异;右心室整体EF高于体部,与流入道及流出道EF无显著差异。相关性分析结果显示,右心室整体和流入道节段EDV、 ESV及SV与ASD-D及PASP正相关(r=0.541~0.704,P均<0.05),右心室整体EF与PVRe负相关(r=-0.477,P<0.05)。
     结论房缺患者右心室整体及三个节段的容积增加、收缩功能减弱,其右心室节段容积和收缩功能发生不同程度的改变。房缺患者右心室整体和流入道节段容积与右心室前负荷正相关,右心室整体收缩功能与后负荷程度负性相关。
     第二节实时三维超声心动图评价左心瓣膜病患者右心室整体和节段容积及收缩功能的临床研究
     目的运用实时三维超声心动图(RT3DE)方法,分析左心瓣膜病(二尖瓣及主动脉瓣病变)患者整体和节段容积及收缩功能特点,及其与超声心动图估测的肺动脉收缩压(PASP)和肺血管阻力(PVRe)之间的相关性。
     方法应用PHILIPS-iE33超声显像仪及X3-1探头,对23名左心瓣膜病患者及性别年龄相匹配的正常对照者进行常规超声心动图及RT3DE检查。应用TomTec软件定量分析右心室RT3DE图像,获得右心室整体及流入道、体部和流出道三个节段的EDV、 ESV、 SV、 EF,计算各节段容积达最小值时间(Tmsv)及其所占心动周期的百分率(Tmsv%)的标准差(SD)和最大差(dif)作为右心室收缩同步性参数。
     结果23例左心瓣膜病患者RT3DE图像均成功运用TomTec软件进行分析。与正常对照组相比,瓣膜病组右心室整体及三个节段的EDV和ESV增加(P均<0.05),EF降低(P均<0.05),Tmsv%延长(P均<0.05),Tmsv%-SD、 Tmsv-SD、 Tmsv%-dif及Tmsv-dif增加(P均<0.05)。组内比较结果显示,瓣膜病组右心室流入道EDV和SV大于流出道和体部(P均<0.05),后两者EDV和SV无显著差异;流入道ESV大于流出道(P<0.05)、与体部无显著差异;体部EF低于流出道、流入道及整体EF(P均<0.05),后三者之间无显著差异;三个节段Tmsv及Tmsv%之间均无显著差异。相关性分析结果显示,右心室RT3DE参数与PASP均无显著相关性,右心室整体及流入道节段EF与PVRe之间存在较强的负相关关系(r=-0.686、-0.675,P均<0.001)。
     结论左心瓣膜病患者右心室整体及三个节段的容积增加、收缩功能减弱,其右心室节段收缩功能发生不同程度的改变,右心室节段收缩活动存在不同步现象。左心瓣膜病患者右心室整体和流入道节段收缩功能与后负荷负相关。
     第三节实时三维超声心动图评价肺动脉高压患者右心室整体和节段容积及收缩功能的临床研究
     目的运用实时三维超声心动图(RT3DE)方法,分析肺动脉高压(PAH)患者整体和节段容积及收缩功能特点,及其与右心导管测定的肺动脉收缩压(PASP)和肺血管阻力(PVR)之间的相关性。
     方法应用PHILIPS-iE33超声显像仪及X3-1探头,对25名PAH患者及性别年龄匹配的正常对照者进行常规超声心动图及RT3DE检查。应用TomTec软件定量分析右心室RT3DE图像,获得左室整体及流入道、体部和流出道三个节段的EDV、ESV、 SV、 EF。计算各节段容积达最小值时间(Tmsv)及其所占心动周期的百分率(Tmsv%)的标准差(SD)和最大差(dif)作为右心室收缩同步性参数。记录右心导管测定的PASP及PVR等血流动力学参数。
     结果24例(96%)PAH患者RT3DE图像成功运用TomTec软件进行分析。与正常对照组相比,PAH组右心室整体及三个节段的EDV和ESV增加(P均<0.001)、EF降低(P均<0.001),右心室体部和流出道EDV和ESV占右心室整体EDV和ESV的百分比分别增加及降低(P均<0.001),Tmsv%-SD、 Tmsv-SD、 Tmsv%-dif及Tmsv-dif增加(P均<0.05)。组内比较结果显示,PAH组流入道EDV大于流出道(P<0.05),流入道和体部ESV均大于流出道(P均<0.05),流入道SV大于体部和流出道(P均<0.001),右心室流出道、流入道及整体EF高于体部,体部EF最低(P均<0.001),三个节段Tmsv及Tmsv%之间均无显著差异。PAH患者中17例成功进行右心导管检查,相关性分析结果显示,右心室整体及流入道节段EF与超声估测的肺血管阻力(PVRe)负相关(r=-0.644、-0.510,P均<0.05),与右心导管测定的PVR负相关(r=-0.732、-0.592,P均<0.001),右心室整体及流入道节段EF与右心导管测定的PASP负相关(r=-0.486、-0.471,P<0.05),右心室RT3DE参数与超声估测的PASP均无显著相关性。结论PAH患者右心室整体及三个节段的容积增加、收缩功能减弱,其右心室节段容积和收缩功能发生不同程度的改变,右心室节段收缩活动存在不同步,PAH患者右心室整体和流入道节段收缩功能与后负荷负相关。
     第三部分实时三维超声心动图评价正常比格犬右心室整体和节段容积及收缩功能的实验研究
     目的运用实时三维超声心动图(RT3DE)方法,分析正常比格犬右心室整体和节段容积及收缩功能的特点及其与常规超声心动图参数之间的相关性,探讨RT3DE在评价正常比格犬右心室整体和节段容积及收缩功能中的应用价值。
     方法应用PHILIPS-iE33超声显像仪及匹配的X3-1探头,对10条正常比格犬进行常规超声心动图及RT3DE检查。应用TomTec软件定量分析右心室RT3DE图像,获得右心室整体及流入道、体部和流出道三个节段的EDV、 ESV、 SV、 EF,计算各节段容积达最小值时间(Tmsv)及其所占心动周期的百分率(Tmsv%)的标准差(SD)和最大差(dif)作为右心室收缩同步性参数。
     结果8条(80%)正常比格获得满意的RT3DE图像并成功运用TomTec软件进行分析。正常比格犬流入道EDV、 ESV和SV大于流出道和体部(P均<0.05),后两个节段EDV、 ESV和SV无显著差异;右心室整体及三个节段EF、 Tmsv及Tmsv%之间均无显著差异。相关性分析结果显示,正常比格犬右心室整体EDV与普通超声心动图参RVLDd、 RVMDd及RVAd正相关(P均<0.05),右心室整体ESV与普通超声心动图参RVLDs、 RVMDs及RVAs正相关(P均<0.05),右心室整体SV与二维超声估测的左心室SV之间无显著差异;右心室整体及流入道节段的EF与右心室面积变化分数正相关(P<0.05)。右心室RT3DE相关参数观察者内和测试间变异度较低,一致性较好。
     结论正常比格犬右心室节段容积具有不同的特点,节段收缩活动具有较高的同步性, RT3DE技术分析正常比格犬右心室整体和节段容积及收缩功能具有较高的准确性和可重复性。
Part I. Evaluation of Right Ventricular Global and Regional Volume and Systolic Function in Normal Adults Using Real-time Three-Dimensional Echocardiography
     Objective:To evaluate the value of real-time three-dimensional echocardiography (RT3DE) in assessment of right ventricular (RV) global and regional volume and systolic function, and to explore the characteristics of RT3DE parameters in normal adults.
     Methods:RT3DE images were acquired from53normal adults for evaluation and analysis to obtain RV global and regional end-diastolic volume (EDV), end-systolic volume (ESV), systolic volume (SV) and ejection fraction (EF) in three compartments (inflow, body and outflow). The RV dyssynchrony parameters were calculated as the standard deviation (SD) and maximum difference (dif) of time to minimum systolic volume (Tmsv) and Tmsv corrected by heart rate (Tmsv%) in three RV compartments. Conventional echocardiographic parameters including RV diameters and areas were calculated and recorded.
     Results:RT3DE images were successfully acquired and analyzed in51(96%) normal adults. Higher RV global and regional (body and outflow) EDV and SV, higher global and regional ESV and lower inflow EF were found in the male group when compared with the female group (all P<0.05).There was no significant difference in dyssynchrony parameters between the male and female subjects. It was found that EDV and SV in the inflow compartment were the highest in the three compartments of the right ventricle (all P<0.05), and the difference of regional EF were ordered from larger to smaller as inflow>outflow>body (all P<0.05). The differences among global and regional Tmsv and Tmsv%were not significant. RV global EDV was positively correlated with RV end-diastolic diameters and area (all P<0.05). RV global ESV was positively correlated with RV end-systolic diameters and area (all P<0.05). RV global SV was positively correlated with RV stroke volume. Intra-and inter-variability of RT3DE parameters was relatively low。
     Conclusions:In normal adults, there were distinct characters of regional volume and systolic function in the three compartments of the right ventricle, with certain differences between males and females. Evaluation of RV global and regional volume and systolic function using RT3DE method was found to be of relatively high accuracy and reproducibility.
     Part Ⅱ. Evaluation of Right Ventricular Global and Regional Volume and Systolic Function in Pathological Conditions Using Real-time Three-Dimensional Echocardiography
     Section Ⅰ. Evaluation of Right Ventricular Global and Regional Volume and Systolic Function in patients with atrial septal defect Using Real-time Three-Dimensional Echocardiography
     Objective:To evaluate right ventricular (RV) global and regional volume and systolic function in patients with secondum atrial septal defect (ASD) using real-time three-dimensional echocardiography (RT3DE), and to explore the relationship between parameters derived from RT3DE and parameters measured by conventional echocardiography.
     Methods:RT3DE images were acquired from22patients with secundum ASD and22age-and gender-matched normal normal controls for evaluation and analysis to obtain RV global and regional end-diastolic volume (EDV), end-systolic volume (ESV), systolic volume (SV) and ejection fraction (EF) in three compartments (inflow, body and outflow). The RV dyssynchrony parameters were calculated as the standard deviation (SD) and maximum difference (dif) of time to minimum systolic volume (Tmsv) and Tmsv corrected by heart rate (Tmsv%) in three RV compartments. Conventional echocardiographic parameters including pulmonary artery systolic pressure (PASP), pulmonary vascular resistance (PVRe) and maximum diameter of ASD (ASD-D) were calculated and recorded.
     Results:RT3DE images were successfully acquired analyzed in all the subjects. RV global and regional EDV、 ESV and SV were larger (all P<0.001) and EF was lower (all P<0.05) in the ASD group than in the controls. There were no significant differences in Tmsv、 Tmsv%and RV dyssynchrony parameters between the two groups. In the patients group, EDV in the outflow compartment was lower than that in the inflow compartment (P<0.05); ESV in the outflow compartment was the lowest among the three compartments (P<0.05); SV and EF in the inflow compartment were the highest among the three compartments (P<0.05); RV global EF, similar with regional EF in the inflow and outflow compartments, was higher than that in the body compartment (P<0.05). In patients with ASD, RV global and regional EDV, ESV and SV in the inflow compartment were positively correlated with ASD-D and PASP (r=0.541-0.704, all P<0.05); RV global and regional SV in all the three compartments were positively correlated with ASD-D (r=0.463-0.681, all P<0.05); RV global EF was negatively correlated with PVRe (r=-0.477. P<0.05).
     Conclusions:In patients with ASD, RV global and regional volume was enlarged and systolic function was impaired with distinct characteristics; RV global and regional volumes were positively correlated with RV pre-load and RV global EF was negatively correlated with RV after-load.
     Section Ⅱ. Evaluation of Right Ventricular Global and Regional Volume and Systolic Function in patients with valvular heart disease Using Real-time Three-Dimensional Echocardiography
     Objective:To evaluate right ventricular (RV) global and regional volume and systolic function in patients with valvular heart disease using real-time three-dimensional echocardiography (RT3DE), and to explore the relationship between parameters derived from RT3DE and parameters measured by conventional echocardiography.
     Methods:RT3DE images were acquired from23patients with valvular heart disease and23age-and gender-matched normal normal controls for evaluation and analysis to obtain RV global and regional end-diastolic volume (EDV), end-systolic volume (ESV), systolic volume (SV) and ejection fraction (EF) in three compartments (inflow, body and outflow). The RV dyssynchrony parameters were calculated as the standard deviation (SD) and maximum difference (dif) of time to minimum systolic volume (Tmsv) and Tmsv corrected by heart rate (Tmsv%) in three RV compartments. Conventional echocardiographic parameters including pulmonary artery systolic pressure (PASP) and pulmonary vascular resistance (PVRe) were calculated and recorded.
     Results:RT3DE images were successfully acquired analyzed in all the subjects. RV global and regional EDV, ESV and SV were larger (all P<0.05) and EF was lower (all P<0.05) in patients with valvular heart disease than in the controls. RV dyssynchrony parameters including Tmsv%-SD, Tmsv-SD, Tmsv%-dif and Tmsv-dif were higher in patients with valvular heart disease than in the controls (all P<0.05). In patients group, EDV and SV in the inflow compartment was the highest among three compartments (P<0.05); ESV in the inflow compartment was higher than that in the outflow compartment (P<0.05); RV global EF, similar with regional EF in the inflow and outflow compartments, was higher than that in the body compartment (P<0.05). In patients with valvular heart diseases, there was no significant correlation between RT3DE parameters and PASP; RV global EF and EF in the inflow compartment were negatively correlated with PVRe (r=-0.686,-0.675, both P<0.001).
     Conclusions:In patients with valvular heart disease, RV global and regional volume was enlarged and systolic function was impaired with distinct characteristics; RV global EF and regional EF in the inflow compartment were negatively correlated with RV after-load.
     Section III. Evaluation of Right Ventricular Global and Regional Volume and Systolic Function in patients with pulmonary arterial hypertension Using Real-time Three-Dimensional Echocardiography
     Objective:To evaluate right ventricular (RV) global and regional volume and systolic function in patients with pulmonary arterial hypertension (PAH) using real-time three-dimensional echocardiography (RT3DE), and to explore the relationship between parameters derived from RT3DE and parameters measured by right heart catheterization (RHC).
     Methods:RT3DE images were acquired from25patients with PAH and25age-and gender-matched normal normal controls for evaluation and analysis to obtain RV global and regional end-diastolic volume (EDV), end-systolic volume (ESV), systolic volume (SV) and ejection fraction (EF) in three compartments (inflow, body and outflow). The RV dyssynchrony parameters were calculated as the standard deviation (SD) and maximum difference (dif) of time to minimum systolic volume (Tmsv) and Tmsv corrected by heart rate (Tmsv%) in three RV compartments. RHC was performed in17patients to obtain pulmonary artery systolic pressure (PASP) and pulmonary vascular resistance (PVR).
     Results:RT3DE images were successfully acquired analyzed in24(96%) patients with PAH. RV global and regional EDV, ESV and SV were larger (all P<0.001) and EF was lower (all P<0.001) in patients with PAH than in the controls. RV dyssynchrony parameters including Tmsv%-SD, Tmsv-SD, Tmsv%-dif and Tmsv-dif were higher in patients with PAH than in the controls (all P<0.05). In the patients group, EDV in the inflow compartment was higher than in the outflow compartment (P<0.05); ESV in the inflow and body compartments were higher than in the outflow compartment (P<0.05); SV in the inflow compartment was the highest among the three compartments (P<0.05); EF in the body compartment was the lowest among the three compartments (P<0.05). In patients with PAH, RV global EF and regional EF in the inflow compartment were negatively correlated with PASP (r=-0.486、-0.471, both P<0.05) and PVR measured by RHC (r=-0.732,-0.592, both P<0.001), and with PVR estimated by echocardiography (r=-0.644,-0.510. both P<0.05).
     Conclusions:In patients with PAH, RV global and regional volume was enlarged and systolic function was impaired with distinct characteristics; RV global and regional EF in the inflow compartment were negatively correlated with RV after-load.
     Part Ⅲ. Evaluation of Right Ventricular Global and Regional Volume and Systolic Function in healthy Beagle Dogs Using Real-time Three-Dimensional Echocardiography
     Objective:To evaluate the value of real-time three-dimensional echocardiography (RT3DE) in assessment of right ventricular (RV) global and regional volume and systolic function, and to explore the characteristics of RT3DE parameters in healthy canine model.
     Methods:RT3DE images were acquired from10healthy Beagle dogs for evaluation and analysis to obtain RV global and regional end-diastolic volume (EDV), end-systolic volume (ESV), systolic volume (SV) and ejection fraction (EF) in three compartments (inflow, body and outflow). The RV dyssynchrony parameters were calculated as the standard deviation (SD) and maximum difference (dif) of time to minimum systolic volume (Tmsv) and Tmsv corrected by heart rate (Tmsv%) in three RV compartments. Conventional echocardiographic parameters including RV diameters and left ventricular stroke volume were calculated and recorded.
     Results:RT3DE images were successfully acquired and analyzed in8(80%) Beagles. It was found that EDV, ESV and SV in the inflow compartment were the highest in the three compartments of the right ventricle of healthy Beagle dogs (all P<0.05), and there was no significant differences between EDV ESV and SV in the body and outflow compartment. The differences among global and regional EF, Tmsv and Tmsv%were not significant. RV global EDV was positively correlated with RV end-diastolic diameters and area (all P<0.05). RV global ESV was positively correlated with RV end-systolic diameters and area (all P<0.05). There was no significant difference between RV global SV and left ventricular stroke volume. RV global EF and EF in the inflow compartment were positively correlated with RV fractional area change (r=0.656,0.757, both P<0.05). Intra-observer and test-retest variability of RT3DE parameters was relatively low。
     Conclusions:In healthy Beagle dogs, there were distinct characters of regional volume and systolic function in the three compartments of the right ventricle; evaluation of RV global and regional volume and systolic function using RT3DE method was found to be of relatively high accuracy and reproducibility, and the present research provide a basis for further study of the changes in the right ventricle in canine models.
引文
1. Haddad F, Hunt SA. Rosenthal DN, et al. Right ventricular function in cardiovascular disease, part I:Anatomy, physiology, aging, and functional assessment of the right ventricle [J]. Circulation,2008,117(11):1436-48.
    2. Haddad F, Doyle R, Murphy DJ, et al. Right ventricular function in cardiovascular disease, part Ⅱ:pathophysiology, clinical importance, and management of right ventricular failure [J]. Circulation,2008,117(13):1717-31.
    3. Bleeker GB, Steendijk P, Holman ER, et al. Assessing right ventricular function: the role of echocardiography and complementary technologies [J]. Heart,2006,92 Suppl 1:i 19-26.
    4. Ho SY, Nihoyannopoulos P. Anatomy, echocardiography, and normal right ventricular dimensions [J]. Heart,2006,92 Suppl 1:i2-13.
    5. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults:a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography [J]. J Am Soc Echocardiogr,2010,23(7):685-713.
    6. Chua S, Levine RA, Yosefy C, et al. Assessment of right ventricular function by real-time three-dimensional echocardiography improves accuracy and decreases interobserver variability compared with conventional two-dimensional views [J]. Eur J Echocardiogr,2009,10(5):619-24.
    7. Shimada YJ, Shiota M, Siegel RJ, et al. Accuracy of right ventricular volumes and function determined by three-dimensional echocardiography in comparison with magnetic resonance imaging:a meta-analysis study [J]. J Am Soc Echocardiogr, 2010,23(9):943-953.
    8. Grapsa J, O'Regan DP, Pavlopoulos H, et al. Right ventricular remodelling in pulmonary arterial hypertension with three-dimensional echocardiography: comparison with cardiac magnetic resonance imaging [J]. Eur J Echocardiogr, 2010, 11(l):64-73.
    9. Van der Zwaan HB, Geleijnse ML, Soliman OI, et al.Test-retest variability of volumetric right ventricular measurements using real-time three-dimensional echocardiography [J]. J Am Soc Echocardiogr,2011,24(6):671-9.
    10. P.S. Niemann, L. Pinho, T. Balbach et al. Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-Tesla magnetic resonance imaging [J]. J Am Coll Cardiol,2007, 50(17):1668-76.
    11. Tamborini G, Brusoni D, Torres Molina JE, et al. Feasibility of a new generation three-dimensional echocardiography for right ventricular volumetric and functional measurements [J]. Am J Cardiol,2008,102(4):499-505.
    12. Goor DA, Lillehei CW. Congenital malformations of the heart [J].1st ed. New York:Grune and Stratton,1975:1-37.
    13. Geva T, Powell AJ, Crawford EC, et al. Evaluation of Regional Differences in Right Ventricular Systolic Function by Acoustic Quantification Echocardiography and Cine Magnetic Resonance Imaging [J]. Circulation,1998(4),98:339-45.
    14. McConnell MV, Solomon SD, Rayan ME, et al. Regional right ventricular dysfunction detected by echocardiography in acute pulmonary embolism [J]. Am J Cardiol,1996,78(4):469-73.
    15. Dohi K, Iliescu A, Peterson RC, et al. An abnormal right ventricular apical angle is indicative of global right ventricular impairment [J]. Echocardiography 2006;23(5):361-8.
    16. Dambrauskaite V, Delcroix M, Claus P, et al. Regional Right Ventricular Dysfunction in Chronic Pulmonary Hypertension [J]. J Am Soc Echocardiogr, 2007,20(10):1172-80.
    17. Pirat B, McCulloch ML, Zoghbi WA. Evaluation of global and regional right ventricular systolic function in patients with pulmonary hypertension using a novel speckle tracking method [J]. Am J Cardiol,2006,98(5):699-704.
    18. Pettersen E, Helle-Valle T, Edvardsen T, et al. Contraction pattern of the systemic right ventricle shift from longitudinal to circumferential shortening and absent global ventricular torsion [J]. J Am Coll Cardiol,2007,49(25):2450-2456.
    19. Kind T, Mauritz GJ, Marcus JT, et al. Right ventricular ejection fraction is better reflected by transverse rather than longitudinal wall motion in pulmonary hypertension [J]. J Cardiovasc Magn Reson,2010,12:35.
    20. Calcutteea A, Chung R, Lindqvist P, et al. Differential right ventricular regional function and the effect of pulmonary hypertension:three-dimensional echo study [J]. Heart,2011,97(12):1004-11.
    21. Van der Hulst AE. Roest AA, Holman ER, et al. Real-Time Three-Dimensional Echocardiography:Segmental Analysis of the Right Ventricle in Patients with Repaired Tetralogy of Fallot [J]. J Am Soc Echocardiogr,2011,24(11):1183-1190.
    22. Maceira AM, Prasad SK, Khan M, et al. Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance [J]. Eur Heart J, 2006,27(23):2879-88.
    23. Ostenfeld E, Carlsson M, Shahgaldi K, et al. Manual correction of semi-automatic three-dimensional echocardiography is needed for right ventricular assessment in adults; validation with cardiac magnetic resonance [J]. Cardiovasc Ultrasound, 2012,10(1):1.
    24. Robb JS. Comparative Basic Cardiology. New York, NY: Grune & Stratton,1965.
    25. Adams FH, Emmanouilides GC, Reimenschneider TA, et al. Heart Disease in Infants, Children, and Adolescents.4th ed. Baltimore, Md:Williams & Wilkins, 1989:2-15
    26. Hudsmith LE, Petersen SE, Francis JM, et al. Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging [J]. J Cardiovasc Magn Reson,2005,7(5):775-82.
    27. Tamborini G, Marsan NA, Gripari P, et al. Reference values for right ventricular volumes and ejection fraction with real-time three-dimensional echocardiography: evaluation in a large series of normal subjects [J]. J Am Soc Echocardiogr,2010, 23(2):109-15.
    28. Aune E, Baekkevar M, Rodevand O, et al. The limited usefulness of real-time 3-dimensional echocardiography in obtaining normal reference ranges for right ventricular volumes. Cardiovasc Ultrasound [J].2009,7:35.
    29. Pu DR, Zhou QC, Zhang M, et al. Assessment of regional right ventricular longitudinal functions in fetus using velocity vector imaging technology [J]. Preat Diagn,2010,30(11):1057-63.
    30. Hamdan A, Thouet T, Kelle S, et al.Regional right ventricular function and timing of contraction in healthy volunteers evaluated by strain-encoded MRI [J]. J Magn Reson Imaging,2008,28(6):1379-85.
    31. Meris A, Faletra F, Conca C, et al. Timing and magnitude of regional right ventricular function:a speckle tracking-derived strain study of normal subjects and patients with right ventricular dysfunction [J]. J Am Soc Echocardiogr,2010, 23(8):823-31.
    32. Yu CM, Lin H, Ho PC, et al. Assessment of left and right ventricular systolic and diastolic synchronicity in normal subjects by tissue Doppler echocardiography and the effects of age and heart rate[J]. Echocardiography,2003,20(1):19-27.
    33. van der Linde D, Konings EE, Slager MA, et al. Birth prevalence of congenital heart disease worldwide:a systematic review and meta-analysis [J]. J Am Coll Cardiol,2011,58(21):2241-7.
    34. Webb G, Gatzoulis MA. Atrial septal defects in the adult:recent progress and overview [J]. Circulation,2006,114(15):1645-53.
    35. Attie F, Rosas M, Granados N, et al. Surgical treatment for secundum atrial septal defects in patients>40years old [J]. A randomized clinical trial. J Am Coll Cardiol, 2001,38(7):2035-42.
    36. Therrien J, Warnes C, Daliento L et al. Canadian Cardiovascular Society Consensus Conference 2001 update:recommendations for the management of adults with congenital heart disease part Ⅲ [J]. Can J Cardiol,2001, 17(11):1135-58.
    37. Beitzke D, Wolf F, Edelhauser G, et al. Right heart dilatation in adult congenital heart disease:imaging appearance on cardiac magnetic resonance [J]. Br J Radiol, 2011,84(998):188-93.
    38. Abbas AE, Fortuin FD, Schiller NB, et al. A simple method for noninvasive estimation of pulmonary vascular resistance [J]. J Am Coll Cardiol,2003,41(6): 1021-7.
    39. Kjaergaard J, Snyder EM, Hassager C, et al. Impact of preload and afterload on global and regional right ventricular function and pressure:a quantitative echocardiography study [J]. J Am Soc Echocardiogr,2006,19(5):515-21.
    40. Ishibashi Y, Rembert JC, Carabello BA, et al. Normal myocardial function in severe right ventricular volume overload hypertrophy [J]. Am J Physiol Heart Circ Physiol,2001,28O(1):H11-6.
    41. Ding J, Ma G, Huang Y, et al. Right ventricular remodeling after transcatheter closure of atrial septal defect [J]. Echocardiography,2009,26(10):1146-52.
    42. Teo KS, Dundon BK, Molaee P, et al. Percutaneous closure of atrial septal defects leads to normalisation of atrial and ventricular volumes [J]. J Cardiovasc Magn Reson,2008,10:55.
    43. Schussler JM, Anwar A, Phillips SD, et al. Effect on right ventricular volume of percutaneous Amplatzer closure of atrial septal defect in adults [J]. Am J Cardiol, 2005,95(8):993-5.
    44. Hsiao SH, Wang WC, Yang SH, et al. Myocardial tissue Doppler-based indexes to distinguish right ventricular volume overload from right ventricular pressure overload [J]. Am J Cardiol,2008,101(4):536-41.
    45. Vitarelli A, Sardella G, Roma AD, et al. Assessment of right ventricular function by three-dimensional echocardiography and myocardial strain imaging in adult atrial septal defect before and after percutaneous closure [J]. Int J Cardiovasc Imaging,2012 Feb 5, Epub ahead of print.
    46. Gorgulu S, Eren M, Uslu N, Ozer O, et al. The determinants of right ventricular function in patients with atrial septal defect [J]. Int J Cardiol,2006,111(1):127-30.
    47. Chin KM, Rubin LJ. Pulmonary arterial hypertension [J]. J Am Coll Cardiol,2008, 51(16):1527-38.
    48. Deo Bhatt D, Manoj R, Mahajan R.Estimation of Pulmonary Vascular Resistance: Correlation between Echocardiography and Catheterization Data in Patients with Congenital Heart Disease [J]. Echocardiography,2012 Feb 3, Epub ahead of print.
    49. Rajagopalan N, Simon MA, Suffoletto MS, et al. Noninvasive estimation of pulmonary vascular resistance in pulmonary hypertension [J]. Echocardiography, 2009,26(5):489-94.
    50. Yerebakan C, Klopsch C, Niefeldt S, et al. Acute and chronic response of the right ventricle to surgically induced pressure and volume overload-an analysis of pressure-volume relations [J]. Interact Cardiovasc Thorac Surg,2010, 10(4):519-25.
    51.Bodhey NK, Beerbaum P, Sarikouch S, et al. Functional analysis of the components of the right ventricle in the setting of tetralogy of Fallot [J]. Circ Cardiovasc Imaging,2008, 1(2):141-7.
    52. Van De Bruaene A, Buys R. Vanhees L, et al. Regional right ventricular deformation in patients with open and closed atrial septal defect [J]. Eur J Echocardiogr,2011,12(3):206-13.
    53. Wroblewski E, James F, Spann JF, et al. Right ventricular performance in mitral stenosis. Am J Cardiol,1981,47(1):51-5.
    54. Borer JS, Bonow RO. Contemporary approach to aortic and mitral regurgitation [J]. Circulation,2003,108(20):2432-8.
    55. Nagel E, Stuber M, Hess OM. Importance of the right ventricle in valvular heart disease [J]. Eur Heart J,1996,17(6):829-36.
    56. Wisenbaugh T, Spann JF, Carabello BA. Differences in myocardial performance and load between patients with similar amounts of chronic aortic versus chronic mitral regurgitation [J]. J Am Coll Cardiol,1984,3(4):916-23
    57. Lewis BM, Gorlin R, Houssay HE, et al. Clinical and physiological correlations in patients with mitral stenosis.V [J]. Am Heart J,1952; 43(1).
    58. McLaughlin VV, Rich S. Pulmonary hypertension [J]. Curr Probl Cardiol,2004, 29(10):575-634.
    59. Deswarte G, Richardson M, Polge AS, et al. Longitudinal right ventricular function as a predictor of functional capacity in patients with mitral stenosis:an exercise echocardiographic study [J]. J Am Soc Echocardiogr,2010,23(6):667-72.
    60. Chrustowicz A, Gackowski A, El-Massri N, et al. Preoperative right ventricular function in patients with organic mitral regurgitation [J]. Echocardiography,2010, 27(3):282-5.
    61. Pande S, Agarwal SK, Dhir U, et al. Pulmonary arterial hypertension in rheumatic mitral stenosis:does it affect right ventricular function and outcome after mitral valve replacement [J]? Interact Cardiovasc Thorac Surg,2009,9(3):421-5.
    62. Zhang XC, Yang ZG, Wang J. Quantitative assessment of right ventricular function and severity of pure mitral stenosis with 64-section multi-detector row CT:Comparison with magnetic resonance imaging [J]. Int J Cardiol,2012, 156(l):108-10.
    63. Yildirimturk O, Helvacioglu FF, Tayyareci Y, et al. Assessment of Right Ventricular Endocardial Dysfunction in Mild-to-Moderate Mitral Stenosis Patients Using Velocity Vector Imaging [J]. Echocardiography,2011 Nov 2, Epub ahead of print.
    64. Marius M. Hoeper, Joan Albert Barbera, Richard N, et al. Diagnosis, Assessment, and Treatment of Non-Pulmonary Arterial Hypertension Pulmonary Hypertension [J]. J Am Coll Cardiol,2009,54(1):S85-S96.
    65. Hoffman D, Sisto D, Frater RWM, et al. Left-to-rightventricular interaction with a noncontracting right ventricle [J] J Thorac Cardiovasc Surg,1994,107:1496-502.
    66. Malhotra V, Beohar PC, Gondal R, et al:An autopsy study of rheumatic heart disease. Part II. Associated findings [J]. Jpn Heart J,1987,28(1):7-14
    67. Tayyareci Y, Nisanci Y, Umman B, et al. Early detection of right ventricular systolic dysfunction by using myocardial acceleration during isovolumic contraction in patients with mitral stenosis [J]. Eur J Echocardiogr,2008,9(4): 516-21.
    68. Ozdemir AO, Kaya CT, Ozdol C, et al. Two-dimensional longitudinal strain and strain rate imaging for assessing the right ventricular function in patients with mitral stenosis [J]. Echocardiography,2010,27(5):525-33.
    69. Sukmawan R, Akasaka T, Watanabe N, et al. Quantitative assessment of right ventricular geometric remodeling in pulmonary hypertension secondary to left-sided heart disease using real-time three-dimensional echocardiography [J]. Am J Cardiol,2004,94(8):1096-9.
    70. Ozdemir AO, Kaya CT, Ozdol C, et al. Two-dimensional longitudinal strain and strain rate imaging for assessing the right ventricular function in patients with mitral stenosis [J]. Echocardiography,2010,27(5):525-33.
    71. Lopez-Candales A, Rajagopalan N, Dohi K, et al. Abnormal right ventricular myocardial strain generation in mild pulmonary hypertension [J]. Echocardiography,2007,24(6):615-22.
    72. Rajagopalan N, Dohi K, Simon MA, et al. Right ventricular dyssynchrony in heart failure:a tissue Doppler imaging study [J]. J Card Fail,2006,12(4):263-7.
    73. Badano LP, Ginghina C, Easaw J, et al. Right ventricle in pulmonary arterial hypertension:haemodynamics, structural changes, imaging, and proposal of a study protocol aimed to assess remodelling and treatment effects [J]. Eur J Echocardiogr,2010, 11(l):27-37.
    74. Peacock AJ, Murphy NF, McMurray JJ, et al. An epidemiological study of pulmonary arterial hypertension [J]. Eur Respir J,2007,30(1):104-9.
    75. D'Alonzo GE, Barst RJ, Ayres SM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry [J]. Ann Intern Med,1991,115(5):343-9.
    76. van de Veerdonk MC, Kind T, Marcus JT, et al. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy [J]. J Am Coll Cardiol,2011,58(24):2511-9.
    77. Raymond RJ, Hinderliter AL, Willis PW. et al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension [J]. J Am Coll Cardiol. 2002,39(7):1214-9.
    78. McLaughlin VV, Archer SL, Badesch DB, et al:ACCF/AHA 2009 Expert Consensus Document on Pulmonary Hypertension:A Report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association Developed in Collaboration With the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association [J]. J Am Coll Cardiol,2009, 53(17):1573-1619.
    79. Morikawa T, Murata M, Okuda S, et al. Quantitative analysis of right ventricular function in patients with pulmonary hypertension using three-dimensional echocardiography and a two-dimensional summation method compared to magnetic resonance imaging [J]. Am J Cardiol,2011,107(3):484-9.
    80. Konstam MA, Cohen SR, Salem DN, et al:Comparison of left and right ventricular end-systolic pressure-volume relations in congestive heart failure [J]. J Am Coll Cardiol,1985,5(6):1326-34. 。
    81. Fukuda Y, Tanaka H, Sugiyama D, et al. Utility of Right Ventricular Free Wall Speckle-Tracking Strain for Evaluation of Right Ventricular Performance in Patients with Pulmonary Hypertension [J]. J Am Soc Echocardiogr,2011,24 (10):1101-8.
    82. Filusch A, Mereles D, Gruenig E, et al. Strain and strain rate echocardiography for evaluation of right ventricular dysfunction in patients with idiopathic pulmonary arterial hypertension [J]. Clin Res Cardiol,2010,99(8):491-8.
    83. Mauritz GJ, Kind T, Marcus JT, et al. Progressive Changes in Right Ventricular Geometric Shortening and Long-term Survival in Pulmonary Arterial Hypertension [J]. Chest,2011 Sep 29, Epub ahead of print.
    84. Shehata ML, Basha TA, Tantawy WH, et al. Real-time single-heartbeat fast strain-encoded imaging of right ventricular regional function:normal versus chronic pulmonary hypertension [J]. Magn Reson Med,2010,64(l):98-106.
    85. Borges AC, Knebel F, Eddicks S, et al. Right ventricular function assessed by two-dimensional strain and tissue Doppler echocardiography in patients with pulmonary arterial hypertension and effect of vasodilator therapy [J]. Am J Cardiol.2006,98(4):530-4.
    86. Lopez-Candales A, Rajagopalan N, Gulyasy B, et al. Differential strain and velocity generation along the right ventricular free wall in pulmonary hypertension [J]. Can J Cardiol,2009,25(3):e73-7.
    87. Fernandez-Friera L, Garcia-Alvarez A, Guzman G, et al. Apical right ventricular dysfunction in patients with pulmonary hypertension demonstrated with magnetic resonance [J]. Heart,2011,97(15):1250-6.
    88. Utsunomiya H, Nakatani S, Okada T, et a. A simple method to predict impaired right ventricular performance and disease severity in chronic pulmonary hypertension using strain rate imaging [J]. Int J Cardiol.2011,147(1):88-94.
    89. Gurudevan SV, Malouf PJ, Kahn AM, et al. Noninvasive assessment of pulmonary vascular resistance using Doppler tissue imaging of the tricuspid annulus [J]. J Am Soc Echocardiogr,2007,20(10):1167-71.
    90. Schwartz DJ, Kop WJ, Park MH, et al. Evidence for early right ventricular and septal mechanical activation (interventricular dyssynchrony) in pulmonary hypertension [J]. Am J Cardiol,2008,102(9):1273-7.
    91. Kalogeropoulos AP, Georgiopoulou VV, Howell S, et al. Evaluation of right intraventricular dyssynchrony by two-dimensional strain echocardiography in patients with pulmonary arterial hypertension [J]. J Am Soc Echocardiogr,2008, 21(9):1028-34.
    92. Lopez-Candales A, Dohi K, Rajagopalan N, et al. Right ventricular dyssynchrony in patients with pulmonary hypertension is associated with disease severity and functional class [J]. Cardiovasc Ultrasound,2005,3:23.
    93. Marcus JT, Gan CT, Zwanenburg JJ, et al. Interventricular mechanical asynchrony in pulmonary arterial hypertension:left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling [J]. J Am Coll Cardiol,2008,51(7):750-7
    94. Gomez A, Bialostozky D, Zajarias A, et al. Right ventricular ischemia in patients with primary pulmonary hypertension [J]. J Am Coll Cardiol,2001, 38(4):1137-42.
    95. Bradley SP, Auger WR, Moser KM, et al. Right ventricular pathology in chronic pulmonary hypertension [J]. Am J Cardiol,1996,78(5):584-7.
    96. Dewachter C, Dewachter L, Rondelet B, et al. Activation of apoptotic pathways in experimental acute afterload-induced right ventricular failure [J]. Crit Care Med, 2010,38(6):14O5-13.
    97. Voeller RK, Aziz A, Maniar HS, et al. Differential modulation of right ventricular strain and right atrial mechanics in mild vs. severe pressure overload [J]. Am J Physiol Heart Circ Physiol,2011,301 (6):H2362-71.
    98. Chen EP, Akhter SA, Bittner HB, et al. Molecular and functional mechanisms of right ventricular adaptation in chronic pulmonary hypertension [J]. Ann Thorac Surg,1999,67(4):1053-8.
    99. Pasipoularides A, Shu M, Shah A, et al. Right ventricular diastolic function in canine models of pressure overload, volume overload, and ischemia [J]. Am J Physiol Heart Circ Physiol,2002,283(5):H2140-50.
    100.Santos Martinez LE, Gomez Gonzalez A, Infante Vazquez O, et al. Development of a canine model of chronic progressive right ventricular hypertension [J]. Arch Cardiol Mex,2001,71(4):266-77.
    101.Laks MM, Nisenson MJ, Swan HJ.Myocardial cell and sarcomere lengths in the normal dog heart [J]. Circ Res,1967,21(5):671-8.
    102.Chetboul V, Sampedrano CC, Gouni V, et al. Quantitative assessment of regional right ventricular myocardial velocities in awake dogs by Doppler tissue imaging: repeatability, reproducibility, effect of body weight and breed, and comparison with left ventricular myocardial velocities [J]. J Vet Intern Med,2005, 19(6):837-44.
    103.Griffiths LG, Fransioli JR., Chigerwe M. Echocardiographic assessment of interventricular and intraventricular mechanical synchrony in normal dogs [J]. J Vet Cardiol,2011,13(2):115-26.
    104.Mercier E, Mathieu M, Sandersen CF, et al. Evaluation of the influence of age on pulmonary arterial pressure by use of right ventricular catheterization, pulsed-wave Doppler echocardiography, and pulsed-wave tissue Doppler imaging in healthy Beagles [J]. Am J Vet Res,2010,71(8):891-7.
    105.Lin JM, Lai LP, Chou NK, et al. Spatial heterogeneity of protein expression induced by dyssynchronous right ventricular pacing in the left ventricle of dogs with preserved systolic function [J]. J Card Fail,2010,16(8):700-6.
    1. Nagel E, Stuber M, Hess O M. Importance of the right ventricle in valvular heart disease [J]. Eur Heart J,1996,17(6):829-36.
    2. Starr I, Jeffers WA, Meade RH J. The absence of conspicuous increments of venous pressure after severe damage to the right ventricle of the dog [J]. Am Heart J,1943.26291-300.300.
    3. Haddad F, Hunt SA, Rosenthal DN, et al. Right ventricular function in cardiovascular disease, part I:Anatomy, physiology, aging, and functional assessment of the right ventricle [J]. Circulation,2008,117(11):1436-48.
    4. Haddad F, Doyle R, Murphy DJ, et al. Right ventricular function in cardiovascular disease, part Ⅱ:pathophysiology, clinical importance, and management of right ventricular failure [J]. Circulation,2008,117(13):1717-31.
    5. Bleeker GB, Steendijk P, Holman ER, et al. Assessing right ventricular function: the role of echocardiography and complementary technologies [J]. Heart,2006,92 Suppll:i19-26.
    6. Selton-Suty C, Juilliere Y. Non-invasive investigations of the right heart:how and why [J]? Arch Cardiovasc Dis,2009,102(3):219-32.
    7. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults:a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography [J]. J Am Soc Echocardiogr,2010,23(7):685-713.
    8. Lopez-Candales A, Dohi K, Rajagopalan N, et al. Defining normal variables of right ventricular size and function in pulmonary hypertension:an echocardiographic study [J]. Postgrad Med J,2008,84(987):40-5.
    9. Miller D, Farah MG, Liner A, et al. The relation between quantitative right ventricular ejection fraction and indices of tricuspid annular motion and myocardial performance [J]. J Am Soc Echocardiogr,2004,17(5):443-7.
    10. Ueti OM, Camargo EE, Ueti AA, et al. Assessment of right ventricular function with Doppler echocardiographic indices derived from tricuspid annular motion: comparison with radionuclide angiography [J]. Heart,2002,88(3):244-8.
    11. Kjaergaard J, Petersen CL, Kjaer A, et al. Evaluation of right ventricular volume and function by 2D and 3D echocardiography compared to MRI [J]. Eur J Echocardiogr,2006,7(6):430-8.
    12. Rydman R, Soderberg M, Larsen F, et al. Echocardiographic evaluation of right ventricular function in patients with acute pulmonary embolism:a study using tricuspid annular motion [J]. Echocardiography,2010,27(3):286-93.
    13. Mathai SC, Sibley CT, Forfia PR, et al. Tricuspid annular plane systolic excursion is a robust outcome measure in systemic sclerosis-associated pulmonary arterial hypertension [J]. J Rheumatol,2011,38(11):2410-8.
    14. Ghio S, Klersy C, Magrini G, et al. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension [J]. Int J Cardiol,2010,140(3):272-8.
    15. Kjaergaard J, Ghio S, St John Sutton M, et al. Tricuspid annular plane systolic excursion and response to cardiac resynchronization therapy:results from the REVERSE trial [J]. J Card Fail.2011.17(2):100-7.
    16. Cappelli F, Cristina Porciani M, Ricceri I, et al. Tricuspid annular plane systolic excursion evaluation improves selection of cardiac resynchronization therapy patients [J]. Clin Cardiol,2010,33(9):578-82.
    17. Fremont B, Pacouret G, Jacobi D, et al. Prognostic value of echocardiographic right/left ventricular end-diastolic diameter ratio in patients with acute pulmonary embolism:results from a monocenter registry of 1,416 patients [J]. Chest,2008, 133(2):358-62.
    18. Burgess MI, Mogulkoc N, Bright-Thomas RJ, et al. Comparison of echocardiographic markers of right ventricular function in determining prognosis in chronic pulmonary disease [J]. J Am Soc Echocardiogr,2002,15(6):633-9.
    19. Nass N, McConnell MV, Goldhaber SZ, et al. Recovery of regional right ventricular function after thrombolysis for pulmonary embolism [J]. Am J Cardiol, 1999,83(5):804-6.
    20. Zornoff LA, Skali H, Pfeffer MA, et al. Right ventricular dysfunction and risk of heart failure and mortality after myocardial infarction [J]. J Am Coll Cardiol,2002, 39(9):1450-5.
    21. Anavekar NS, Skali H, Bourgoun M, et al. Usefulness of right ventricular fractional area change to predict death, heart failure, and stroke following myocardial infarction (from the VALIANT ECHO study) [J]. Am J Cardiol,2008, 101(5):607-12.
    22. Anavekar NS, Gerson D, Skali H, et al. Two-dimensional assessment of right ventricular function:an echocardiographic-MRI correlative study [J]. Echocardiography,2007,24(5):452-6.
    23. Lai WW, Gauvreau K, Rivera ES, et al. Accuracy of guideline recommendations for two-dimensional quantification of the right ventricle by echocardiography [J]. Int J Cardiovasc Imaging,2008,24(7):691-8.
    24. Lopez-Candales A, Rajagopalan N, Kochar M, et al. Systolic eccentricity index identifies right ventricular dysfunction in pulmonary hypertension [J]. Int J Cardiol,2008,129(3):424-6.
    25. Ryan T, Petrovic O, Dillon JC, et al. An echocardiographic index for separation of right ventricular volume and pressure overload [J]. J Am Coll Cardiol,1985, 5(4):918-27.
    26. Ghio S. Klersy C, Magrini G. et al. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension [J]. Int J Cardiol 2010,140(3):272-8.
    27. Lopez-Candales A, Bazaz R, Edelman K, et al. Apical systolic eccentricity index: a better marker of right ventricular compromise in pulmonary hypertension [J]. Echocardiography,2010,27(5):534-8.
    28. Meluzin J, Spinarova L, Bakala J, et al. Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion; a new, rapid, and non-invasive method of evaluating right ventricular systolic function [J]. Eur Heart J,2001, 22(4):340-8.
    29. Cavarretta E, Milan A, Caselli S, et al. Usefulness of tricuspid annular velocity in identifying global RV dysfunction in patients with primary pulmonary hypertension:a comparison with 3D echo-derived right ventricular ejection fraction [J]. Echocardiography,2008,25(3):289-93.
    30. Witt N, Alam M, Svensson L, et al. Tricuspid annular velocity assessed by doppler tissue imaging as a marker of right ventricular involvement in the acute and late phase after a first ST elevation myocardial infarction [J]. Echocardiography,2010, 27(2):139-45.
    31. Kim H, Jung C, Yoon HJ, et al. Prognostic Value of Tricuspid Annular Tissue Doppler Velocity in Heart Failure with Atrial Fibrillation [J]. J Am Soc Echocardiogr,2012 Jan 13, Epub ahead of print
    32. Lindqvist P, Waldenstrom A, Henein M, et al. Regional and global right ventricular function in healthy individuals aged 20-90 years:a pulsed Doppler tissue imaging study:Umea General Population Heart Study [J]. Echocardiography,2005,22(4):305-14.
    33. Vogel M, SchmidtMR, Kristiansen SB, et al. Validation of myocardial acceleration during isovolumic contraction as a novel noninvasive index of right ventricular contractility:comparison with ventricular pressure-volume relations in an animal model [J]. Circulation,2002,105(14):1693-9.
    34. Kjaergaard J, Snyder EM, Hassager C, et al. Impact of preload and afterload on global and regional right ventricular function and pressure:a quantitative echocardiography study [J]. J Am Soc Echocardiogr,2006,19(5):515-21.
    35. Duan YY, Harada K, Toyono M, et al. Effects of acute preload reduction on myocardial velocity during isovolumic contraction and myocardial acceleration in pediatric patients [J]. Pediatr Cardiol,2006,27(1):32-6.
    36. Pauliks LB, Chan KC, Chang D, et al. Regional myocardial velocities and isovolumic contraction acceleration before and after device closure of atrial septal defects:a color tissue Doppler study [J]. Am Heart J,2005,150(2):294-301.
    37. Toyono M, Harada K, Tamura M, et al. Myocardial acceleration during isovolumic contraction as a new index of right ventricular contractile function and its relation to pulmonary regurgitation in patients after repair of tetralogy of Fallot [J]. J Am Soc Echocardiogr,2004,17(4):332-7.
    38. Vogel M, Derrick G, White PA, et al. Systemic ventricular function in patients with transposition of the great arteries after atrial repair:a tissue Doppler and conductance catheter study [J]. J Am Coll Cardiol,2004,43(1):100-6.
    39. Tayyareci Y, Nisanci Y, Umman B, et al. Early detection of right ventricular systolic dysfunction by using myocardial acceleration during isovolumic contraction in patients with mitral stenosis [J]. Eur J Echocardiogr,2008,9(4): 516-21.
    40. Sade LE, Ozin B, Ulus T, et al. Right ventricular contractile reserve in mitral stenosis:implications on hemodynamic burden and clinical outcome [J]. Int J Cardiol,2009,135(2):193-201.
    41. Tei C, Dujardin KS, Hodge DO, et al. Doppler echocardiographic index for assessment of global right ventricular function [J]. J Am Soc Echocardiogr,1996, 9(6):838-47.
    42. Chockalingam A, Gnanavelu G, Alagesan R, et al. Myocardial performance index in evaluation of acute right ventricular myocardial infarction [J]. Echocardiography,2004,21(6):487-94.
    43. Kakouros N, Kakouros S, Lekakis J, et al. Tissue Doppler imaging of the tricuspid annulus and myocardial performance index in the evaluation of right ventricular involvement in the acute and late phase of a first inferior myocardial infarction [J]. Echocardiography,2011,28 (3):311-9.
    44. Morner S, Lindqvist P, Waldenstrom A, et al. Right ventricular dysfunction in hypertrophic cardiomyopathy as evidenced by the myocardial performance index [J]. Int J Cardiol 2008; 124(1):57-63.
    45. Eidem BW, O'Leary PW, Tei C, et al. Usefulness of the myocardial performance index for assessing right ventricular function in congenital heart disease [J]. Am J Cardiol,2000,86(6):654-8.
    46. Yoshifuku S, Otsuji Y, Takasaki K, et al. Pseudonormalized Doppler total ejection isovolume (Tei) index in patients with right ventricular acute myocardial infarction [J]. Am J Cardiol,2003,91(5):527-31.
    47. Jamal F, Bergerot C, Argaud L, et al. Longitudinal strain quantitates regional right ventricular contractile function [J]. Am J Physiol Heart Circ Physiol,2003,285(6): H2842-7.
    48. Kittipovanonth M, Bellavia D, Chandrasekaran K, et al. Doppler myocardial imaging for early detection of right ventricular dysfunction in patients with pulmonary hypertension [J]. J Am Soc Echocardiogr,2008,21(9):1035-41.
    49. Utsunomiya H, Nakatani S, Okada T, et al. A simple method to predict impaired right ventricular performance and disease severity in chronic pulmonary hypertension using strain rate imaging [J]. Int J Cardiol,2011,147(1):88-94.
    50. Kjaergaard J, Sogaard P, Hassager C. Right ventricular strain in pulmonary embolism by Doppler tissue echocardiography [J]. J Am Soc Echocardiogr,2004, 17(11):1210-2.
    51. Geyer H, Caracciolo G, Abe H, et al. Assessment of myocardial mechanics using speckle tracking echocardiography:fundamentals and clinical applications [J]. J Am Soc Echocardiogr,2010,23(4):351-69.
    52. Ahmad H, Mor-Avi V, Lang RM, et al. Assessment of Right Ventricular Function Using Echocardiographic Speckle Tracking of the Tricuspid Annular Motion: Comparison with Cardiac Magnetic Resonance[J]. Echocardiography,2011 Oct 4, Epub ahead of print.
    53. Chow PC, Liang XC, Cheung EW, et al. New two dimensional global longitudinal strain and strain rate imaging for assessment of systemic right ventricular function [J]. Heart,2008,94(7):855-9.
    54. Meris A, Faletra F, Conca C, et al. Timing and magnitude of regional right ventricular function:a speckle tracking-derived strain study of normal subjects and patients with right ventricular dysfunction [J]. J Am Soc Echocardiogr, 2010,23(8):823-31.
    55. Pirat B, McCulloch ML, Zoghbi WA. Evaluation of global and regional right ventricular systolic function in patients with pulmonary hypertension using a novel speckle tracking method [J]. Am J Cardiol,2006,98(5):699-704.
    56. Fukuda Y. Tanaka H, Sugiyama D, et al. Utility of right ventricular free wall speckle-tracking strain for evaluation of right ventricular performance in patients with pulmonary hypertension [J]. J Am Soc Echocardiogr,2011.24(10):1101-8.
    57. Sugiura E, Dohi K, Onishi K, et al. Reversible right ventricular regional non-uniformity quantified by speckle-tracking strain imaging in patients with acute pulmonary thromboembolism [J]. J Am Soc Echocardiogr,2009, 22(12):1353-9.
    58. D'Andrea A, Caso P, Bossone E, et al. Right ventricular myocardial involvement in either physiological or pathological left ventricular hypertrophy:an ultrasound speckle-tracking two-dimensional strain analysis [J]. Eur J Echocardiogr,2010, 11(6):492-500.
    59. Verhaert D, Mullens W, Borowski A, et al. Vitarelli Right ventricular response to intensive medical therapy in advanced decompensated heart failure [J]. Circ Heart Fail,2010,3(3):340-6.
    60. Vitarelli A, Franciosa P, Nguyen BL, et al. Additive value of right ventricular dyssynchrony indexes in predicting the success of cardiac resynchronization therapy:a speckle-tracking imaging study [J]. J Card Fail,2011,17(5):392-402.
    61. Ho SY, Nihoyannopoulos P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart,2006,92 (suppl 1):i2-i13.
    62. Jiang L, Siu SC, Handschumacher MD, et al. Three-dimensional echocardiography in vivo validation for right ventricular volume and function [J]. Circulation,1994,89(5):2342-50.
    63. Amaki M. Nakatani S, Kanzaki H, et al. Usefulness of three-dimensional echocardiography in assessing right ventricular function in patients with primary pulmonary hypertension [J]. Hypertens Res,2009,32(5):419-22.
    64. Schindera ST, Mehwald PS, Sahn DJ, et al. Accuracy of real-time three-dimensional echocardiography for quantifying right ventricular volume: static and pulsatile flow studies in an anatomic in vitro model [J]. J U ltrasound, 2002,21 (10):1069-75.
    65. Fujimoto, R. Mizuno and Y. Nakagawa et al. Estimation of the right ventricular volume and ejection fraction by transthoracic three-dimensional echocardiography. A validation study using magnetic resonance imaging [J]. Int J Card Imaging, 1998,14(6):385-90.
    66. Lu X, Nadvoretskiy V, Bu L.et al. Accuracy and reproducibility of real-time three-dimensional echocardiography for assessment of right ventricular volumes and ejection fraction in children [J]. J Am Soc Echocardiogr,2008,21(1):84-9.
    67. Nesser HJ. Tkalec W, Patel AR, et al. Quantitation of right ventricular volumes and ejection fraction by three-dimensional echocardiography in patients: comparison with magnetic resonance imaging and radionuclide ventriculography [J]. Echocardiography,2006,23(8):666-80.
    68. Sukmawan R, Akasaka T, Watanabe N, et al. Quantitative assessment of right ventricular geometric remodeling in pulmonary hypertension secondary to left-sided heart disease using real-time three-dimensional echocardiography [J]. Am J Cardiol,2004,94(8):1096-9.
    69. P.S. Niemann, L. Pinho and T. Balbach et al., Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-Tesla magnetic resonance imaging [J]. J Am Coll Cardiol,2007,50(17):1668-76.
    70. Fusini L, Tamborini G, Gripari P, et al. Feasibility of intraoperative three-dimensional transesophageal echocardiography in the evaluation of right ventricular volumes and function in patients undergoing cardiac surgery [J]. J Am Soc Echocardiogr,2011,24(8):868-77.
    71. Calcutteea A, Chung R, Lindqvist P, et al. Differential right ventricular regional function and the effect of pulmonary hypertension:three-dimensional echo study [J]. Heart,2011,97(12):1004-11.
    72. Shimada YJ, Shiota M, Siegel RJ, et al. Accuracy of right ventricular volumes and function determined by three-dimensional echocardiography in comparison with magnetic resonance imaging:a meta-analysis study [J]. J Am Soc Echocardiogr, 2010,23(9):943-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700