先天性心脏畸形胎儿基因拷贝数变异和DNA甲基化差异的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     先天性心脏畸形(CHD)是人类最常见的出生缺陷,也是胎婴儿死亡的主要原因。而大多数CHD的病因目前尚不清楚,仅少数由单基因突变和染色体畸变引起,多基因遗传和环境因素相互作用是心血管发育缺陷的主要病因。研究CHD的遗传因素和表观遗传调控机制,进一步从本质上认识和诊断疾病,促进CHD的早期产前筛查和有效预防,提高出生人口素质。
     基因拷贝数变异(CNV)是一种常见的亚显微的遗传改变,染色体微缺失或微重复改变基因剂量使功能效应受损。参与心脏发育的基因在心肌细胞的增殖、分化和功能的发挥中起重要的作用,这些位点的亚显微缺陷将引起心脏发育异常。全基因拷贝数分析可识别一系列靶向基因座的亚显微缺失和重复,微阵列为基础的方法学为先天性心脏畸形的遗传变异提供一个广泛的基因组调查,并可靠地识别致病性的基因组序列不平衡,表型相关的基因信息也将进一步得到阐释。
     DNA甲基化修饰作为表观遗传调控的重要组成部分,对胚胎的正常发育具有显著作用,其修饰异常将会引起心血管的发育失调,甚至胚胎死亡。人们日常生活暴露水平的一些危害健康的环境因素、营养因素可增加基因的不稳定性和改变组织细胞的物质代谢,改变DNA甲基化模式的动态平衡将对胚胎和胎儿发育产生严重的后果。表观遗传学揭示环境因素如何影响基因的选择性表达,对传统遗传学难以解释的CHD进入表观调控的分子研究,将为积极有效预防胎婴儿的心血管缺陷提供新的科学依据。
     目的
     分析心脏畸形胎儿基因拷贝数变异和甲基化修饰情况,研究基因拷贝数变异体、基因启动子区甲基化差异在心脏畸形可能的致病机制,为寻找新的生物分子标记促进心血管畸形的早期产前诊断提供实验依据。
     方法
     1.应用Affymetrix SNP6.0芯片对10个样本进行全基因拷贝数分析,包括核型正常的先心胎儿5例、染色体畸变先心胎儿2例及正常胎儿1例,以HapMap90个亚洲人群为参照,筛查、分析DNA拷贝数异常的区域,挑选最有生物信息的染色体区域;
     2.筛选与胚胎心脏发育相关的基因以及可能涉及心脏形成的候选基因的拷贝数变异体,采用罗氏LightCycler自动定量PCR分析仪进行验证,与父母、正常新生儿及健康志愿者对照。
     3.运用Roche-NimbleGen人HG18Meth3×720K甲基化芯片对复杂先心胎儿进行全基因组DNA甲基化水平分析,将心内膜垫缺损、单房室瓣和大动脉转位的胎儿3例与孕周、性别匹配的正常胎儿3例进行对比,NimbleScan软件分析并图形化两组样本之间的DNA甲基化水平的差异及差异位点的序列信息。
     4.对有差异的DNA甲基化序列,将相同的实验样本和对照样本进行独立的分析验证,运用Sequenom质谱检测平台进行甲基化定量检测,比较两组样本是否在相同区域存在DNA甲基化差异,初步分析表观遗传调控对胎儿心血管发育的影响。
     结果
     1.7例CHD患儿共10份DNA样本进行了全基因拷贝数分析,出现了众多的CNVs,仅部分CNVs包含生物信息,一些可能对心脏发育有重要作用的基因出现了拷贝数重复或缺失,双胎中的患TOF胎儿与正常胎儿拷贝数经后续验证后无显著差异。
     2. qPCR验证了所有可能与心脏发育相关的CNVs,除了18-三体患儿的GATA6拷贝数重复可能扰乱胚胎心脏发育,14q23.1单拷贝数缺失经反复对比分析得到验证,该区域包含了整个DAAM1和KIAA0666基因,发生在1例核型正常的复杂CHD胎儿,而DAAM1对动物心脏形态发生必不可少,DAAM1拷贝数缺失可能是复杂先心患儿的潜在病因。
     3.分析复杂心脏畸形胎儿3例和对照组正常胎儿3例的全基因组DNA甲基化水平,发现RADIL、CHRNA10、RADIL基因启动子区甲基化水平高于正常对照组0.41~0.59,而NXPH3、ZNF408和ABL1基因甲基化程度较正常对照组降低0.34~0.62。
     4.对基因组分布的DNA甲基化差异位点,运用SequenomMassARRAY系统,采用相同实验组和对照组的脐血DNA进行定量甲基化分析验证,未发现以上几个基因对应区域的CpG岛有甲基化水平差异。
     结论
     1.发生频率远高于染色体结构变异的基因拷贝数变异促进了人类遗传的多样性,也增加了出生缺陷的风险。
     2.18-三体频发CHD与Hsa18基因尤其是GATA6过量表达、扰乱了胚胎心血管的分化发育相关。
     3.遗传位点14q23.1拷贝数缺失,所含的DAAM1基因对胚胎的心脏发育不可或缺,其单拷贝数缺失可导致复杂CHD。
     4.复杂CHD患儿全基因组范围内的DNA甲基化分析发现几个基因的DNA甲基化水平变化,但后续的质谱定量分析未能验证这些位点的甲基化差异,DNA甲基化修饰的表遗传机制对胎儿CHD调控机制或需加大临床样本量继续探讨。
Background
     Congenital heart defect, referred to as CHD for short, is the most common birthdefects and the main cause of fetal death in human. Causes of most CHDs have not yet beenknown. Only a few CHDs were caused by gene mutations and chromosome aberrations.The major causes of CHD resulted from interaction of multiple genes and environmentalfactors. To research associating genetic factors and epigenetics with CHD will help usfurther undestand CHD and early diagnose it, which could make more efficient screeningand treatment of fetal CHDs for the quality of the newborn.
     Copy number variation is common in submicroscopic genetic alterations.Chromosome submicroscopic deletions or amplifications will alter gene expression andimpair fetal development. Genes regulating cardiogenesis play an important role inproliferation, differentiation and functions of myocardial cells. Submicroscopicchromosomal imbalances involving cardiac-specific transcription factors will cause severeheart defects. Genome-wide copy number analysis can identify novel submicroscopicdeletions and amplifications associated with heart development. Researchers areincreasingly employing the microarray-based technique for genome-wide screening of copynumber variations which may help identify pathogenic DNA imbalance. Then geneticinformation will be more understanded.
     DNA methylation is an important modification of epigenetic regulation, which hassignificant functions in embryonic development. Abnormal DNA methylation may causediseases such as cardiovascular malformations and even fetal death. Daily exposure to toxicenvironmental contaminants or trophic factors can trigger genetic changes and influencecellur metabolism, which may disturb dynamic balance of DNA methylation patterns withserious consequences to fetus. To clarify the molecular mechanism of CHDs withtraditional knowledge is not easy, revealing epigenetic regulation of gene expression underlying CHDs may uncover environmental factors effects without changing DNAsequence. That will provide new scientific basis for effective prevention of fetalcardiovascular defects.
     Objective
     The aim of this study is to explore the molecular mechanism of CHDs and to find newmolecular biomarker of fetal cardiovascular malformations by analyses of genomic copynumber variation and DNA methylation changes associated with fetal CHDs. Next we mayprovide experimental evidence for early prenatal diagnosis of fetal CHDs.
     Methods
     1. Affymetrix SNP6.0array was used to analyse10samples for detection of genomiccopy number variations, including5CHD fetuses with normal karyotypes,2CHD fetuseswith abnormal chromosome and1normal fetus, compared with HapMap90Asianpopulation. Copy number variants with biological information were selected for furtheranalysis and verification.
     2. Fluorescence quantitative polymerase chain reaction (qPCR) assay was used toverified copy number deletions and amplifications in CHD fetal DNA, compared with itsparents, normal neonates and healthy volunteers, which contain genes associated withembryonic heart development and possibly related to cardiogenesis.
     3. Rhoche NimbleGene3×720K CpG Island Plus RefSeq Promoter array was used toanalyses Genome-wide DNA methylation between complex CHD fetuses and normalfetuses. We chose3cases with endocardial cushion defect, single atrioventricular valve andtransposition of the great arteries matched with3normal fetuses with same gestational ageand gender. Data of the microarray were processed using NimbleScan software. DNAmethylation changes with the genomic information can be viewed on sequence graph fileswith NimbleScan software between cases and controls.
     4. The same case samples and control samples were further tested by SequenomMassARRAY EpiTYPER DNA methylation platform. Quantitative methylationanalysis and validation were focus on the corresponding regions of DNA methylationdifferences between the cases and controls. Effects of epigenetic modifications on fetalcardiovascular malformations were noted in a preliminary analysis.
     Results
     1. Seven CHD fetuses total of10samples underwent genome-wide CNV analyses.Many CNVs arised, only some contained biological information. Some gene CNVs wereobserved that have an important role in heart development. The twin fetuses that one is TOFand the other is normal had no difference in copy number by subsequent verification.
     2. We verified all CNVs possibly related to heart development by qPCR. In addition tothe18-trisomy with the copy number amplifications of GATA6related to heart defects, onecopy number deletion at14q23.1was validated which contains whole DAAM1andKIAA0666genes. The single-copy deletion existed in one normal karyotype fetus withcomplex CHDs. DAAM1is essential for early embryonic heart development and its copynumber deletion may be a potential cause of complex CHDs for fetuses.
     3. DNA methylation differences of3cases with complex CHDs when compared to3matched controls were found that Log2-ratio of RADIL, CHRNA10and RADIL genepromoter methylation were higher0.41~0.59than that of the controls, NXPH3, ZNF408and ABL1gene methylation level was lower0.34~0.62than controls.
     4. The same cases and controls’ umbilical cord blood DNA were further tested bySequenom MassARRAY system for verification of methylation differences. The screeningresults cannot to be validated by the another methylation analysis method.
     Conclusions
     1. More frequent copy number variants than chromose abberrations cause humangenetic diversity that also increase the risk of specific birth defects.
     2. Frequent CHDs in fetus with trisomy18were associated with overexpression ofHsa18genes especially GATA6, which disturbed cardiac differentiation and thedevelopment of the embryonic outflow tract.
     3. Copy number deletion on the locus of14q23.1will result in complex CHD, wherecontained DAAM1gene that is indispensable for heart development.
     4. Significant methylation differences were detected in3fetuses with complex CHDby genome-wide screening of methylation changes. But the methylation changes could notbe verified with subsequent mass spectrometry quantitative analysis of methylation withsame samples. Epigenetic mechanisms of DNA methylation in complex CHD may needadvanced study for more clinical samples.
引文
1Trines J, Hornberger LK. Evolution of heart disease in utero. Pediatr Cardiol.2004,25:287–298.
    2Poprawski K, Michalski M, Lawniczak M, et al. Cardiovascular abnormalities in patients with Turner syndromeaccording to karyotype: own experience and literature review. Pol Arch Med Wewn.2009,119:453–460.
    3Wimalasundera RC, Gardiner HM. Congenital heart disease and aneuploidy. Prenat Diagn.2004,24:1116–1122.
    4Payne AR, Chang SW, Koenig SN, et al. Submicroscopic chromosomal copy number variations identified in childrenwith hypoplastic left heart syndrome. Pediatr Cardiol.2012,33:757–763.
    5Greenway SC, Pereira AC, Lin JC, et al. De novo copy number variants identify new genes and loci in isolatedsporadic tetralogy of Fallot. Nat Genet.2009,41(8):931–935.
    6Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome. Nature.2006,444:
    444–454.
    7Nath AK, Krauthammer M, Li P, et al. Proteomic-based detection of a protein cluster dysregulated duringcardiovascular development identifies biomarkers of congenital heart defects. PLoS One.2009,4(1): e4221.
    8Schlessinger K, Hall A, Tolwinski N. Wnt signaling pathways meet Rho GTPases. Genes Dev.2009,23:265–277.
    9Greenway SC, Pereira AC, Lin JC, et al. De novo copy number variants identify new genes and loci in isolatedsporadic tetralogy of Fallot. Nat Genet.2009,41(8):931–935.
    1Tennstedt C, Chaoui R, Korner H, et al. Spectrum of congenital heart defects and extracardiac malformationsassociated with chromosomal abnormalities: results of a seven year necropsy study. Heart.1999,82:34–39.
    2Hameed AB, Sklansky MS. Pregnancy: maternal and fetal heart disease. Curr Probl Cardiol.2007,32:419–494.
    3Yang C, Huang CH, Cheong ML, et al. Unambiguous molecular detections with multiple genetic approach for thecomplicated chromosome22q11deletion syndrome. BMC Med Genet.2009,10:16.
    4Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinicaldiagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet.2010,86(5):749–764.
    1Nath AK, Krauthammer M, Li P, et al. Proteomic-based detection of a protein cluster dysregulated duringcardiovascular development identifies biomarkers of congenital heart defects. PLoS One.2009,4(1): e4221.
    2Affymetrix, Inc. Affymetrix genome-wide human SNP Nsp/Sty6.0user guide. P/N702504, Rev32008:28–332.
    3Goldmuntz E, Paluru P, Glessner J, et al. Microdeletions and microduplications in patients with congenital heartdisease and multiple congenital anomalies. Congenit Heart Dis.2011,6(6):592–602.
    4Soemedi R, Wilson IJ, Bentham J, et al. Contribution of global rare copy-number variants to the risk of sporadiccongenital heart disease. Am J Hum Genet.2012,91(3):489–501.
    5Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinicaldiagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet.2010,86(5):749–764.
    1Yin LJ, Zhang Y, Lv PP, et al. Insufficient maintenance DNA methylation is associated with abnormal embryonicdevelopment. BMC Med.2012,10:26.
    2van Driel LM, de Jonge R, Helbing WA, et al. Maternal global methylation status and risk of congenital heart diseases.Obstet Gynecol.2008,112:277–283.
    1Ikeda Y, Hiroi Y, Hosoda T, et al.. Novel Point Mutation in the Cardiac Transcription Factor CS×/NKX2.5AssociatedWith Congenital Heart Disease. Circ J.2002,66:561–563.
    2Brewer AC, Alexandrovich A, Mjaatvedt CH, et al. GATA Factors Lie Upstream of NKX2.5in the TranscriptionalRegulatory Cascade That Effects Cardiogenesis. Stem Cells Dev.2005,14:425–439.
    3Maitra M, Schluterman MK, Nichols HA, et al. Interaction of Gata4and Gata6with TBX5is critical for normalcardiac development. Dev Biol.2009,326:368–377.
    4Hsiao CC, Tsao LY, Chen HN, et al. Changing clinical presentations and survival pattern in trisomy18. PediatrNeonatol.2009,50:147–151.
    4Iliopoulos D, Vassiliou G, Sekerli E, et al. Long survival in a69,XXX triploid infant in Greece. Genet Mol Res.2005,4:755–759.
    5Chen CP. Prenatal sonographic features of fetuses in trisomy13pregnancies (I). Taiwan J Obstet Gynecol.2009,48:210–217.
    6von Kaisenberg CS, Brand-Saberi B, Christ B, et al. Collagen type VI gene expression in the skin of trisomy21fetuses.Obstet Gynecol.1998,91:319–323.
    7Sieroszewski P, Perenc M, Bas-Budecka E, et al. ultrasound diagnostic schema for the determination of increased riskfor chromosomal fetal aneuploidies in the first half of pregnancy. J Appl Genet.2006,47:177–185.
    1Affymetrix, Inc. Affymetrix genome-wide human SNP Nsp/Sty6.0user guide. P/N702504, Rev32008:28–332.
    1Affymetrix, Inc. Affymetrix genome-wide human SNP Nsp/Sty6.0user guide. P/N702504, Rev32008:28–332.
    2Payne AR, Chang SW, Koenig SN, et al. Submicroscopic chromosomal copy number variations identified in childrenwith hypoplastic left heart syndrome. Pediatr Cardiol.2012,33:757–763.
    1Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinicaldiagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet.2010,86(5):749–764.
    1Affymetrix, Inc. Affymetrix genome-wide human SNP Nsp/Sty6.0user guide. P/N702504, Rev32008:28–332.
    2Bao B, Zhang L, Hu H, et al. Deletion of a single-copy DAAM1gene in congenital heart defect: a case report. BMCMed Genet.2012,13:63.
    1Maitra M, Schluterman MK, Nichols HA, et al. Interaction of Gata4and Gata6with TBX5is critical for normalcardiac development. Dev Biol.2009,326:368–377.
    2Bao B, Zhang L, Hu H, et al. Deletion of a single-copy DAAM1gene in congenital heart defect: a case report. BMCMed Genet.2012,13:63.
    1Bao B, Zhang L, Hu H, et al. Deletion of a single-copy DAAM1gene in congenital heart defect: a case report. BMCMed Genet.2012,13:63.
    2Li D, Hallett MA, Zhu W, et al. Dishevelled-associated activator of morphogenesis1(Daam1) is required for heartmorphogenesis. Development.2011,138(2):303–315.
    1Bao B, Wang Y, Hu H, et al. Karyotypic and molecular genetic changes associated with fetal cardiovascularabnormalities: results of a retrospective4-year ultrasonic diagnosis study. Int J Biol Sci.2013,9(5):463–471.
    2Maitra M, Schluterman MK, Nichols HA, et al. Interaction of Gata4and Gata6with TBX5is critical for normalcardiac development. Dev Biol.2009,326:368–377.
    3Chen CP. Prenatal sonographic features of fetuses in trisomy13pregnancies (I). Taiwan J Obstet Gynecol.2009,48:210–217.
    1Nath AK, Krauthammer M, Li P, et al. Proteomic-based detection of a protein cluster dysregulated duringcardiovascular development identifies biomarkers of congenital heart defects. PLoS One.2009,4(1): e4221.
    2Schlessinger K, Hall A, Tolwinski N. Wnt signaling pathways meet Rho GTPases. Genes Dev.2009,23:265–277.
    3Morgan SC, Lee HY, Relaix F, et al. Cardiac outflow tract septation failure in Pax3-deficient embryos is due top53-dependent regulation of migrating cardiac neural crest. Mech Dev.2008,125:757–767.
    4Morikawa Y, Cserjesi P. Cardiac neural crest expression of Hand2regulates outflow and second heart fielddevelopment. Circ Res.2008,103:1422–1429.
    5Lale S, Yu S, Ahmed A. Complex congenital heart defects in association with maternal diabetes and partial deletion ofthe A2BP1gene. Fetal Pediatr Pathol.2011,30:161–166.
    6Tay HG, Ng YW, Manser E. A vertebrate-specific Chp-PAK-PIX pathway maintains E-cadherin at adherens junctionsduring zebrafish epiboly. PLoS One.2010,5(4): e10125.
    7Matusek T, Djiane A, Jankovics F, et al. The Drosophila formin DAAM regulates the tracheal cuticle pattern throughorganizing the actin cytoskeleton. Development.2006,133:957–966.
    8Sato A, Khadka DK, Liu W, et al. Profilin is an effector for Daam1in non-canonical Wnt signaling and is required forvertebrate gastrulation. Development.2006,133:4219–4231.
    9Kovar DR, Harris ES, Mahaffy R, et al. Control of the assembly of ATP-and ADP-actin by formins and profilin. Cell.2006,124:423–435.
    1Matusek T, Djiane A, Jankovics F, et al. The Drosophila formin DAAM regulates the tracheal cuticle pattern throughorganizing the actin cytoskeleton. Development.2006,133:957–966.
    2Li D, Hallett MA, Zhu W, et al. Dishevelled-associated activator of morphogenesis1(Daam1) is required for heartmorphogenesis. Development.2011,138(2):303–315.
    3李晓维,沈捷,张丽,等. VEGF-A基因在汉族先天性房室间隔缺损患儿中的突变分析.临床儿科杂志,2012,30(7):627–630.
    4Satoda M, Zhao F, Diaz GA, et al. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductusarteriosus. Nat Genet.2000,25(1):42–46.
    5Zhu L, Belmont JW, Ware SM. Genetics of human heterotaxias. Eur J Hum Genet.2006,14(1):17–25.
    6Weninger WJ, Floro KL, Bennett MB, et al.Cited2is required both for heart morphogenesis and establishment of theleft-right axis in mouse development. Development.2005,132(6):1337.
    7Duong A, Steinmaus C, McHale CM, et al. Reproductive and developmental to×icity of formaldehyde: a systematicreview. Mutat Res.2011,728:118–138.
    8Shaw GM, Nelson V, Iovann isci DM, et al. Maternal occupational chemical exposures and biotransformationgenotypes as risk factors for selected congenital anomalies. Am J Epidemiol.2003,157(6):475–484.
    9Loffredo CA. Silbergeld EK, Ferencz C, et al. Association of transposition of the great arteries in infants with maternalexposures to herbicides and rodenticides. Am J Epidemiol.2001,153(6):529–536.
    1Payne AR, Chang SW, Koenig SN, et al. Submicroscopic chromosomal copy number variations identified in childrenwith hypoplastic left heart syndrome. Pediatr Cardiol.2012,33:757–763.
    2Sato A, Khadka DK, Liu W, et al. Profilin is an effector for Daam1in non-canonical Wnt signaling and is required forvertebrate gastrulation. Development.2006,133:4219–4231.
    3Lee Kaplan, Rosemary Foster, Yiping Shen, et al. Monozygotic Twins Discordant for Neurofibromatosis1. Am J MedGenet A.2010,152A(3):601–606.
    4Kaminsky, Z.A, Virtanen, C, Halfvarson, J, et al. DNA methylation profiles in monozygotic and dizygotic twins. Nat.Genet.2009,41:240-245.
    5Wong, C.C, Caspi, A, Williams, B, et al. A longitudinal study of epigenetic variation in twins. Epigenetics.2010,5:516–526.
    6Maslen CL. Molecular genetics of complete endocardial cushion defects. Curr Opin Cardiol.2004,19(3):205–210.
    7Guo Y, Shen J, Yuan L, et al. Novel CRELD1gene mutations in patients with complete endocardial cushion defect.World J Pediatr.2010,6(4):348–352.
    8Greenway SC, Pereira AC, Lin JC, et al. De novo copy number variants identify new genes and loci in isolatedsporadic tetralogy of Fallot. Nat Genet.2009,41(8):931–935.
    9Soemedi R, Wilson IJ, Bentham J, et al. Contribution of global rare copy-number variants to the risk of sporadiccongenital heart disease. Am J Hum Genet.2012,91(3):489–501.
    10Bao B, Wang Y, Hu H, et al. Karyotypic and molecular genetic changes associated with fetal cardiovascularabnormalities: results of a retrospective4-year ultrasonic diagnosis study. Int J Biol Sci.2013,9(5):463–471.
    11Priest JR, Girirajan S, Vu TH, et al. Rare copy number variants in isolated sporadic and syndromic atrioventricularseptal defects. Am J Med Genet A.2012,158A(6):1279–1284.
    1Maitra M, Schluterman MK, Nichols HA, et al. Interaction of Gata4and Gata6with TBX5is critical for normalcardiac development. Dev Biol.2009,326:368–377.
    2Bao B, Zhang L, Hu H, et al. Deletion of a single-copy DAAM1gene in congenital heart defect: a case report. BMCMed Genet.2012,13:63.
    3Li D, Hallett MA, Zhu W, et al. Dishevelled-associated activator of morphogenesis1(Daam1) is required for heartmorphogenesis. Development.2011,138(2):303–315.
    1Chowdhury S, Erickson SW, MacLeod SL, et al. Maternal genome-wide DNA methylation patterns and congenitalheart defects. PLoS One.2011,6: e16506.
    2Yin LJ, Zhang Y, Lv PP, et al. Insufficient maintenance DNA methylation is associated with abnormal embryonicdevelopment. BMC Med.2012,10:26.
    3Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature.2007,447:433–440.
    95号病例样本RADIL质谱波形截图、甲基化程度的圆点图及对应的分析序列图2
    97号病例样本RADIL的质谱波形截图、甲基化程度的圆点图及对应的分析序列图2
    1Greenway SC, Pereira AC, Lin JC, et al. De novo copy number variants identify new genes and loci in isolatedsporadic tetralogy of Fallot. Nat Genet.2009,41(8):931–935.
    2Bahado-Singh RO, Choi SJ, Oz U, et al. Early second-trimester individualized estimation of trisomy18risk byultrasound. Obstet Gynecol.2003,101:463–468.
    1Nath AK, Krauthammer M, Li P, et al. Proteomic-based detection of a protein cluster dysregulated duringcardiovascular development identifies biomarkers of congenital heart defects. PLoS One.2009,4(1): e4221.
    2Blinder JJ, Martinez HR, Craigen WJ, et al. Noncompaction of the left ventricular myocardium in a boy with a novelchromosome8p23.1deletion. Am J Med Genet A.2011,155:2215–2220.
    3Oster ME, Riehle-Colarusso T, Alverson CJ, et al. Associations between maternal Fever and influenza and congenitalheart defects. J Pediatr.2011,158(6):990–995.
    4Brewer AC, Alexandrovich A, Mjaatvedt CH, et al. GATA factors lie upstream of Nkx2.5in the transcriptionalregulatory cascade that effects cardiogenesis. Stem Cells Dev.2005,14(4):425-439.
    5Chen BY, Hwang BF, Guo YL. Epidemiology of congenital anomalies in a population-based birth registry in Taiwan,2002. J Formos Med Assoc.2009,108:460-468.
    6Memon S, Pratten MK. Developmental to×icity of ethanol in chick heart in ovo and in micromass culture can beprevented by addition of vitamin C and folic acid. Reprod Toxicol.2009,28:262–269.
    1张文迪,余肖,黄姗,等.5,10-亚甲基四氢叶酸还原酶基因启动子区域甲基化状态与先天性心脏病的关系.实用儿科杂志.2012,27(1):13.
    2Van Beynum IM, Kapusta L, den H eijer M, et al. Maternal MTHFR677C> T is a risk factor for congenital heartdefects: effect modification by periconceptional folate supplementation. Eur Heart J.2006,27(8):981–987.
    3Nath AK, Krauthammer M, Li P, et al. Proteomic-based detection of a protein cluster dysregulated duringcardiovascular development identifies biomarkers of congenital heart defects. PLoS One.2009,4(1): e4221.
    4Haramis APG, Clevers HC. Holehearted: genetic approaches to congenital cardiac valve malformations. DrugDiscovery Today: Disease Mechanisms/Cardiovascular diseases.2004,1:1–8.
    5Lin AE, Ardinger HH. Genetic epidemiology of cardiovascular malformations. Progr Pediatr Cardiol.2005,20:113–126.
    6Philibert RA, Plume JM, Gibbons FX, et al. The impact of recent alcohol use on genome wide DNA methylationsignatures. Front Genet.2012,3:54.
    7Lawrence J, Chen M, Xiong F, et al. Fetal nicotine exposure causes PKCε gene repression by promoter methylation inrat hearts. Cardiovasc Res.2011,89(1):89–97.
    8Chan J, Deng L, Mikael L G, et al. Low dietary choline and low dietary riboflavin during pregnancy influencereproductive outcomes and heart development in mice. Am J Clin Nutr.2010,91(4):1035–1043.
    9Slater-Jefferies JL, Lillycrop KA, Townsend PA, et al. Feeding a protein-restricted diet during pregnancy inducesaltered epigenetic regulation of peroxisomal proliferator-activated receptor-α in the heart of the offspring. J Dev OrigHealth Dis.2011,2(4):250–255.
    10Reamon-Buettner SM, Ciribilli Y, Traverso I, et al.A functional genetic study identifies HAND1mutations inseptation defects of the human heart. Hum Mol Genet.2009,18(19):3567.
    1Grievink H, Stowell KM. Identifi-cation of ryanodine recep-tor1single-nucleotide polymorphisms by high-resolutionMelting using the LightCycler480System. Analytical Biochemistry.2008,374:396–404.
    2Wojdacz TK, Dobrovic A, Hansen LL. Methylation-sensitive high-resolution melting. Nat Protoc.2008,3(12):1903-1908.
    3Ikeda Y, Hiroi Y, Hosoda T, et al. Novel Point Mutation in the Cardiac Transcription Factor CSX/NKX2.5AssociatedWith Congenital Heart Disease. Circ J.2002,66(6):561-563.
    4Riley MF, McBride KL, Cole SE. NOTCH1missense alleles associated with left ventricular outflow tract defectsexhibit impaired receptor processing and defective EMT. Biochim Biophys Acta.2011,1812(1):121–129.
    5Pompa1JL, Epstein JA. Coordinating Tissue Interactions: Notch Signaling in Cardiac Development and Disease.Developmental Cell.2012,22:244–254.
    6van den Akker NM, Caolo V, Molin DG. Cellular decisions in cardiac outflow tract and coronary development: an actby VEGF and NOTCH. Differentiation.2012,84(1):62–78.
    7Townsend G, Hughes T, Luciano M, et al. Genetic and environmental influences on human dental variation: a criticalevaluation of studies involving twins. Arch Oral Biol.2009,54(1): S45–51.
    8Wong, C.C, Caspi, A, Williams, B, et al. A longitudinal study of epigenetic variation in twins. Epigenetics.2010,5:516–526.
    9Oster ME, Riehle-Colarusso T, Alverson CJ, et al. Associations between maternal Fever and influenza and congenitalheart defects. J Pediatr.2011,158(6):990–995.
    10Townsend G, Hughes T, Luciano M, et al. Genetic and environmental influences on human dental variation: a criticalevaluation of studies involving twins. Arch Oral Biol.2009,54(1): S45–51.
    1Rosamond W, Flegal K, Friday G, et al. Heart disease and stroke statistics--2007update: a report from the AmericanHeart Association Statistics Committee and Stroke Statistics Subcommittee. Committee and Stroke StatisticsSubcommittee. Circulation.2007,115(5): e69-e171.
    2林亨丽,黄伟欣,曹晓焱,等.中国医学影像学杂志.2011,19(6):472-475.
    3Nath AK, Krauthammer M, Li P, et al. Proteomic-based detection of a protein cluster dysregulated duringcardiovascular development identifies biomarkers of congenital heart defects. PLoS One.2009.4(1): e4221.
    4Pierpont ME, Basson CT, Benson DW Jr, et al. Genetic basis for congenital heart defects: current knowledge: ascientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council onCardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation.2007,115(23):3015-3038.
    1Rodriguez-Caballero A, Torres-Lagares D, Rodriguez-Perez A, et al. Cri du chat syndrome: a critical review. Med OralPatol Oral Cir Bucal.2010,15(3): e473-478
    2Ensenauer RE, Adeyinka A, Flynn HC, et al. Microduplication22q11.2, an emerging syndrome: clinical, cytogenetic,and molecular analysis of thirteen patients. Am J Hum Genet.2003,73(5):1027-1040.
    3Digilio MC, Marino B, Giannotti A, et al. Recurrence risk figures for isolated tetralogy of Fallot after screening for22q11microdeletion. J Med Genet.1997,34:188-190.
    4McCarroll SA, Altshuler DM. Copy-number variation and association studies of human disease. Nat Genet.2007,39(7): S37-S42.
    1Eronen M, Peippo M, Hiippala A, et al. CardioVascular manifestations in75patients with Williams syndrome. J MedGenet.2002,39(8):554-558.
    2Ensenauer RE, Adeyinka A, Flynn HC, et al. Microduplication22q11.2, an emerging syndrome: clinical, cytogenetic,and molecular analysis of thirteen patients. Am J Hum Genet.2003,73(5):1027-1040.
    3林颖,胡平,季修庆,等.22q11.2微重复伴先天性心脏缺损的产前分子遗传学诊断.临床检验杂志.2011,29(2):
    103-105.
    4Lajiness-O' Neill R R, Beaulieu I, Titus J B, et al. Memory and learning in children with22q11.2deletion syndrome:eVidence for Ventra1and dorsal stream disruption. Child Neuropsychol.2005,11(1):55-71.
    5Rajagopal SK, Ma Q, Shen J, et al. Spectrum of heart disease associated with murine and human GATA4mutation. JMol Cell Cardiol.2007,43(6):677-685.
    6李晓维,沈捷,张丽,等. VEGF-A基因在汉族先天性房室间隔缺损患儿中的突变分析.临床儿科杂志.2012,30(7):627-630.
    7邱广蓉,周静怡,刘培燕,等.TBX1基因T350M多态性与法洛四联症的相关性.实用儿科临床杂志.2011,26(12):946-948.
    8Vissers LE, van Ravenswaaij CM, Admiraal R, et al. Mutations in a new member of the chromodomain gene familycause CHARGE syndrome. Nat Genet.2004,36(9):955-957.
    1Thienpont B, Mertens L, de Ravel T, et al. Submicroscopic chromosomal imbalances detected by array-CGH are afrequent cause of congenital heart defects in selected patients. Eur Heart J.2007,28(22):2778-2784.
    2Richards AA, Santos LJ, Nichols HA, et al. Cryptic chromosomal abnormalities identified in children with congenitalheart disease. Pediatr Res.2008,64(4):358-363.
    3Erdogan F, Larsen LA, Zhang L, et al. High frequency of submicroscopic genomic aberrations detected by tiling patharray comparative genome hybridisation in patients with isolated congenital heart disease. J Med Genet.2008,45(11):
    704-709.
    4Digilio MC, Marino B, Giannotti A, et al. Recurrence risk figures for isolated tetralogy of Fallot after screening for22q11microdeletion. J Med Genet.1997,34:188-190.
    5Goldmuntz E, Geiger E, Benson DW. NKX2-5mutations in patients with tetralogy of Fallot. Circulation.2001,104:2565-2568.
    6Bauer RC, Laney AO, Smith R, et al. Jagged1(JAG1)mutations in patients with tetralogy of Fallot or pulmonic stenosis.Hum Mutat.2010,31(5):594-601.
    7Pizzuti A, Sarkozy A, Newton AL, et al. Mutations of ZFPM2/FOG2gene in sporadic cases of tetralogy of Fallot.HumMut.2003,22:372-377.
    8B(o)hm J, Kaiser FJ, Bomzdin W, et al. Synergistic cooperation of Sall4and Cyclin D1in transcriptional repression.Biochem Biophys Res Commun.2007,356(3):773.
    1周世媛,周继苹,王莉娜,等. MTHFR基因多态性与法洛四联症的相关性研究.山东医药.2012,52(43):1-3.
    2赵武,王剑,沈捷,等. VEGFA基因c.1039G>A单核苷酸多态性可能增加二叶式主动脉瓣的发生危险.蚌埠医学院学报.2010,35(10):986-990.
    3Zhang WM, Li XF, Ma ZY, et al. GATA4and NKX2-5gene analysis in Chinese Uygur patients with congenital heartdisease. Chin Med J (Engl).2009,122(4):416-419.
    4Elliott DA, Kirk EP, Yeoh T, et al. Cardiac homeobox gene NKX2-5mutations and congenital heart disease: association with atrial septal defect and hypoplastic left heart syndrome. J Am Coll Cardiol.2003,41:2072-2076.
    5Joziasse IC, van de Smagt JJ, Smith K, et al. Genes in congenital heart disease: atrioventricular valve formation. BasicRes Cardiol.2008,103(3):2162.
    6Hirayama-Yamada K, Kamisago M, Akimoto K, et al. Phenotypes with GATA4or NKX2-5mutations in familial atrialseptal defect. Am J Med Genet.2005,135:47-52.
    7Bj rnstad PG, Leren TP.Familial atrial septal defect in the oVal fossa with progressiVe prolongation of theatrioVentricular conduction caused by mutations in the NKX2-5gene. Cardiol Young.2009,19:40-44.
    8Pashmforoush M, Lu JT, Chen H, et al. NKX2-5pathways and congetial heart disease; lose of vetricular myocytelineage sepcification leads to progressive cardiomyopathy and complete heart block.Cell.2004,117(3):373.
    9Zhu W, Shiojima I, Hiroi Y, et al. Functional analyses of three Csx/NKX2-5mutations that cause human congentialheart disease.J Biol Chem.2006,275(45):35291.
    10庄太凤,景红,邢继伟,等.中国人单纯性先天性心脏病患儿NKX2-5与GATA4基因突变分析.中华临床医师杂志(电子版).2011,5(13):3737-3740.
    1曹青,程应樟,俞建华,等.江西地区先心病患者46例EVC等4个已知致病基因筛查报告一4个EVC基因突变与先心病室缺和房缺相关.岭南心血管病杂志.2011,增刊:138.
    2Garg V, Muth AN, Ransom JF, et al. Mutations in NOTCH1cause aortic valve disease. Nature.2005,437(7056):
    270-274.
    3Yang JH, Wylie-Sears J, Bischoff J. Opposing actions of Notch1and VEGF in post-natal cardiac valve endothelialcells. Biochem Biophys Res Commun.2008,374(3):512-516.
    4Zhao W, Wang J, Shen J, et al. Mutations in VEGFA are associated with congenital left ventricular outflow tractobstruction. Biochem Biophys Res Commun.2010,396(2):483-488.
    5McBride KL, Zender GA, Fitzgerald-Butt SM, et al. Association of common variants in ERBB4with congenital leftventricular outflow tract obstruction defects. Birth Defects Res A Clin Mol Teratol.2011,91(3):162-168.
    6Metcalfe K, Rucka AK, Smoot L, et al. Elastin: mutational spectrum in supravalvular aortic stenosis. Eur J Hum Genet.2000,8(12):955-963.
    7McCulley DJ, Kang JO, Martin JF, et al. BMP4is required in the anterior heart field and its derivatives for endocardialcushion remodeling, outflow tract septation, and semilunar valve development. Dev Dyn.2008,237(11):3200-3209.
    8Chen P, Xie LJ, Huang GY, et al. Mutations of connexin43in fetuses with congenital heart malformations. Chin Med
    (Engl).2005,118(12):971-976.
    9邱广蓉,刘培燕,姜红,等. CASP3基因R101H多态性与法洛四联症的相关性.实用儿科临床杂志.2012,27(11):
    856-858.
    1周世媛,周继苹,王莉娜,等. MTHFR基因多态性与法洛四联症的相关性研究.山东医药.2012,52(43):1-3.
    2Reamon-Buettner SM, Ciribilli Y, Traverso I, et al. A functional genetic study identifies HAND1mutations inseptation defects of the human heart.Hum Mol Genet.2009,18(19):3567.
    3Garg V, Muth AN, Ransom JF, et al. Mutations in NOTCH1cause aortic valve disease. Nature.2005,437(7056):
    270-274.
    4周丹,郭洪,白云,等.脊髓小脑性共济失调合并房间隔缺损家系的遗传学研究.第三军医大学学报.2013,35(11):1167-1169.
    5Weninger WJ, Floro KL, Bennett MB, et al. Cited2is required both for heart morphogenesis and establishment of theleft-right axis in mouse development. Development.2005,132(6):1337.
    6Garg V, Muth AN, Ransom JF, et al. Mutations in NOTCH1cause aortic valve disease. Nature.2005,437(7056):
    270-274.
    7De Luca A, Sarkozy A, Ferese R, et al. New mutations in ZFPM2/FOG2gene in tetralogy of Fallot and double outletrightVentricle. Clin Genet.2010,2:1-7.
    8Abushaban L, Uthaman B, Kumar AR, et al. Familial truncus arteriosus: a possible autosomal-recessive trait. PediatrCardiol.2003,24:64-66.
    9Bentham J, Bhattacharya S. Genetic mechanisms controlling cardiovascular development. Ann N Y Acad Sci.2008,1123:10-19.
    1Mori AD, Bruneau BG. TBX5mutations and congenital heart disease: Holtram syndrome revealed. Curr Opin Cardiol.2004,19(3):211-215.
    2Stennard FA, Costa MW, Lai D, et al. Murine T-box transcription factor Tbx20acts as a repressor during heartdevelopment, and is essential for adult heart integrity, function and adaptation. Development.2005,132(10):2451.
    3Firulli AB. A HANDful of questions: the molecular biology of the heart and neural crest derivatives (HAND)-subclassof basic helix-loop-helix transcription factors. Gene,2003,312:27-40.
    4Koshiba-Takeuchi K, Takeuchi JK, Arruda EP, et al. Cooperative and antagonistic interactions between Sall4andTbx5pattern the mouse limb and heart.Nat Genet,2006,38(2):175.
    5张丽.转录因子在先天性房室隔缺损遗传学机制中的作用.国际儿科学杂志.2010,37(6):555.
    6Daniel PJ, Harry CD. Marfan's syndrome. Lancet.2005,366(9501):1965-1976.
    7Ali BR, Akawi NA, Chedid F, et al. Molecular and clinical analysis of Ellis-van Creveld syndrome in the United ArabEmirates. BMC Med Genet.2010,11:33.
    1Andelfinger G, Tapper AR, Welch RC, et al. KCNJ2mutation results in Andersen syndrome with sex-specific cardiacand skeletal muscle phenotypes. Am J Hum Genet.2002,71(3):663-668.
    2Satoda M, Zhao F, Diaz GA, et al. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductusarteriosus. Nat Genet.2000,25(1):42-46.
    3许瑞,霍强,张丽,等.新疆维、汉族单纯性先天性心脏病MTHFR基因C677T多态性研究.新疆医科大学学报.2013,36(6):748-751.
    4李晓维,沈捷,张丽,等. VEGF-A基因在汉族先天性房室间隔缺损患儿中的突变分析.临床儿科杂志.2012,30(7):627-630.
    5Smedts HP, Isaacs A, de Costa D, et al. VEGF polymorphisms are associated with endocardial cushion defects: afamily based case control study. Pediatr Res.2010,67(1):23-28.
    6赵武,王剑,沈捷,等. VEGFA基因c.1039G>A单核苷酸多态性可能增加二叶式主动脉瓣的发生危险.蚌埠医学院学报.2010,35(10):986-999
    1Griffin HR, Hall DH, Topf A, et al. Genetic variation in VEGF does not contribute significantly to the risk ofcongenital cardiovascular malformation. PLoS One.2009,4(3): e4978.
    2Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lackingmiRNA-1-2. Cell.2007,129(2):303-317.
    3庄太凤,景红,邢继伟,等.中国人单纯性先天性心脏病患儿NKX2-5与GATA4基因突变分析.中华临床医师杂志(电子版).2011,5(13):3737-3740.
    1郭彦孜,张国成,苏海砾,等.先天性心脏病与母亲孕期感染关系的研究.临床儿科杂志.2010,28(7):649-652.
    2Bobertson SE, Cutts FT, Samuel R, et al. Control of rubella and congenital rubella syndrome (CRS) in developingcountries, Part2: Vaccination against rubella. Bull World Health Organ.1997,75(1):69-80.
    3王晓明,张国成,韩美玉,等.弓形体感染与先天性心脏病的关系.第四军医大学学报.1999,20(9):790-792.
    4王晓明,张国成,韩美玉,等. B19病毒对先天性心脏病先天感染的探证及电镜观察.第四军医大学学报.2001,22(4):340-343.
    5侯佳,桂永浩,奚立,等.先天性心脏病环境因素的病例对照研究.复旦学报:医学版.2007,34(5):652-655.
    6魏磊,刘金华,朱伟,等.新疆伊犁州儿童先天性心脏病2:1配对病例对照病因分析.南京医科大学学报(自然科学版).2013,33(1):78-82.
    7Abushaban L, Uthaman Bv, Kumar AR, et al. Familial truncus arteriosus: a possible autosomal-recessive trait. PediatrCardiol.2003,24:64-66.
    8肖雪琴,邱建平,刘跃梅,等.环境因素(气候)对先天性心脏病患病率的影响.赣南医学院学报.2008,28(4):544.
    9Botto LD, Lynberg MC, Erickson JD. Congenital heart defects, maternal febrile illness, and multivitamin use: apopulation based study. Epidemiology.2001,12(5):485-490.
    10胡晓斌.出生缺陷及不良妊娠结局影响因素研究.兰州大学.2007.
    1高燕.先天性心脏病病因及流行病学研究进展.中国循证儿科杂志.2008,3(3):213-222.
    2马金龙,高英茂,刘凯,等.高温致神经管畸形中细胞增殖和细胞凋亡的定量研究.中国体视学与图像分析.2001,6(2):65-69.
    3林亨丽,黄伟欣,曹晓焱,等.中国医学影像学杂志.2011,19(6):472-475.
    4刘凤,陶芳标,严双琴,等.父母环境因素暴露于胎儿闲心疾病因关系探索.临床儿科杂志.2009,27(5):424.
    5Kuehl KS, Loffredo CA. Population-based study of l-transposition of the great arteries: possible associations withenvironmental factors. Birth Defects Res A Clin Mol Teratol.2003,67(3):162-167.
    6Shaw GM, Nelson V, Iovann isci DM, et al. Maternal occupational chemical exposures and biotransformationgenotypes as risk factors for selected congenital anomalies. Am J Epidemiol.2003,157(6):475-484.
    7Loffredo CA. Silbergeld EK, Ferencz C, et al. Association of transposition of the great arteries in infants with maternalexposures to herbicides and rodenticides. Am J Epidemiol.2001,153(6):529-536.
    8王政,方俊群.出生缺陷影响因素的病例对照研究.实用预防医学.2009(3):679-682.
    9芈静.蚌埠地区0~5岁儿童出生缺陷的流行病学研究.安徽医科大学.2008.
    10段修洲.提高人口素质预防出生缺陷.农垦医学.2009(1):51-53.
    1Li D, Lu C, Wang J, et al. Developmental mechanisms of arsenite toxicity in zebrafish (Danio rerio) embryos. AquatToxicol.2009,91(3):229-237.
    2Corrigan N, Brazil DP, Auliffe FM. Fetal Cardiac Effects of Maternal Hyperglycemia During Pregnancy. Birth DefectsResearch (Part A).2009,85(6):523-530.
    3Sípek A, Gregor V, Horácek J, et al. Birth defects' occurrence in offspring of mothers taking1st trimester medicationin the Czech Republic in1996-2004. Ceska Gynekol.2006,71(4):284-291.
    4Oberlander TF, Warburton W, Misri S, et al. Major congenital malformations following prenatal exposure to serotoninreuptake inhibitors and benzodiazepines using population-based health data. Birth Defects Res B Dev Reprod Toxicol.2008,83(1):68-76.
    5Wang Y, Zhong T, Qian L, et al. Wortmannin induces zebrafish cardia bifida through a mechanism independent ofphosphoinositide3-kinase and myosin light chain kinase. Biochem Biophys Res Commun.2005,331(1):303-308.
    6Monig H, Hensen J, Lehnert H. Thyroid disorders and pregnancy. Internist (Berl).2010,51(5):620.
    7Nieuwenhuijsen MJ, Toledano MB, Bennett J, et al. Chlorination disinfection by products and risk of congenitalanomalies in england andwales. Environmental Health Perspectives.2008,116(2):216-222.
    8Czeizel AE, Rockenbauer M, Sorensen HT, et al. The teratogenic risk of trimethoprim sulfonamides: a populationbased case control study. Reprod Toxicol.2001,15(6):637-646.
    9Cooper WO, Hernandez-Diaz S, Arbogast PG, et al. Major congenital malformations after first trimester exposure toACE inhibitors. N Engl J Med.2006,23(354):2443-2451.
    10Kllén BA, Otterblad Olausson P, Danielsson BR. Is erythromycin therapy teratogenic in humans? Reprod Toxicol.2005,20(2):209-214.
    11Bupropion(amfebutamone): Caution during pregnancy. Prescrire Int.2005,14(80):225.
    12谢小冬,陈晶晶,于敏,等.甘肃省先天性心脏病环境因素病例调查分析.中国优生与遗传杂志.2012,20(4):9-12.
    13Cresci M, Foffa I, Ait-Ali L, et al. Teralogenic risk of low level ionizing radiation. Congenital heart disease in infant.Recent Prog Med.2009,100(9):410-413.
    14朱文丽,刀京晶,成君,等.血清同型半胱氨酸及叶酸水平与先天性心脏病的关系.卫生研究.2005,34(6):740-743.
    1Van Beynum IM, Kapusta L, Bakker MK et al. Protective effect of periconceptional folic acid supplements on the riskof congenital heart defects: a registry-based case-control study in the northern Netherlands. Eur Heart J.2010,31(4):464.
    2李智文,任爱国,张乐,等.母亲饮食因素与神经管畸形危险性的病例对照研究.中华流行病学杂志.2006,27(10):831-835.
    3Gonzalez-Reyes S, Martinez L, Tovar JA. Effects of prenatal vitamins A, E, and C on the hypoplastic hearts of fetalrats with diaphragmatic hernia. J Pediatr Surg.2005,40(8):1269-1274.
    4任霞,李勇.维生素A与出生缺陷的研究进展.中国生育健康杂志.2004,15(6):372-375.
    5贾德勤,王星,伍捷阳.围生期先天性心脏病的发病趋势及相关因素研究.中国全科医学.2011,14(12):1287-1289.
    6Grewal J, Carmichael SL, Ma C, et al. Maternal periconceptional smoking and alcohol consumption and risk for selectcongenital anomalies. Birth Defects Res A Clin Mol Teratol.2008,82(7):519-526.
    7Grewal J, Carmichael SL, Ma C, et al. Maternal periconceptional smoking and alcohol consumption and risk for selectcongenital anomalies. Birth Defects Res A Clin Mol Teratol.2008,82(7):519-526.
    8Malik S, Cleves MA, Honein MA, et al. Maternal smoking and congenital heart defects. Pediatrics.2008,121(4),810-816.
    9Woods SE, Raju U. Maternal smoking and the risk of congenital birth defects: a cohort study. J Am Board Fam Pract.2001,14(5):330-334.
    10Shaw GM, Iovannisci DM, Yang W, et al. Risks of human conotruncal heart defects associated with32singlenucleotide polymorphisms of selected cardiovascular disease related genes. Am J Med Genet A.2005,138(1):21-26.
    1Forrestr MB, Merz RD. Risk of selected birth defects with prenatal illicit drug use, Hawaii,1986–2002. J ToxicolEnviron Health A.2007,70(1):7-18.
    2Nieuwenhuijsen MJ, Toledano MB, Bennett J, et al. Chlorination disinfection by-products and risk of congenitalanomalies in Eng1and and Wales. Environ Health Perspect.2008,116(2):216-222.
    3Thulstrup AM, Bonde JP. Maternal occupational exposure and risk of specific birth defects. Occup Med(Lond).2006,56(8):532-543.
    4Loffredo CA, Silbergeld EK, Ferencz C, et al. Association of transposition of the great arteries in infants with maternalexposures to herbicides and rodenticides. Am J Epidemiol.2001,153(6):529-536.
    5Loffredo CA. Silbergeld EK, Ferencz C, et al. Association of transposition of the great arteries in infants with maternalexposures to herbicides and rodenticides. Am J Epidemiol.2001,153(6):529-536.
    6Kuehl KS, Loffredo CA. Population based study of transposition of the great arteries: possible associations withenvironmental factors. Birth Defects Res A Clin Mol Teratol.2003,67(3):162-167.
    7Dolk H, Armstrong B, Lachowycz K, et al. ambient air pollution and risk of congenital anomalies in england,1991-1999. Occup Environ Med.2010,67(4):223-227.
    8Ritz B, Yu F, Fruin S, et a1. Ambient air pollution and risk of birth defects in southern california. Am J Epidemiol.2002,155(1):172-175.
    9Dolk H, Armstrong B, Lachowycz K, et al. Ambient air pollution and risk of congenital anomalies in England,1991-1999. Occup Environ Med.2010,67(4):223-227.
    10Rankin J, Chadwick T, Natarajan M, et al. Maternal exposure to ambient air pollutants and risk of congenitalanomalies. Environ Res.2009,109(2):181-187.
    11Hansen CA, Barnett AG, Jalaludin BB, et al. Ambient air pollution and birth defects in Brisbane, Australia. PLoSOne.2009,4(4):5408.
    12侯佳,桂永浩,奚立,等.先天性心脏病环境危险因素的病例对照研究.复旦学报.2007,34(5):652-655.
    13Liu SW, Liu JX, Tang J, et al. Environmental risk factors for congenital heart disease in the shandong peninsula,China: a hospitalbased case-control study. J Epidemiol.2009,19(3):122-130.
    1Chowdhury S, Erickson SW, MacLeod SL, et al. Maternal genomewide DNA methylation patterns and congenitalheart defects. PLoS One.2011,6(1): e16506.
    2Stoll C, Roth MP, Dott B, et al. Acetylator phenotype and congenital malformations. Eur J Clin Pharmacol.1989,36(2):151-153.
    3Herman JG, Baylin SB. Gene silencing in cancer association with promoter hypermethylation. N EngI J Med.2003,349(21):2042-2054.
    4Kim YI. Folate and carcinogenesis: Evidence, mechanisms, and implications. J Nutr Biochem.1999,10(2):66-88.
    5Geiman TM, Muegge K. DNA methylation in early development. Mol Reprod Dev.2010,77(2):105-113.
    6Davis CD, Uthus EO. DNA Methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood).2004,229(10):988-995.
    1Altun G, Loring JF, Laurent LC. DNA methylation in embryonic stem cells. J Cell Biochem.2010,109(1):1-6.
    2Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol.2010,11:607-620.
    3刘婧宇,杨新春,蔡军.心血管系统表观遗传学机制的新认识.生理科学进展.2012,43(1):48-50.
    4Vemeulen M, MuIder Kw, Denissov s, et a1. Selective anchoring of TFIID to nucleosomes by trimethylation of KstoneH3lysine4. Cell.2007,131(1):58-69.
    5Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet,1999,21(2):163-167.
    6Esteller M. Relevance of DNA methylation in the management of cancer. Lancet Oncol.2003,4(6):351-358.
    7Rampersaud GC, Kauwell GP, Hutson AD, et al. Genomic DNA methylation decreases in response to moderate folatedepletion in elderly women. Am J Clin Nutr.2000,72(4):998-1003.
    1Ifergan I, Assaraf YG. Molecular mechanisms of adaptation to folate deficiency.Vitam Horm.2008,79:99-143.
    2Lu C, Xie H, Wang F, et al. Diet folate, DNA methylation and genetic polymorphisms of MTHFR C677T inassociation with the prognosis of esophageal squamous cell carcinoma. BMC Cancer.2011,11:91.
    3Blom HJ, Smulders Y. Overview of homocysteine and folate metabolism. With special references to cardiovascular
    4disease and neural tube defects. J Inherit Metab Dis.2011,34(1):75-81.Ionescu-Ittu R, Marelli AJ, Mackie AS, et al. Prevalence of severe congenital heart disease after folic acid fortificationof grain products: Time trend analysis in Quebec, Canada. BMJ.2009,338:1673.
    1Smolarek I, Wyszko E, Barciszewska AM, et al. Global DNA methylation changes in blood of patients with essentialhypertension. Med Sci Monit.2010,16(3): CR149-155.
    2Han M, Serrano MC, Lastra-Vicente R, et al. Folate rescues lithium-, homocysteine-and Wnt3A-induced vertebrate
    3cardiac anomalies. Dis Model Mech.2009,2(9-10):467-478.Kulkarni A, Chavan-Gautam P, Mehendale S, et al. Global DNA methylation patterns in placenta and its associationwith maternal hypertension in pre-eclampsia. DNA Cell Biol.2011,30:79-84.
    4Wu G, Nan C, Rollo JC, et al. Sodium valproate-induced congenital cardiac abnormalities in mice are associated withthe inhibition of histone deacetylase. J Biomed Sci.2010,17(1):16.
    5Friso S, Choi SW, Girelli D, et al. A common mutation in the5,10-methylenetetrahydrofolate reductase gene affectsgenomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci U S A.2002,99(8):5606-5611.
    6Weingartner J, Lotz K, Fangh nel J, et a1. Induction and prevention of cleft lip, alveolus and palate and neural tubedefects with special consideration of B vitamins and the methylation cycle, J orofac orthop.2007,68(4):266-277.
    7韩越,潘永初,杜一飞,等.非综合征型唇腭裂与MTHFR基因多态性的相关性研究.口腔生物医学.2011,2(1):8-12.
    8Bliek BJ, Steegers-Theunissen RP, Blok LJ, et al. Genome-wide pathway analysis of folate-responsive genes to unravelthe pathogenesis of orofacial clefting in man. Birth Defects Res A Clin Mol Teratol.2008,82(9):627-635.
    9肖文林,石冰,王,等.亚甲基四氢叶酸还原酶基因在小鼠胚胎腭突间充质细胞中沉默效应的研究.华西口腔医学杂志.2009,27(3):244-247.
    1Ghosh S, Yates AJ, Frühwald MC, et al. Tissue specific DNA methylation of CpG islands in normal human adult
    2somatic tissues distinguishes neural from non-neural tissues. Epigenetics.2010,5(6):527-538.Kim YI, Shirwadkar S, Choi SW, et al. Effects of dietary folate on DNA strand breaks within mutation-prone exons ofthe p53gene in rat colon. Gastroenterology.2000,119(1):151-161.
    3Khazamipour N, Noruzinia M, Fatehmanesh P, et al. MTHFR promoter hypermethylation in testicular biopsies ofpatients with non-obstructive azoospermia: The role of epigenetics in male infertility. Hum Reprod.2009,24(9):2361-2364.
    4Philibert RA, Plume JM, Gibbons FX, et al. The impact of recent alcohol use on genome wide DNA methylationsignatures. Front Genet.2012,3:54.
    5Lawrence J, Chen M, Xiong F, et al. Fetal nicotine exposure causes PKCε gene repression by promoter methylation inrat hearts. Cardiovasc Res.2011,89(1):89-97.
    6Chan J, Deng L, Mikael L G, et al. Low dietary choline and low dietary riboflavin during pregnancy influencereproductive outcomes and heart development in mice. Am J Clin Nutr.2010,91(4):1035-1043.
    7Slater-Jefferies JL, Lillycrop KA, Townsend PA, et al. Feeding a protein-restricted diet during pregnancy inducesaltered epigenetic regulation of peroxisomal proliferator-activated receptor-α in the heart of the offspring. J Dev OrigHealth Dis.2011,2(4):250-255.
    8van Driel LM, de Jonge R, Helbing WA, et a1. Maternal global methylation status and risk of congenital heartdiseases.Obstet Gynecol.2008,112(2Pt1):277-283.
    9张文迪,余肖,黄姗,等.5,10-亚甲基四氢叶酸还原酶基因启动子区域甲基化状态与先天性心脏病的关系.实用儿科杂志.2012,27(1):13.
    1Van Beynum IM, Kapusta L, den H eijer M, et al. M atern al MTHFR677C> T is a risk factor for congen ita l h eart
    3defects: effect m od ification by periconcep tional folate supplem entation. Eur Heart J.2006,27(8):981-987.盛伟,王慧君,马晓静.先天性心脏病圆锥动脉干畸形NKX2-5基因CpG岛甲基化状态分析.中国产前诊断杂志
    2(电子版).2010,2(3):12-15.Zhu C, Yu ZB, Chen XH, et al. Screening for differential methylation status in fetal myocardial tissue samples with
    3ventricular septal defects by promoter methylation microarrays. Mol Med Rep.2011,4(1):137-143.Zhu C, Yu ZB, Chen XH, et al. DNA hypermethylation of the NOX5gene in fetal ventricular septal defect. Exp Ther
    4Med.2011,2(5):1011-1015.许敏,吴晓云,李勇刚,等. CITED2基因CpG岛甲基化与先天性心脏病的关系.第三军医大学学报.2013,35(3):245-247.
    Illi B, Scopece A, Nanni S, Farsetti S, et al. Epigenetic histone modification and cardiovascular lineage programmingin mouse embryonic stem cells exposed to laminar shear stress. Circ Res.2005,3(18):501-508.
    Barry ER, Krueger W, Jakuba CM. ES Cell cycle progression and differentiation require the action of the histonemethyltransferase Dot1L. Stem Cell.2009,27(7):1538-1547.
    Tatton-Brown K, Rahman N. Clinical features of NSD1-positive soto syndrome. Clin Dysmorphol.2004,13(4):199-204.
    8Rayasam GV, Wendling Q, Angrand PO, et al. NSD1is essential for early post-implantation development and has acatalytically active SET domain. EMBO J.2003,22(12):3153-3163.
    1. Trines J, Hornberger LK. Evolution of heart disease in utero. Pediatr Cardiol.2004,25:287–298.
    2. Poprawski K, Michalski M, Lawniczak M, et al. Cardiovascular abnormalities inpatients with Turner syndrome according to karyotype: own experience and literaturereview. Pol Arch Med Wewn.2009,119:453–460.
    3. Wimalasundera RC, Gardiner HM. Congenital heart disease and aneuploidy. PrenatDiagn.2004,24:1116–1122.
    4. Payne AR, Chang SW, Koenig SN, et al. Submicroscopic chromosomal copy numbervariations identified in children with hypoplastic left heart syndrome. Pediatr Cardiol.2012,33:757–763.
    5. Greenway SC, Pereira AC, Lin JC, et al. De novo copy number variants identify newgenes and loci in isolated sporadic tetralogy of Fallot. Nat Genet.2009,41(8):931–935.
    6. Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the humangenome. Nature.2006,444:444–454.
    7. Nath AK, Krauthammer M, Li P, et al. Proteomic-based detection of a protein clusterdysregulated during cardiovascular development identifies biomarkers of congenitalheart defects. PLoS One.2009,4(1): e4221.
    8. Schlessinger K, Hall A, Tolwinski N. Wnt signaling pathways meet Rho GTPases.Genes Dev.2009,23:265–277.
    9. Tennstedt C, Chaoui R, Korner H, et al. Spectrum of congenital heart defects andextracardiac malformations associated with chromosomal abnormalities: results of aseven year necropsy study. Heart.1999,82:34–39.
    10. Hameed AB, Sklansky MS. Pregnancy: maternal and fetal heart disease. Curr ProblCardiol.2007,32:419–494.
    11. Yang C, Huang CH, Cheong ML, et al. Unambiguous molecular detections withmultiple genetic approach for the complicated chromosome22q11deletion syndrome.BMC Med Genet.2009,10:16.
    12. Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarrayis a first-tier clinical diagnostic test for individuals with developmental disabilities orcongenital anomalies. Am J Hum Genet.2010,86(5):749–764.
    13. Affymetrix, Inc. Affymetrix genome-wide human SNP Nsp/Sty6.0user guide. P/N702504, Rev32008:28–332.
    14. Goldmuntz E, Paluru P, Glessner J, et al. Microdeletions and microduplications inpatients with congenital heart disease and multiple congenital anomalies. CongenitHeart Dis.2011,6(6):592–602.
    15. Soemedi R, Wilson IJ, Bentham J, et al. Contribution of global rare copy-numbervariants to the risk of sporadic congenital heart disease. Am J Hum Genet.2012,91(3):489–501.
    16. Yin LJ, Zhang Y, Lv PP, et al. Insufficient maintenance DNA methylation is associatedwith abnormal embryonic development. BMC Med.2012,10:26.
    17. van Driel LM, de Jonge R, Helbing WA, et al. Maternal global methylation status andrisk of congenital heart diseases. Obstet Gynecol.2008,112:277–283.
    18. Ikeda Y, Hiroi Y, Hosoda T, et al. Novel Point Mutation in the Cardiac TranscriptionFactor CSX/NKX2.5Associated With Congenital Heart Disease. Circ J.2002,66(6):561-563.
    19. Brewer AC, Alexandrovich A, Mjaatvedt CH, et al. GATA factors lie upstream of Nkx2.5in the transcriptional regulatory cascade that effects cardiogenesis. Stem Cells Dev.2005,14(4):425-439.
    20. Maitra M, Schluterman MK, Nichols HA, et al. Interaction of Gata4and Gata6withTBX5is critical for normal cardiac development. Dev Biol.2009,326:368–377.
    21. Hsiao CC, Tsao LY, Chen HN, et al. Changing clinical presentations and survivalpattern in trisomy18. Pediatr Neonatol.2009,50:147–151.
    22. Iliopoulos D, Vassiliou G, Sekerli E, et al. Long survival in a69, XXX triploid infantin Greece. Genet Mol Res.2005,4:755–759.
    23. Chen CP. Prenatal sonographic features of fetuses in trisomy13pregnancies (I).Taiwan J Obstet Gynecol.2009,48:210–217.
    24. von Kaisenberg CS, Brand-Saberi B, Christ B, et al. Collagen type VI gene expressionin the skin of trisomy21fetuses. Obstet Gynecol.1998,91:319–323.
    25. Sieroszewski P, Perenc M, Bas-Budecka E, et al. ultrasound diagnostic schema for thedetermination of increased risk for chromosomal fetal aneuploidies in the first half ofpregnancy. J Appl Genet.2006,47:177–185.
    26. Bao B, Zhang L, Hu H, et al. Deletion of a single-copy DAAM1gene in congenitalheart defect: a case report. BMC Med Genet.2012,13:63.
    27. Li D, Hallett MA, Zhu W, et al. Dishevelled-associated activator of morphogenesis1(Daam1) is required for heart morphogenesis. Development.2011,138(2):303–315.
    28. Bao B, Wang Y, Hu H, et al. Karyotypic and molecular genetic changes associated withfetal cardiovascular abnormalities: results of a retrospective4-year ultrasonic diagnosisstudy. Int J Biol Sci.2013,9(5):463–471.
    29. Morgan SC, Lee HY, Relaix F, et al. Cardiac outflow tract septation failure inPax3-deficient embryos is due to p53-dependent regulation of migrating cardiac neuralcrest. Mech Dev.2008,125:757–767.
    30. Morikawa Y, Cserjesi P. Cardiac neural crest expression of Hand2regulates outflowand second heart field development. Circ Res.2008,103:1422–1429.
    31. Lale S, Yu S, Ahmed A. Complex congenital heart defects in association with maternaldiabetes and partial deletion of the A2BP1gene. Fetal Pediatr Pathol.2011,30:161–166.
    32. Tay HG, Ng YW, Manser E. A vertebrate-specific Chp-PAK-PIX pathway maintainsE-cadherin at adherens junctions during zebrafish epiboly. PLoS One.2010,5(4):e10125.
    33. Matusek T, Djiane A, Jankovics F, et al. The Drosophila formin DAAM regulates thetracheal cuticle pattern through organizing the actin cytoskeleton. Development.2006,133:957–966.
    34. Sato A, Khadka DK, Liu W, et al. Profilin is an effector for Daam1in non-canonicalWnt signaling and is required for vertebrate gastrulation. Development.2006,133:4219–4231.
    35. Kovar DR, Harris ES, Mahaffy R, et al. Control of the assembly of ATP-andADP-actin by formins and profilin. Cell.2006,124:423–435.
    36.李晓维,沈捷,张丽,等. VEGF-A基因在汉族先天性房室间隔缺损患儿中的突变分析.临床儿科杂志.2012,30(7):627–630.
    37. Satoda M, Zhao F, Diaz GA, et al. Mutations in TFAP2B cause Char syndrome, afamilial form of patent ductus arteriosus. Nat Genet.2000,25(1):42–46.
    38. Zhu L, Belmont JW, Ware SM. Genetics of human heterotaxias. Eur J Hum Genet,2006,14(1):17–25.
    39. Weninger WJ, Floro KL, Bennett MB, et al.Cited2is required both for heartmorphogenesis and establishment of the left-right axis in mouse development.Development.2005,132(6):1337.
    40. Duong A, Steinmaus C, McHale CM, et al. Reproductive and developmental to×icity offormaldehyde: a systematic review. Mutat Res.2011,728:118–138.
    41. Shaw GM, Nelson V, Iovann isci DM, et al. Maternal occupational chemical exposuresand biotransformation genotypes as risk factors for selected congenital anomalies. AmJ Epidemiol.2003,157(6):475–484.
    42. Loffredo CA. Silbergeld EK, Ferencz C, et al. Association of transposition of the greatarteries in infants with maternal exposures to herbicides and rodenticides. Am JEpidemiol.2001,153(6):529–536.
    43. Kaplan L, Foster R, Shen Y, et al. Monozygotic Twins Discordant for Neurofibr-omatosis1. Am J Med Genet A.2010,152A(3):601–606.
    44. Kaminsky, Z.A, Virtanen, C, Halfvarson, J, et al. DNA methylation profiles inmonozygotic and dizygotic twins. Nat. Genet.2009,41:240-245.
    45. Wong, C.C, Caspi, A, Williams, B, et al. A longitudinal study of epigenetic variation intwins. Epigenetics.2010,5:516–526.
    46. Maslen CL. Molecular genetics of complete endocardial cushion defects. Curr OpinCardiol.2004,19(3):205–210.
    47. Guo Y, Shen J, Yuan L, et al. Novel CRELD1gene mutations in patients with completeendocardial cushion defect. World J Pediatr.2010,6(4):348–352.
    48. Priest JR, Girirajan S, Vu TH, et al. Rare copy number variants in isolated sporadic andsyndromic atrioventricular septal defects. Am J Med Genet A.2012,158A(6):1279–1284.
    49. Chowdhury S, Erickson SW, MacLeod SL, et al. Maternal genome-wide DNAmethylation patterns and congenital heart defects. PLoS One.2011,6: e16506.
    50. Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature.2007,447:433–440.
    51. Bahado-Singh RO, Choi SJ, Oz U, et al. Early second-trimester individualizedestimation of trisomy18risk by ultrasound. Obstet Gynecol.2003,101:463–468.
    52. Blinder JJ, Martinez HR, Craigen WJ, et al. Noncompaction of the left ventricularmyocardium in a boy with a novel chromosome8p23.1deletion. Am J Med Genet A.2011,155:2215–2220.
    53. Oster ME, Riehle-Colarusso T, Alverson CJ, et al. Associations between maternalFever and influenza and congenital heart defects. J Pediatr.2011,158(6):990–995.
    54. Lin AE, Ardinger HH. Genetic epidemiology of cardiovascular malformations. ProgrPediatr Cardiol.2005,20:113–126.
    55. Chen BY, Hwang BF, Guo YL. Epidemiology of congenital anomalies in a population-based birth registry in Taiwan,2002. J Formos Med Assoc.2009,108:460-468.
    56. Memon S, Pratten MK. Developmental to×icity of ethanol in chick heart in ovo and inmicromass culture can be prevented by addition of vitamin C and folic acid. ReprodToxicol.2009,28:262–269.
    57.张文迪,余肖,黄姗,等.5,10-亚甲基四氢叶酸还原酶基因启动子区域甲基化状态与先天性心脏病的关系.实用儿科杂志.2012,27(1):13.
    58. Van Beynum IM, Kapusta L, den H eijer M, et al. Maternal MTHFR677C> T is a riskfactor for congenital heart defects: effect modification by periconceptional folatesupplementation. Eur Heart J.2006,27(8):981–987.
    59. Haramis APG, Clevers HC. Holehearted: genetic approaches to congenital cardiacvalve malformations. Drug Discovery Today: Disease Mechanisms/Cardiovasculardiseases.2004,1:1–8.
    60. Philibert RA, Plume JM, Gibbons FX, et al. The impact of recent alcohol use ongenome wide DNA methylation signatures. Front Genet.2012,3:54.
    61. Lawrence J, Chen M, Xiong F, et al. Fetal nicotine exposure causes PKCε generepression by promoter methylation in rat hearts. Cardiovasc Res.2011,89(1):89–97.
    62. Chan J, Deng L, Mikael L G, et al. Low dietary choline and low dietary riboflavinduring pregnancy influence reproductive outcomes and heart development in mice. AmJ Clin Nutr.2010,91(4):1035–1043.
    63. Slater-Jefferies JL, Lillycrop KA, Townsend PA, et al. Feeding a protein-restricted dietduring pregnancy induces altered epigenetic regulation of peroxisomal proliferator-activated receptor-α in the heart of the offspring. J Dev Orig Health Dis.2011,2(4):250–255.
    64. Reamon-Buettner SM, Ciribilli Y, Traverso I, et al.A functional genetic study identifiesHAND1mutations in septation defects of the human heart. Hum Mol Genet.2009,18(19):3567.
    65. Grievink H, Stowell KM. Identifi-cation of ryanodine recep-tor1single-nucleotidepolymorphisms by high-resolution Melting using the LightCycler480System.Analytical Biochemistry.2008,374:396–404.
    66. Wojdacz TK, Dobrovic A, Hansen LL. Methylation-sensitive high-resolution melting.Nat Protoc.2008,3(12):1903-1908.
    67. Riley MF, McBride KL, Cole SE. NOTCH1missense alleles associated with leftventricular outflow tract defects exhibit impaired receptor processing and defectiveEMT. Biochim Biophys Acta.2011,1812(1):121–129.
    68. Pompa1JL, Epstein JA. Coordinating Tissue Interactions: Notch Signaling in CardiacDevelopment and Disease. Developmental Cell.2012,22:244–254.
    69. van den Akker NM, Caolo V, Molin DG. Cellular decisions in cardiac outflow tract andcoronary development: an act by VEGF and NOTCH. Differentiation.2012,84(1):62–78.
    70. Townsend G, Hughes T, Luciano M, et al. Genetic and environmental influences onhuman dental variation: a critical evaluation of studies involving twins. Arch Oral Biol.2009,54(1): S45–51.
    1. Rosamond W, Flegal K, Friday G, et al. Heart disease and stroke statistics--2007update: a report from the American Heart Association Statistics Committee and StrokeStatistics Subcommittee. Committee and Stroke Statistics Subcommittee. Circulation.2007,115(5): e69-e171.
    2.林亨丽,黄伟欣,曹晓焱,等.中国医学影像学杂志.2011,19(6):472-475.
    3. Nath AK, Krauthammer M, Li P, et al. Proteomic-based detection of a protein clusterdysregulated during cardiovascular development identifies biomarkers of congenitalheart defects. PLoS One.2009.4(1): e4221.
    4. Pierpont ME, Basson CT, Benson DW Jr, et al. Genetic basis for congenital heartdefects: current knowledge: a scientific statement from the American Heart AssociationCongenital Cardiac Defects Committee, Council on Cardiovascular Disease in theYoung: endorsed by the American Academy of Pediatrics. Circulation.2007,115(23):3015-3038.
    5. Rodriguez-Caballero A, Torres-Lagares D, Rodriguez-Perez A, et al. Cri du chatsyndrome: a critical review. Med Oral Patol Oral Cir Bucal.2010,15(3): e473-478.
    6. Ensenauer RE, Adeyinka A, Flynn HC, et al. Microduplication22q11.2, an emergingsyndrome: clinical, cytogenetic, and molecular analysis of thirteen patients. Am J HumGenet.2003,73(5):1027-1040.
    7. Digilio MC, Marino B, Giannotti A, et al. Recurrence risk figures for isolated tetralogyof Fallot after screening for22q11microdeletion. J Med Genet.1997,34:188-190.
    8. McCarroll SA, Altshuler DM. Copy-number variation and association studies of humandisease. Nat Genet.2007,39(7): S37-S42.
    9. Eronen M, Peippo M, Hiippala A, et al. CardioVascular manifestations in75patientswith Williams syndrome. J Med Genet.2002,39(8):554-558.
    10.林颖,胡平,季修庆,等.22q11.2微重复伴先天性心脏缺损的产前分子遗传学诊断.临床检验杂志.2011,29(2):103-105.
    11. Lajiness-O' Neill R R, Beaulieu I, Titus J B, et al. Memory and learning in childrenwith22q11.2deletion syndrome: eVidence for Ventra1and dorsal stream disruption.Child Neuropsychol.2005,11(1):55-71.
    12. Rajagopal SK, Ma Q, Shen J, et al. Spectrum of heart disease associated with murineand human GATA4mutation. J Mol Cell Cardiol.2007,43(6):677-685.
    13.李晓维,沈捷,张丽,等. VEGF-A基因在汉族先天性房室间隔缺损患儿中的突变分析.临床儿科杂志.2012,30(7):627-630.
    14.邱广蓉,周静怡,刘培燕,等.TBX1基因T350M多态性与法洛四联症的相关性.实用儿科临床杂志.2011,26(12):946-948.
    15. Vissers LE, van Ravenswaaij CM, Admiraal R, et al. Mutations in a new member of thechromodomain gene family cause CHARGE syndrome. Nat Genet.2004,36(9):955-957.
    16. Thienpont B, Mertens L, de Ravel T, et al. Submicroscopic chromosomal imbalancesdetected by array-CGH are a frequent cause of congenital heart defects in selectedpatients. Eur Heart J.2007,28(22):2778-2784.
    17. Richards AA, Santos LJ, Nichols HA, et al. Cryptic chromosomal abnormalitiesidentified in children with congenital heart disease. Pediatr Res.2008,64(4):358-363.
    18. Erdogan F, Larsen LA, Zhang L, et al. High frequency of submicroscopic genomicaberrations detected by tiling path array comparative genome hybridisation in patientswith isolated congenital heart disease. J Med Genet.2008,45(11):704-709.
    19. Goldmuntz E, Geiger E, Benson DW. NKX2-5mutations in patients with tetralogy ofFallot. Circulation.2001,104:2565-2568.
    20. Bauer RC, Laney AO, Smith R, et al. Jagged1(JAG1)mutations in patients withtetralogy of Fallot or pulmonic stenosis. Hum Mutat.2010,31(5):594-601.
    21. Pizzuti A, Sarkozy A, Newton AL, et al. Mutations of ZFPM2/FOG2gene in sporadiccases of tetralogy of Fallot. HumMut.2003,22:372-377.
    22. B(o)hm J, Kaiser FJ, Bomzdin W, et al. Synergistic cooperation of Sall4and Cyclin D1in transcriptional repression. Biochem Biophys Res Commun.2007,356(3):773.
    23. Tartaglia M, Pennacchio LA, Zhao C, et al. Gain-of-function SOS1mutations cause adistinctive form of Noonan syndrome. Nat Genet.2007,39(1):75-79.
    24. Pandit B, Sarkozy A, Pennacchio LA, et al. Gain-of-function RAF1mutations causeNoonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet.2007,39(8):1007-1012.
    25. Sarkozy A, Conti E, Neri C, et al. Spectrum of atrial septal defects associated withmutations of NKX2-5and GATA4transcription factors. J Med Genet.2005,42: e16.
    26.袁浪,李波,郭颖,等. CRELD1基因在汉族先天性房室隔缺损患者中的突变分析.临床儿科杂志.2010,28(12):1145-1148.
    27. Joziasse IC, van de Smagt JJ, Smith K, et al. Genes in congenital heart disease:atrioventricular valve formation. Basic Res Cardiol.2008,103(3):2162.
    28. Satoda M, Zhao F, Diaz GA, et al. Mutations in TFAP2B cause Char syndrome, afamilial form of patent ductus arteriosus. Nat Genet.2000,25(1):42-46.
    29. Zhu L, Belmont JW, Ware SM. Genetics of human heterotaxias. Eur J Hum Genet.2006,14(1):17-25.
    30. Shaw GM, Iovannisci DM, Yang W, et al. Risks of human conotruncal heart defectsassociated with32single nucleotide polymorphisms of selected cardiovasculardisease-related. Am J Med Genet A.2005,138(1):21-26.
    31. Goldmuntz E, Bamford R, Karkera JD, et al. CFC1mutations in patients withtransposition of the great arteries and double-outlet right Ventricle. Am J Hum Genet.2002,70:776-780.
    32. Muncke N, Jung C, Rudiger H, et al. Missense mutations and gene interruption inPROSIT240, a noVel TRAP240-like gene, in patients with congenital heart defect(transposition of the great arteries). Circulation.2003,108(23):2843-2850.
    33.周世媛,周继苹,王莉娜,等. MTHFR基因多态性与法洛四联症的相关性研究.山东医药.2012,52(43):1-3.
    34.赵武,王剑,沈捷,等. VEGFA基因c.1039G>A单核苷酸多态性可能增加二叶式主动脉瓣的发生危险.蚌埠医学院学报.2010,35(10):986-990.
    35. Zhang WM, Li XF, Ma ZY, et al. GATA4and NKX2-5gene analysis in ChineseUygur patients with congenital heart disease. Chin Med J (Engl).2009,122(4):416-419.
    36. Elliott DA, Kirk EP, Yeoh T, et al. Cardiac homeobox gene NKX2-5mutations andcongenital heart disease: a ssociation with atrial septal defect and hypoplastic left heartsyndrome. J Am Coll Cardiol.2003,41:2072-2076.
    37. Hirayama-Yamada K, Kamisago M, Akimoto K, et al. Phenotypes with GATA4orNKX2-5mutations in familial atrial septal defect. Am J Med Genet.2005,135:47-52.
    38. Bj rnstad PG, Leren TP. Familial atrial septal defect in the oval fossa with progressiveprolongation of the atrioventricular conduction caused by mutations in the NKX2.5gene. Cardiol Young.2009,19(1):40-44.
    39. Pashmforoush M, Lu JT, Chen H, et al. NKX2-5pathways and congetial heart disease;lose of vetricular myocyte lineage sepcification leads to progressive cardiomyopathyand complete heart block. Cell.2004,117(3):373-386.
    40. Zhu W, Shiojima I, Hiroi Y, et al. Functional analyses of three Csx/NKX2-5mutationsthat cause human congential heart disease.J Biol Chem.2006,275(45):35291.
    41.庄太凤,景红,邢继伟,等.中国人单纯性先天性心脏病患儿NKX2-5与GATA4基因突变分析.中华临床医师杂志(电子版).2011,5(13):3737-3740.
    42.曹青,程应樟,俞建华,等.江西地区先心病患者46例EVC等4个已知致病基因筛查报告一4个EVC基因突变与先心病室缺和房缺相关.岭南心血管病杂志.2011,增刊:138.
    43. Garg V, Muth AN, Ransom JF, et al. Mutations in NOTCH1cause aortic valve disease.Nature.2005,437(7056):270-274.
    44. Yang JH, Wylie-Sears J, Bischoff J. Opposing actions of Notch1and VEGF inpost-natal cardiac valve endothelial cells. Biochem Biophys Res Commun.2008,374(3):512-516.
    45. Zhao W, Wang J, Shen J, et al. Mutations in VEGFA are associated with congenital leftventricular outflow tract obstruction. Biochem Biophys Res Commun.2010,396(2):483-488.
    46. McBride KL, Zender GA, Fitzgerald-Butt SM, et al. Association of common variants inERBB4with congenital left ventricular outflow tract obstruction defects. Birth DefectsRes A Clin Mol Teratol.2011,91(3):162-168.
    47. Metcalfe K, Rucka AK, Smoot L, et al. Elastin: mutational spectrum in supravalvularaortic stenosis. Eur J Hum Genet.2000,8(12):955-963.
    48. McCulley DJ, Kang JO, Martin JF, et al. BMP4is required in the anterior heart fieldand its derivatives for endocardial cushion remodeling, outflow tract septation, andsemilunar valve development. Dev Dyn.2008,237(11):3200-3209.
    49. Chen P, Xie LJ, Huang GY, et al. Mutations of connexin43in fetuses with congenitalheart malformations. Chin Med (Engl).2005,118(12):971-976.
    50.邱广蓉,刘培燕,姜红,等. CASP3基因R101H多态性与法洛四联症的相关性.实用儿科临床杂志.2012,27(11):856-858.
    51. Reamon-Buettner SM, Ciribilli Y, Traverso I, et al. A functional genetic studyidentifies HAND1mutations in septation defects of the human heart.Hum Mol Genet.2009,18(19):3567.
    52.周丹,郭洪,白云,等.脊髓小脑性共济失调合并房间隔缺损家系的遗传学研究.第三军医大学学报.2013,35(11):1167-1169.
    53. Weninger WJ, Floro KL, Bennett MB, et al. Cited2is required both for heartmorphogenesis and establishment of the left-right axis in mouse development.Development.2005,132(6):1337.
    54. De Luca A, Sarkozy A, Ferese R, et al. New mutations in ZFPM2/FOG2gene intetralogy of Fallot and double outlet rightVentricle. Clin Genet.2010,2:1-7.
    55. Abushaban L, Uthaman B, Kumar AR, et al. Familial truncus arteriosus: a possibleautosomal-recessive trait. Pediatr Cardiol.2003,24:64-66.
    56. Bentham J, Bhattacharya S. Genetic mechanisms controlling cardiovasculardevelopment. Ann N Y Acad Sci.2008,1123:10-19.
    57. Mori AD, Bruneau BG. TBX5mutations and congenital heart disease: Holtramsyndrome revealed. Curr Opin Cardiol.2004,19(3):211-215.
    58. Stennard FA, Costa MW, Lai D, et al. Murine T-box transcription factor Tbx20acts asa repressor during heart development, and is essential for adult heart integrity, functionand adaptation. Development.2005,132(10):2451.
    59. Firulli AB. A HANDful of questions: the molecular biology of the heart and neuralcrest derivatives (HAND)-subclass of basic helix-loop-helix transcription factors. Gene,2003,312:27-40.
    60. Koshiba-Takeuchi K, Takeuchi JK, Arruda EP, et al. Cooperative and antagonisticinteractions between Sall4and Tbx5pattern the mouse limb and heart.Nat Genet,2006,38(2):175.
    61.张丽.转录因子在先天性房室隔缺损遗传学机制中的作用.国际儿科学杂志.2010,37(6):555.
    62. Daniel PJ, Harry CD. Marfan's syndrome. Lancet.2005,366(9501):1965-1976.
    63. Ali BR, Akawi NA, Chedid F, et al. Molecular and clinical analysis of Ellis-vanCreveld syndrome in the United Arab Emirates. BMC Med Genet.2010,11:33.
    64. Andelfinger G, Tapper AR, Welch RC, et al. KCNJ2mutation results in Andersensyndrome with sex-specific cardiac and skeletal muscle phenotypes. Am J Hum Genet.2002,71(3):663-668.
    65.许瑞,霍强,张丽,等.新疆维、汉族单纯性先天性心脏病MTHFR基因C677T多态性研究.新疆医科大学学报.2013,36(6):748-751.
    66. Smedts HP, Isaacs A, de Costa D, et al. VEGF polymorphisms are associated withendocardial cushion defects: a family based case control study. Ped iatr R es.2010,67(1):23-28.
    67. Griffin HR, Hall DH, Topf A, et al. Genetic variation in VEGF does not contributesignificantly to the risk of congenital cardiovascular malformation. PLoS One.2009,4(3): e4978.
    68. Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction,and cell cycle in mice lacking miRNA-1-2. Cell.2007,129(2):303-317.
    1.郭彦孜,张国成,苏海砾,等.先天性心脏病与母亲孕期感染关系的研究.临床儿科杂志.2010,28(7):649-652.
    2. Bobertson SE, Cutts FT, Samuel R, et al. Control of rubella and congenital rubellasyndrome (CRS) in developing countries, Part2: Vaccination against rubella. BullWorld Health Organ.1997,75(1):69-80.
    3.王晓明,张国成,韩美玉,等.弓形体感染与先天性心脏病的关系.第四军医大学学报.1999,20(9):790-792.
    4.王晓明,张国成,韩美玉,等. B19病毒对先天性心脏病先天感染的探证及电镜观察.第四军医大学学报.2001,22(4):340-343.
    5.侯佳,桂永浩,奚立,等.先天性心脏病环境因素的病例对照研究.复旦学报:医学版.2007,34(5):652-655.
    6.魏磊,刘金华,朱伟,等.新疆伊犁州儿童先天性心脏病2:1配对病例对照病因分析.南京医科大学学报(自然科学版).2013,33(1):78-82.
    7. Abushaban L, Uthaman Bv, Kumar AR, et al. Familial truncus arteriosus: a possibleautosomal-recessive trait. Pediatr Cardiol.2003,24:64-66.
    8.肖雪琴,邱建平,刘跃梅,等.环境因素(气候)对先天性心脏病患病率的影响.赣南医学院学报.2008,28(4):544.
    9. Botto LD, Lynberg MC, Erickson JD. Congenital heart defects, maternal febrile illness,and multivitamin use: a population based study. Epidemiology.2001,12(5):485-490.
    10.胡晓斌.出生缺陷及不良妊娠结局影响因素研究.兰州大学.2007.
    11.高燕.先天性心脏病病因及流行病学研究进展.中国循证儿科杂志.2008,3(3):213-222.
    12.马金龙,高英茂,刘凯,等.高温致神经管畸形中细胞增殖和细胞凋亡的定量研究.中国体视学与图像分析.2001,6(2):65-69.
    13.林亨丽,黄伟欣,曹晓焱,等.中国医学影像学杂志.2011,19(6):472-475.
    14.刘凤,陶芳标,严双琴,等.父母环境因素暴露于胎儿闲心疾病因关系探索.临床儿科杂志.2009,27(5):424.
    15. Kuehl KS, Loffredo CA. Population-based study of l-transposition of the great arteries:possible associations with environmental factors. Birth Defects Res A Clin Mol Teratol.2003,67(3):162-167.
    16. Shaw GM, Nelson V, Iovann isci DM, et al. Maternal occupational chemical exposuresand biotransformation genotypes as risk factors for selected congenital anomalies. AmJ Epidemiol.2003,157(6):475-484.
    17. Loffredo CA. Silbergeld EK, Ferencz C, et al. Association of transposition of the greatarteries in infants with maternal exposures to herbicides and rodenticides. Am JEpidemiol.2001,153(6):529-536.
    18.王政,方俊群.出生缺陷影响因素的病例对照研究.实用预防医学.2009(3):679-682.
    19.芈静.蚌埠地区0~5岁儿童出生缺陷的流行病学研究.安徽医科大学.2008.
    20.段修洲.提高人口素质预防出生缺陷.农垦医学.2009(1):51-53.
    21. Li D, Lu C, Wang J, et al. Developmental mechanisms of arsenite toxicity in zebrafish(Danio rerio) embryos. Aquat Toxicol.2009,91(3):229-237.
    22. Corrigan N, Brazil DP, Auliffe FM. Fetal Cardiac Effects of Maternal HyperglycemiaDuring Pregnancy. Birth Defects Research (Part A).2009,85(6):523-530.
    23. Sípek A, Gregor V, Horácek J, et al. Birth defects' occurrence in offspring of motherstaking1st trimester medication in the Czech Republic in1996-2004. Ceska Gynekol.2006,71(4):284-291.
    24. Oberlander TF, Warburton W, Misri S, et al. Major congenital malformations followingprenatal exposure to serotonin reuptake inhibitors and benzodiazepines usingpopulation-based health data. Birth Defects Res B Dev Reprod Toxicol.2008,83(1):68-76.
    25. Wang Y, Zhong T, Qian L, et al. Wortmannin induces zebrafish cardia bifida through amechanism independent of phosphoinositide3-kinase and myosin light chain kinase.Biochem Biophys Res Commun.2005,331(1):303-308.
    26. Monig H, Hensen J, Lehnert H. Thyroid disorders and pregnancy. Internist (Berl).2010,51(5):620.
    27. Nieuwenhuijsen MJ, Toledano MB, Bennett J, et al. Chlorination disinfection byproducts and risk of congenital anomalies in england andwales. Environmental HealthPerspectives.2008,116(2):216-222.
    28. Czeizel AE, Rockenbauer M, Sorensen HT, et al. The teratogenic risk of trimethoprimsulfonamides: a population based case control study. Reprod Toxicol.2001,15(6):637-646.
    29. Cooper WO, Hernandez-Diaz S, Arbogast PG, et al. Major congenital malformationsafter first trimester exposure to ACE inhibitors. N Engl J Med.2006,23(354):2443-2451.
    30. Kllén BA, Otterblad Olausson P, Danielsson BR. Is erythromycin therapy teratogen-ic in humans? Reprod Toxicol.2005,20(2):209-214.
    31. Bupropion(amfebutamone): Caution during pregnancy. Prescrire Int.2005,14(80):225.
    32.谢小冬,陈晶晶,于敏,等.甘肃省先天性心脏病环境因素病例调查分析.中国优生与遗传杂志.2012,20(4):9-12.
    33. Cresci M, Foffa I, Ait-Ali L, et al. Teralogenic risk of low level ionizing radiation.Congenital heart disease in infant. Recent Prog Med.2009,100(9):410-413.
    34.朱文丽,刀京晶,成君,等.血清同型半胱氨酸及叶酸水平与先天性心脏病的关系.卫生研究.2005,34(6):740-743.
    35. Van Beynum IM, Kapusta L, Bakker MK et al. Protective effect of periconceptionalfolic acid supplements on the risk of congenital heart defects: a registry-basedcase-control study in the northern Netherlands. Eur Heart J.2010,31(4):464.
    36.李智文,任爱国,张乐,等.母亲饮食因素与神经管畸形危险性的病例对照研究.中华流行病学杂志.2006,27(10):831-835.
    37. Gonzalez-Reyes S, Martinez L, Tovar JA. Effects of prenatal vitamins A, E, and C onthe hypoplastic hearts of fetal rats with diaphragmatic hernia. J Pediatr Surg.2005,40(8):1269-1274.
    38.任霞,李勇.维生素A与出生缺陷的研究进展.中国生育健康杂志.2004,15(6):372-375.
    39.贾德勤,王星,伍捷阳.围生期先天性心脏病的发病趋势及相关因素研究.中国全科医学.2011,14(12):1287-1289.
    40. Grewal J, Carmichael SL, Ma C, et al. Maternal periconceptional smoking and alcoholconsumption and risk for select congenital anomalies. Birth Defects Res A Clin MolTeratol.2008,82(7):519-526.
    41. Grewal J, Carmichael SL, Ma C, et al. Maternal periconceptional smoking and alcoholconsumption and risk for select congenital anomalies. Birth Defects Res A Clin MolTeratol.2008,82(7):519-526.
    42. Malik S, Cleves MA, Honein MA, et al. Maternal smoking and congenital heart defects.Pediatrics.2008,121(4),810-816.
    43. Woods SE, Raju U. Maternal smoking and the risk of congenital birth defects: a cohortstudy. J Am Board Fam Pract.2001,14(5):330-334.
    44. Shaw GM, Iovannisci DM, Yang W, et al. Risks of human conotruncal heart defectsassociated with32single nucleotide polymorphisms of selected cardiovascular diseaserelated genes. Am J Med Genet A.2005,138(1):21-26.
    45. Forrestr MB, Merz RD. Risk of selected birth defects with prenatal illicit drug use,Hawaii,1986–2002. J Toxicol Environ Health A.2007,70(1):7-18.
    46. Nieuwenhuijsen MJ, Toledano MB, Bennett J, et al. Chlorination disinfection by-products and risk of congenital anomalies in Eng1and and Wales. Environ HealthPerspect.2008,116(2):216-222.
    47. Thulstrup AM, Bonde JP. Maternal occupational exposure and risk of specific birthdefects. Occup Med(Lond).2006,56(8):532-543.
    48. Loffredo CA, Silbergeld EK, Ferencz C, et al. Association of transposition of the greatarteries in infants with maternal exposures to herbicides and rodenticides. Am JEpidemiol.2001,153(6):529-536.
    49. Kuehl KS, Loffredo CA. Population based study of transposition of the great arteries:possible associations with environmental factors. Birth Defects Res A Clin Mol Teratol.2003,67(3):162-167.
    50. Dolk H, Armstrong B, Lachowycz K, et al. ambient air pollution and risk of congenitalanomalies in england,1991-1999. Occup Environ Med.2010,67(4):223-227.
    51. Ritz B, Yu F, Fruin S, et a1. Ambient air pollution and risk of birth defects in southerncalifornia. Am J Epidemiol.2002,155(1):172-175.
    52. Dolk H, Armstrong B, Lachowycz K, et al. Ambient air pollution and risk of congenitalanomalies in England,1991-1999. Occup Environ Med.2010,67(4):223-227.
    53. Rankin J, Chadwick T, Natarajan M, et al. Maternal exposure to ambient air pollutantsand risk of congenital anomalies. Environ Res.2009,109(2):181-187.
    54. Hansen CA, Barnett AG, Jalaludin BB, et al. Ambient air pollution and birth defects inBrisbane, Australia. PLoS One.2009,4(4):5408.
    55.侯佳,桂永浩,奚立,等.先天性心脏病环境危险因素的病例对照研究.复旦学报.2007,34(5):652-655.
    56. Liu SW, Liu JX, Tang J, et al. Environmental risk factors for congenital heart diseasein the shandong peninsula, China: a hospitalbased case-control study. J Epidemiol.2009,19(3):122-130.
    1. Chowdhury S, Erickson SW, MacLeod SL, et al. Maternal genomewide DNAmethylation patterns and congenital heart defects. PLoS One.2011,6(1): e16506.
    2. Stoll C, Roth MP, Dott B, et al. Acetylator phenotype and congenital malformations.Eur J Clin Pharmacol.1989,36(2):151-153.
    3. Herman JG, Baylin SB. Gene silencing in cancer association with promoterhypermethylation. N EngI J Med.2003,349(21):2042-2054.
    4. Kim YI. Folate and carcinogenesis: Evidence, mechanisms, and implications. J NutrBiochem.1999,10(2):66-88.
    5. Geiman TM, Muegge K. DNA methylation in early development. Mol Reprod Dev.2010,77(2):105-113.
    6. Davis CD, Uthus EO. DNA Methylation, cancer susceptibility, and nutrient interactions.Exp Biol Med (Maywood).2004,229(10):988-995.
    7. Altun G, Loring JF, Laurent LC. DNA methylation in embryonic stem cells. J CellBiochem.2010,109(1):1-6.
    8. Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev MolCell Biol.2010,11:607-620.
    9.刘婧宇,杨新春,蔡军.心血管系统表观遗传学机制的新认识.生理科学进展.2012,43(1):48-50.
    10. Vemeulen M, MuIder Kw, Denissov s, et a1. Selective anchoring of TFIID tonucleosomes by trimethylation of Kstone H3lysine4. Cell.2007,131(1):58-69.
    11. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet,1999,21(2):163-167.
    12. Esteller M. Relevance of DNA methylation in the management of cancer. Lancet Oncol.2003,4(6):351-358.
    13. Rampersaud GC, Kauwell GP, Hutson AD, et al. Genomic DNA methylation decreasesin response to moderate folate depletion in elderly women. Am J Clin Nutr.2000,72(4):998-1003.
    14. Ifergan I, Assaraf YG. Molecular mechanisms of adaptation to folate deficiency.VitamHorm.2008,79:99-143.
    15. Lu C, Xie H, Wang F, et al. Diet folate, DNA methylation and genetic polymorphismsof MTHFR C677T in association with the prognosis of esophageal squamous cellcarcinoma. BMC Cancer.2011,11:91.
    16. Blom HJ, Smulders Y. Overview of homocysteine and folate metabolism. With specialreferences to cardiovascular disease and neural tube defects. J Inherit Metab Dis.2011,34(1):75-81.
    17. Ionescu-Ittu R, Marelli AJ, Mackie AS, et al. Prevalence of severe congenital heartdisease after folic acid fortification of grain products: Time trend analysis in Quebec,Canada. BMJ.2009,338:1673.
    18. Smolarek I, Wyszko E, Barciszewska AM, et al. Global DNA methylation changes inblood of patients with essential hypertension. Med Sci Monit.2010,16(3): CR149-155.
    19. Han M, Serrano MC, Lastra-Vicente R, et al. Folate rescues lithium-, homocysteine-and Wnt3A-induced vertebrate cardiac anomalies. Dis Model Mech.2009,2(9-10):467-478.
    20. Kulkarni A, Chavan-Gautam P, Mehendale S, et al. Global DNA methylation patternsin placenta and its association with maternal hypertension in pre-eclampsia. DNA CellBiol.2011,30:79-84.
    21. Wu G, Nan C, Rollo JC, et al. Sodium valproate-induced congenital cardiacabnormalities in mice are associated with the inhibition of histone deacetylase. JBiomed Sci.2010,17(1):16.
    22. Friso S, Choi SW, Girelli D, et al. A common mutation in the5,10-methylenetetrahy-drofolate reductase gene affects genomic DNA methylation through an interaction withfolate status. Proc Natl Acad Sci U S A.2002,99(8):5606-5611.
    23. Weingartner J, Lotz K, Fangh nel J, et a1. Induction and prevention of cleft lip,alveolus and palate and neural tube defects with special consideration of B vitaminsand the methylation cycle, J orofac orthop.2007,68(4):266-277.
    24.韩越,潘永初,杜一飞,等.非综合征型唇腭裂与MTHFR基因多态性的相关性研究.口腔生物医学.2011,2(1):8-12
    25. Bliek BJ, Steegers-Theunissen RP, Blok LJ, et al. Genome-wide pathway analysis offolate-responsive genes to unravel the pathogenesis of orofacial clefting in man. BirthDefects Res A Clin Mol Teratol.2008,82(9):627-635.
    26.肖文林,石冰,王,等.亚甲基四氢叶酸还原酶基因在小鼠胚胎腭突间充质细胞中沉默效应的研究.华西口腔医学杂志.2009,27(3):244-247.
    27. Ghosh S, Yates AJ, Frühwald MC, et al. Tissue specific DNA methylation of CpGislands in normal human adult somatic tissues distinguishes neural from non-neuraltissues. Epigenetics.2010,5(6):527-538.
    28. Kim YI, Shirwadkar S, Choi SW, et al. Effects of dietary folate on DNA strand breakswithin mutation-prone exons of the p53gene in rat colon. Gastroenterology.2000,119(1):151-161.
    29. Khazamipour N, Noruzinia M, Fatehmanesh P, et al. MTHFR promoter hypermethy-lation in testicular biopsies of patients with non-obstructive azoospermia: The role ofepigenetics in male infertility. Hum Reprod.2009,24(9):2361-2364.
    30. Philibert RA, Plume JM, Gibbons FX, et al. The impact of recent alcohol use ongenome wide DNA methylation signatures. Front Genet.2012,3:54.
    31. Lawrence J, Chen M, Xiong F, et al. Fetal nicotine exposure causes PKCε generepression by promoter methylation in rat hearts. Cardiovasc Res.2011,89(1):89-97.
    32. Chan J, Deng L, Mikael L G, et al. Low dietary choline and low dietary riboflavinduring pregnancy influence reproductive outcomes and heart development in mice. AmJ Clin Nutr.2010,91(4):1035-1043.
    33. Slater-Jefferies JL, Lillycrop KA, Townsend PA, et al. Feeding a protein-restricted dietduring pregnancy induces altered epigenetic regulation of peroxisomal proliferator-activated receptor-α in the heart of the offspring. J Dev Orig Health Dis.2011,2(4):250-255.
    34. van Driel LM, de Jonge R, Helbing WA, et a1. Maternal global methylation status andrisk of congenital heart diseases.Obstet Gynecol.2008,112(2Pt1):277-283.
    35.张文迪,余肖,黄姗,等.5,10-亚甲基四氢叶酸还原酶基因启动子区域甲基化状态与先天性心脏病的关系.实用儿科杂志.2012,27(1):13.
    36. Van Beynum IM, Kapusta L, den H eijer M, et al. Maternal MTHFR677C> T is a riskfactor for congenital heart defects: effect modification by periconceptional folatesupplementation. Eur Heart J.2006,27(8):981–987.
    37.盛伟,王慧君,马晓静.先天性心脏病圆锥动脉干畸形NKX2-5基因CpG岛甲基化状态分析.中国产前诊断杂志(电子版).2010,2(3):12-15.
    38. Zhu C, Yu ZB, Chen XH, et al. Screening for differential methylation status in fetalmyocardial tissue samples with ventricular septal defects by promoter methylationmicroarrays. Mol Med Rep.2011,4(1):137-143.
    39. Zhu C, Yu ZB, Chen XH, et al. DNA hypermethylation of the NOX5gene in fetalventricular septal defect. Exp Ther Med.2011,2(5):1011-1015.
    40.许敏,吴晓云,李勇刚,等. CITED2基因CpG岛甲基化与先天性心脏病的关系.第三军医大学学报.2013,35(3):245-247.
    41. Illi B, Scopece A, Nanni S, Farsetti S, et al. Epigenetic histone modification andcardiovascular lineage programming in mouse embryonic stem cells exposed to laminarshear stress. Circ Res.2005,3(18):501-508.
    42. Barry ER, Krueger W, Jakuba CM. ES Cell cycle progression and differentiationrequire the action of the histone methyltransferase Dot1L. Stem Cell.2009,27(7):1538-1547.
    43. Tatton-Brown K, Rahman N. Clinical features of NSD1-positive soto syndrome. ClinDysmorphol.2004,13(4):199-204.
    44. Rayasam GV, Wendling Q, Angrand PO, et al. NSD1is essential for earlypost-implantation development and has a catalytically active SET domain. EMBO J.2003,22(12):3153-3163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700