最简规范形及机电耦合非线性系统的分岔、混沌研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
规范形理论是化简非线性振动系统的重要手段,对于研究分岔和混沌等复杂动力学问题具有深远的影响。最简规范形是在传统规范形理论和非线性变换理论的基础上,最大程度地化简微分方程所得到的一种规范形。最简规范形的研究与实际应用正朝着高维的方向发展,其求解过程非常复杂而繁琐。但是,非线性动力系统经最简规范形理论加以简化后,可以简捷地获取其平衡点附近的动力学特性。针对最简规范形和机电耦合非线性动力系统的动力学特性,论文的研究内容及取得的创新性成果有以下几个方面
     (1)利用共轭算子法,研究了高维Hopf分岔和退化Hopf分岔最简规范形的系数。引进特殊的非线性变换和内积,进一步简化了中心流形上的方程。获得了几个关于Hopf分岔和退化Hopf分岔的最简规范形系数与传统规范形系数之间具体关系的定理。借助Mathematica语言,编制了计算高维Hopf分岔和退化Hopf分岔最简规范形系数的程序。通过该程序,只需输入原动力系统方程,可得到系统具体的最简规范形。最后利用编制的程序分别计算了一个6维退化Hopf分岔系统的最简规范形和一个5维Hopf分岔系统的最简规范形。结果表明6维退化Hopf分岔系统的非线性项只包含5阶项和9阶项,5维Hopf分岔系统的非线性项只包含3阶项和5阶项。
     (2)研究了高维Neimark-Sacker分岔和退化Neimark-Sacker分岔的最简规范形的系数。根据最简规范形理论,通过引进特殊的非线性变换、直接计算法和第二数学归纳法,对中心流形上的方程进一步化简,计算出Neimark-Sacker分岔和退化Neimark-Sacker分岔最简规范形的非线性项中分别只包含两项。获得了几个关于Neimark-Sacker分岔和退化Neimark-Sacker分岔的最简规范形系数与传统规范形系数之间关系的定理。
     (3)运用可逆线性变换和近恒同变换,研究了不经计算传统规范形,直接计算高维非线性动力系统的最简规范形。引进可逆线性变换,将非线性动力系统的线性矩阵拓扑等价于符合实际研究需求的分块对角线矩阵:相伴矩阵分布在对角线上,其余元素均为0。利用低阶项来化简高阶项,得到了高维非线性动力系统的最简规范形。在该最简规范形中,对应于每一个相伴矩阵的非线性系数矩阵,只有最后一行含有非0元素,其余各行元素均为0。借助Mathematica语言,编制了计算高维非线性动力系统最简规范形的通用程序。运行该程序,分别计算了2维、3维、4维、6维和7维非线性动力系统直到4阶的最简规范形。
     (4)运用含有参数的可逆线性变换和含有参数的近恒同变换,提出了不计算传统规范形,直接计算含参非线性动力系统最简规范形的一种计算方法。借助Mathematica语言,编制了计算含参非线性动力系统的最简规范形的通用程序。
     (5)利用含有参数的可逆线性变换和含有参数的近恒同非线性变换,得到一类机电耦合非线性系统的最简规范形。进一步得到了该系统的普适开折以及开折参数与原系统参数之间的关系。讨论了该系统的余维2分岔,揭示了各参数对机电耦合系统动力学行为的影响,对系统的参数设计、稳定运行和故障诊断提供了理论依据。给出了该机电耦合系统的数值仿真结果,验证了理论分析结果。
     (6)利用Silnikov定理,讨论了具有自动频率跟踪功能电磁振动机械系统的混沌特性。借助卡尔达诺公式和微分方程组级数解分别讨论了该系统的特征根问题和同宿轨道的存在性,进而比较严密地证明了该系统Silnikov型Smale混沌的存在性,并给出发生Silnikov型Smale混沌所需条件。利用数值模拟得到该类机电耦合系统的相轨迹图、Lyaponov指数谱和Lyaponov维数,进一步验证了该非线性系统存在奇怪吸引子。
Normal form theory is one of the useful tools in the study of nonlinear dynamics and stresses a profound influence on complex dynamic theory such as bifurcation and chaos dynamics. The simplest normal form is the normal form that can be used to deeply simplify the original differential equations based on conventional normal form and nonlinear transformation theory. The study and the application of the simplest normal form are developing to high-dimension. The computation of the simplest normal form is very complicated. But, nonlinear dynamical systems can be simplified by the simplest normal form method and the nonlinear dynamical behavior of these systems near critical equilibrium can be obtained more easily. Aiming at the simplest normal form and the dynamical behavior of the electromechanical coupled nonlinear dynamical system, the research contents and the innovative contributions of this dissertation are as follows
     (1) The coefficients of the simplest normal forms of high-dimensional generalized Hopf and high-dimensional Hopf bifurcations systems are discussed using the adjoint operator method. A particular nonlinear scaling and an inner product are introduced and the central manifold equations are simplified. Theorems are established for the explicit expression of the simplest normal forms in terms of the coefficients of the conventional normal forms of Hopf and generalized Hopf bifurcations systems. Symbolic program is designed to perform the calculation of the coefficients of the simplest normal forms using Mathematica. The original ordinary differential equation is required in the input and the simplest normal form can be obtained as the output. Finally, the simplest normal form of 6-dimensional generalized Hopf and 5-dimensional Hopf bifurcation system are discussed by executing the program. The outputs show that the 5th-order and 9th-order terms remain in 6-dimensional generalized Hopf and the 3rd-order and 5th-order terms remain in 5-dimensional Hopf bifurcation system.
     (2) The coefficients of the simplest normal forms of both high-dimensional Neimark-Sacker and generalized Neimark-Sacker bifurcation systems are discussed. On the basis of the simplest normal form theory, using appropriate nonlinear transformations, direct computation and the second complete induction, the central manifold equations are further reduced to the simplest normal forms which only contain two nonlinear terms. Theorems are established for the explicit expression of the simplest normal forms in terms of the coefficients of the conventional normal forms of Neimark-Sacker and generalized Neimark-Sacker bifurcations systems.
     (3) Applying a reversible linear transformation and a near-identity transformation, the simplest normal forms for high-dimensional nonlinear dynamical system is studied without calculating its traditional normal form. Using a reversible linear transformation, the matrix of the linear part for the nonlinear dynamical system is topologically equivalent to the block diagonal matrix that adapts to the demand of the practical research: companion matrixes distribute on the diagonal line and the remaining elements are zero. In order to obtain the simplest normal form, we use lower order nonlinear terms in the normal form for the simplifications of higher order terms. In the simplest normal form, the nonlinear coefficient matrix contains non-zero elements only in the row corresponding to the last row of each companion matrix and zero elements in the remaining rows. The general program with the Mathematica language is provided, which can compute the simplest normal form of an arbitrary nonlinear dynamical system easily. For nonlinear dynamical systems of 2-dimensional, 3-dimensional, 4-dimensional, 6-dimensional and 7-dimension, the simplest normal forms up to order 4 are discussed by executing the program.
     (4) Applying a reversible linear transformation and a near-identity nonlinear transformation with small parameters, the calculating method according to the simplest normal forms of nonlinear dynamical systems with perturbation parameters is obtained. The general program with the Mathematica language is provided, which can compute the simplest normal form of the mentioned above nonlinear dynamical system easily.
     (5) Applying a reversible linear transformation and a near-identity nonlinear transformation with parameters, the simplest normal form of an electromechanical coupled nonlinear dynamical system is obtained. Furthermore, the universal unfolding and the relationship between its parameters and the parameters of the original nonlinear dynamical system are obtained. The codimension-two bifurcation is analyzed and the effects of various parameters to the dynamical behavior of the system mentioned above are revealed, which lay a theoretical foundation for the parameter design, stable operation and fault diagnosis of a real system. The numerical simulating results of the electromechanical coupled nonlinear dynamical system are obtained, which verify the corresponding theoretical analysis result.
     (6) Based on the Silnikov criterion, the chaotic characters of mechanically and electrically coupled nonlinear dynamical systems are discussed. Using Cardano formula and series solution of differential equation, eigenvalue problem and the existence of homoclinic orbit are studied respectively. Furthermore, a rigorous proof for the existence of Silnikov-sense Smale horseshoes chaos is presented and some conditions which lead to the chaos are obtained. The space trajectory, the Lyapunov exponent and the Lyapunov dimension are investigated via numerical simulation, which show chaotic attractor existed in the non-linear dynamical systems.
引文
[1]王洪礼,张琪昌,非线性动力学理论及应用,天津:天津科学技术出版社, 2002
    [2]Rand R H, Armbruster D, Perturbation methods, bifurcation theory and computer algebra, Berlin: Springer-Verlag, 1987
    [3]Wang D, An introduction to the normal form theory of ordinary differential equations, Advances in Mathematics, 1990, 19(1): 38~71
    [4]Chow S Y, Li C Z, Wang D, Normal forms and bifurcation of planar vector fields, Cambridge: Cambridge University Press, 1994
    [5]张伟,陈予恕,共轭算子法和非线性动力系统的高阶规范形,应用数学和力学, 1997, 18(5): 421~432
    [6]张伟,非线性动力系统的规范形和余维3退化分叉,力学学报, 1993, 25(5): 548~559
    [7]张伟,含有参数激励的非线性动力系统的高余维和复杂动力学: [博士学位论文],天津;天津大学, 1997
    [8]Cushman R, Deprit A, Mosak R, Normal forms and representation theory, Journal of Mathematic and Physics, 1983, 24(5): 2103~2116
    [9]Cushman R, Notes on normal forms, USA: Lecture Notes of MSU, 1985
    [10]Cushman R, Sanders J, Nilpotent normal forms and representation theory of sl(2,R), Multi-parameter bifurcation theory, Contemporary Mathematics, 1986, 56: 31~51
    [11]Takens F, Singularities of vector fields, Publ. Math. Inst. Hautesètudes Sci. 1974, 43(1): 47~100
    [12]Nayfeh A H, Method of normal forms, New York: John Wiley & Sons, 1993
    [13]张琪昌, Hopf分叉理论及其在非线性振动系统中的应用: [博士学位论文],天津;天津大学, 1991
    [14]Leung A Y T, Zhang Q C, Higher-order normal form and period averaging, Journal of Sound and Vibration, 1998, 217(5): 795~806
    [15]韩景龙,朱德懋,非线性振动系统的规范形与平均法,振动工程学报, 1996, 9(4): 371~377
    [16]Zhang W Y, Huseyin K, On the relation between the methods of averaging andnormal forms, Applied Mathematical Modeling, 2000, 24(4): 279~295
    [17]吴志强,陈予恕,非半简分岔问题的范式,应用数学和力学, 1997, 18(4): 325~330
    [18]陈予恕,吴志强,多重非内共振Hopf分岔的正规形,力学学报, 1997, 29(6): 669~675
    [19]Bi Q S, Yu P, Symbolic computation of normal forms for semi-simple cases, Journal of computation and applied mathematics, 1999, 102(2): 195~220
    [20]刘长根,非线性动力系统中的范式理论及纤维增强板中弹性波的传播: [硕士学位论文],天津;天津大学, 2000
    [21]Zhang W, Wang F X, Zu Jean W, Computation of normal forms for high dimensional non-linear systems and application to non-planar non-linear oscillations of a cantilever beam, Journal of Sound and Vibration, 2004, 278(4-5): 949~974
    [22]陈袆,张伟,六维非线性动力系统三阶规范形的计算,动力学与控制学, 2004, 2(3): 31~35
    [23]Zhang Q C, Leung AYT. Computation of normal forms for higher dimensional semi-simple systems, Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis, 2001, 8(4): 559~574
    [24]Leung AYT, Zhang Q C. Normal form computation without central manifold reduction, Journal of Sound and Vibration, 2003, 266(2): 261~279
    [25]吴志强,多自由度非线性系统的非线性模态及normal form直接方法: [博士学位论文],天津;天津大学, 1996
    [26]Ushiki S, Normal forms for vector fields, Publ. Math. IHES, 1974, 43: 47~100
    [27]Ushiki S, Normal forms for singularities of vector fields, Journal of Applied Mathematics, 1984, 1(1): 1~34
    [28]Kokubu H, Oka H, Wang D, Linear grading function and further reduction of normal forms, Journal of Differential Equations, 1996, 132(2): 293~318
    [29]Baider A, Sanders J A, Further reductions of the Takens-Bogdanov normal form, Journal of Differential Equations, 1992, 99(2): 205-244
    [30]Wang X F, Chen G T, Wang D, Unique normal forms for the Takens–Bogdanov singularity in a special case, Comptes Rendus de l'Academie des Sciences Series I Mathematics, 2001, 332(6): 551~555
    [31]Wang D, Li J, Huang M H, Jian Y, Unique normal form of Bogdanov-Takens singularities, Journal of Differential Equations, 2000,163(1): 223~238
    [32]Yu P, Simplest normal forms of Hopf and generalized Hopf bifurcations, Int. J. Bifurcation and Chaos, 1999, 9(10): 1917~1939
    [33]Yu P, Computation of the simplest normal forms with perturbation parameters based on Lie transform and rescaling, J. Comput. and Appl. Math., 2002, 144(1-2): 359~373
    [34]Yu P, Leung AYT, The simplest normal form of Hopf bifurcation, Nonlinearity, 2003, 16(1): 277~300
    [35]Chen G T, Della Dora J, An algorithm for computing a new normal form for dynamical systems, Journal Symbolic Computation, 2000, 29(3): 393~418
    [36]Chen G T, Della Dora J, Further reductions of normal forms for dynamical systems, Journal of Differential Equations, 2000, 166(1): 79~106
    [37]张琪昌,胡兰霞,何学军,非共振双Hopf分叉系统最简规范形类的研究,振动工程学报, 2005, 18(3): 384~388
    [38]Li J, Wang D, Zhang W, General forms of the simplest normal form of Bogdanov-Takens singularities. International Journal of Dynamics of Continuous, Discrete and Impulsive Systems, 2001, 8(4): 519~530
    [39]Yu P, Yuan Y, The simplest normal forms for the singularity of a pure imaginary pair and a zero eigenvalue, Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms, 2001, 8(2): 219~249
    [40]Yuan Y, Yu P, Computation of simplest normal forms of differential equations associated with a double-zero eigenvalue, International Journal of Bifurcation and Chaos, 2001, 11(5): 1307~1330
    [41]Yu P, Yuan Y, The simplest normal forms associated with a tripple zero eigenvalue of indices one and two, Nonlinear Analysis, 2001, 47(2): 1105~1116
    [42]Yu P, Yuan Y, An efficient method for computing the simplest normal forms of vector fields, International Journal of Bifurcation and Chaos, 2003, 13(1): 19~46
    [43]Yu P, Computation of normal forms via a perturbation technique, Journal of Sound and Vibration, 1998, 211(1): 19~38
    [44]Yu P, Symbolic computation of normal forms for resonant double Hopf bifurcations using a perturbation technique, Journal of Sound and Vibration, 2001, 274(4): 615~632
    [45]Yu P, Analysis on double Hopf bifurcation using computer algebra with the aid of multiple scales, Nonlinear Dynamics, 2002, 27(1): 19~53
    [46]张琪昌,胡兰霞,何学军,高维Hopf分岔系统的最简规范形,天津大学学报,2005, 38(10): 878~881
    [47]张琪昌,胡仕华,王炜,不经中心流形化简计算半单系统的最简规范形,天津大学学报, 2006, 39(7): 773~776
    [48]Zhang Qi-chang, He Xue-jun, Hao Shu-ying, Computation of the simplest normal forms for resonant double hopf bifurcations system based on lie transform [J], Transactions of Tianjin University, 2006, 12(3): 180~185
    [49]张琪昌,胡仕华,王炜,双零加一对纯虚根特征值系统的最简规范形,力学季刊, 2006, 27(4): 585~590
    [50]Tian Ruilan, Zhang Qichang, He xuejun, Calculation of coefficients of simplest normal forms of Hopf and generalized Hopf bifurcations, Transactions of Tianjin University, 2007, 13(1): 18~22
    [51]张琪昌,何学军,胡兰霞,一类含参分叉系统最简规范形系数的计算,振动工程学报, 2005, 18(4): 495~499
    [52]Jezequel L, Lamarque C H, Analysis of non-linear dynamical system by the normal form theory, Journal of Sound and Vibration, 1991, 143(9): 425~459
    [53]陈予恕,张琪昌,一种求解非线性振动系统渐近解的新方法,力学学报, 1990, 22(4): 413~419
    [54]Leung AYT, Zhang QC, Complex normal form for strongly non-linear vibration systems exemplified by Duffing-Van der Pol equation, Journal of Sound and Vibration, 1998, 213(5): 907~914
    [55]符文彬,唐驾时,用规范形理论求参数激励系统的近似解,非线性动力学学报, 2001, 8(3): 263~266
    [56]符文彬,唐驾时,用规范形理论研究含平方项非线性振动问题,湖南大学学报, 2003, 30(1): 25~28
    [57]王炜,复规范形理论的应用问题研究: [硕士学位论文],天津;天津大学, 2006
    [58]Zhang W, Tang Y, Global dynamics of the cable under combined parametrical and external excitations, International Journal of Non-Linear Mechanics, 2002, 37(3): 505~526
    [59]Yao M H, Zhang W, Multi-pulse Shilnikov orbits and chaotic dynamics for nonlinear non-planar motion of a cantilever beam, International Journal of Bifurcations and Chaos, 2005, 15(12): 3923~3952
    [60]Yao M H, Zhang W, Multi-pulse Shilnikov orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt, InternationalJournal of Nonlinear Sciences and Numerical Simulation, 2005, 6(1):37~46
    [61]Zhang W, Yao M H, Multi-pulse orbits and chaotic dynamics in motion of parametriclly excited viscoelastic moving belt, Chaos, Solitons and Fractals, 2006, 28(1): 42~66
    [62]Zhang W, Yao M H, Zhan X P, Multi-pulse chaotic motions of a rotor-active magnetic bearing with time-varying stiffness, Chaos, Solitons and Fractals, 2006, 27(1): 175~186
    [63]Cao D X, Zhang W, Global Bifurcations and Chaotic Dynamics in a String- Beam Coupled System, Chaos, Solitons and Fractals, 2006(Preprint)
    [64]姚明辉,多自由度非线性机械系统的全局分叉和混沌动力学研究: [博士学位论文],北京;北京工业大学, 2006
    [65]曹东兴,机械柔性结构的非线性振动分叉和混沌动力学研究: [博士学位论文],北京;北京工业大学, 2007
    [66]Yu P, Leung AYT, The simplest normal form and its application to bifurcation control, Chaos Solitons and Fractals, 2007, 33(3): 845~863
    [67]Kazuyuki Yagasaki, Codimension-two bifurcations in a pendulum with feedback control , Non-linear Mechanics, 1999, 34(6): 983~1002
    [68]高国生,杨绍普,陈恩利等,一类非线性磁流变系统局部分岔特性研究,力学学报, 2004, 36(5): 564~568
    [69]Perfilieva I, Normal forms in Bl-algebra and their contribution to universal approximation of functions, Fuzzy Sets and Systems, 2004, 143(1): 111~127
    [70]Vsevolod Vladimirov, Adam Mahdi al Dhayeh, Normal forms application for studying solitary wave solutions of non-integrable evolution systems, Communications in Nonlinear Science and Numerical Simulation, 2004, 9(6): 615~631
    [71]Yang R T, Hong Y G, Qin H S, Chen G R, Anticontrol of chaos for dynamical systems in p-normal form: A homogeneity-based approach, Chaos, Solitions and Fractals, 2005, 25(3): 687~697
    [72]张琪昌,王洪礼,竺致文等,分岔与混沌理论及应用,天津:天津大学出版社, 2005
    [73]胡海岩,应用非线性动力学,北京:航空工业出版社, 2000
    [74]马红光,韩崇昭,电路中的混沌与故障诊断,北京:国防工业出版社, 2006
    [75]Marco Dandi, Numerical calculation of lyapunov exponents, The Mathematica Journal, 1996, 6(3): 78~84
    [76]Grebogi Celso, Ott Edward, Yorke James A, Fractal basin boundaries, long-lived chaotic transients, and unstable-unstable pair bifurcation, Physical Review Letters, 1983, 50(13): 935~938
    [77]朱淑芹,杨淼,张先华,闵乐泉,利用Silnikov定理构造混沌系统,北京科技大学学报, 2005, 27(5): 635~637
    [78]Zhou TS, Chen G R, Yang Q G, Constructing a new chaotic system based on the Silnikov criterion, Chaos, Solitons and Fractals, 2004, 19 (4): 985~993
    [79]Silva C P, Silnikov theorem--a tutorial, IEEE Trans Circ Syst-I, 1993, 40(10): 675~682
    [80]?ilnikov L P, A case of the existence of a countable number of periodic motions, Sov Math Docklady , 1965, 6: 163~166(translated by S. Puckette)
    [81]?ilnikov L P, A contribution of yhe problem of the structure of an extended neighborhood of rough equibrium state of saddle-focus type, Math USSR-Shornik, 1970, 10: 91~102(translated by F. A. Cezus)
    [82]Li Z, Chen G R, Halang W A, Homoclinic and heteroclinic orbits in modified Lorenz system, Information Sciences, 2004, 165(3-4): 235~245
    [83]Li X D, Liu H F, Three dimensional nilpotent singularity and Sil’nikov bifurcation , Chaos, Solitons and Fractals, 2007, 31 (1): 75~84
    [84]Holmes P J, Marsden J E, Melnikov’s method and arnold diffusion for perturbations of integrable Hamiltonian systems, Journal of Mathematical Physics, 1982, 23(4): 669~675
    [85]Wiggins S, Global bifurcation and chaos, Berlin: Springer-Verlag, 1988
    [86]Kovacic G, Wiggins S, Oribits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation, Physica D: Nonlinear Phenomena, 1992, 57(1-2): 185~225
    [87]Kovacic G, Hamiltonian dynamics of orbits homoclinic to a resonance band, Physics Letters A, 1992, 167(2): 137~142
    [88]Kovacic G, Dissipative dynamics of orbits homoclinic to a resonance band, Physics Letters A, 1992, 167(2): 143~150
    [89]Yagasaki K, The method of Melnikov for perturbations of multi-degree-of -degree Hamiltonian systems, Nonlinearity, 1999,12(4): 799~822
    [90]Yagasaki K, Horseshoe in two-degree-of-freedom Hamiltonian systems with saddle-centers, Archive for Rational Mechanics and Analysis, 2000, 154(4): 275~296
    [91]Yagasaki K, Homoclinic and heteroclinic behavior in an infinite-degree-of-freedom Hamiltonian system: Chaotic free vibration of an undamped buckled beam, Physics Letters A, 2001, 285(1-2): 55~62
    [92]Yagasaki K, Galoisian obstructions to integrability and Melnikov criteria for chaos in two-degree-of-freedom Hamilton systems with saddle canters, Nonlinearity, 2003, 16(6): 2003~2012
    [93]Xu P C and Jing Z J, Silnikov’s orbits in coupled Duffing’s systems, Chaos, Solitons and Fractals, 2000, 11(6): 853~858
    [94]Zhang W, Global and chaotic dynamics for a parametrically excited thin plate, Journal of Sound and Vibration, 2001, 239(5): 1013~1036
    [95]Zhang W, Wang F X, Yao M H, Global bifurcations and chaotic dynamics in nonlinear non-planar oscillations of a parametrically excited cantilever beam, Nonlinear Dynamics, 2005, 40(3): 251~279
    [96]Guo B L and Chen H L, Homoclinic orbit in a six-dimensional model of a perturbed higher-order nonlinear Schrodinger equation, Communications in Nonlinear Science and Numerical Simulation, 2004, 9(4): 431~441
    [97]陈予恕,王德石,余俊,参外激励作用下非线性振动系统的混沌,振动工程学报, 1996, 9(1): 54~69
    [98]刘曾荣,混沌研究中的解析方法,上海:上海大学出版社, 2002
    [99]陈立群,刘延柱,任意圆轨道上磁性刚体航天器的混沌姿态运动及其控制,振动工程学报, 2001, 14(4): 414~418
    [100]李银山,陈予恕,李伟锋,各种板边条件下大挠度圆板的全局分岔和混沌,天津大学学报, 2001, 34(6): 718~722
    [101]陈昌萍,傅衣铭,单轴转动截锥扁壳的全局分岔与混沌,非线性动力学报, 2002, 9(1-2): 56~61
    [102]Ravichandran V, Chinnathambi V, Rajasekar S, Homoclinic bifurcation and chaos in Duffing oscillator driven by an amplitude-modulated force, Physica A: Statistical Mechanics and its Applications, 2007, 376: 223~236
    [103]Li W, Jing Z J, Xu P C, The existence of Silnikov’s orbits in one coupled Duffing equation, Science In China( Series A), 2003, 46(1): 11~23
    [104]Li W, Xu P C, The existence of Silnikov’s orbit in four-dimensional Duffing’s systems, Acta Mathematicae Applicatae Sinica, English Series, 2003, 19(4): 677~690
    [105]Kaper T J, Kovacic G, Multi-bump orbits homoclinic to resonance bands,Transactions of the American Mathematical Society, 1996,348(10): 3835~3887
    [106]Camassa R, Kovacic G, Tin S K, A Melnikov method for homoclinic orbits with many pulse, Archive for Rational Mechanics and Analysis, 1998, 143(2): 105~193
    [107]Haller G, Wiggins S, Orbits homoclinic to resonances: the Hamiltonian case, Physica D: Nonlinear Phenomena, 1993, 66(3-4): 298~346
    [108]Haller G, Wiggins S, Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schrodinger equation, Physica D: Nonlinear Phenomena, 1995, 85(3): 311~347
    [109]Haller G, Wiggins S, Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems, Physica D: Nonlinear Phenomena, 1996, 90(4): 319~365
    [110]Haller G, Chaos near resonance, Berlin: Springer-Verlag, 1999
    [111]Feng Z C, Liew K M, Global bifurcations in parametrically excited systems with zero-to-one internal resonance, Nonlinear Dynamics, 2000, 21(3): 249~263
    [112]陈立群,带慢变角参数摄动平面非Hamilton可积系统的混沌,应用数学和力学, 22(11): 1172~1176
    [113]Yeo M H, Lee W K, Evidence of global bifurcations of an imperfect circular plate, Journal of Sound and Vibration, 2006, 293(1-2): 138~155
    [114]Liu X B, Fu X L, Zhu D M, Bifurcation of homoclinic orbits with saddle-center equilibrium, Chinese Annals of Mathematics, Series B, 2007, 28B(1): 81~92
    [115]陈利平,一类一维阵列的孤波特征数学物理学报, 1999, 19(4): 361~367
    [116]Malhotra N, Namachchivaya N S, McDonald R J, Multi-pulse orbits in the motion of flexible spinning discs, Journal of Nonlinear Science, 2002,12(1): 1~26
    [117]黄德斌,刘曾荣,郑永爱, Sine-Gordon方程中混沌跳跃行为的机制,力学学报, 2002, 34(2): 238~247
    [118]梁建术,陈予恕,一类含平方立方非线性项1:2内共振两自由度系统的全局分岔,应用力学学报, 2002, 19(4): 62~67
    [119]Zhang W, Yao M H, Bai L L, A new multi-pulse chaotic motion for parametrically excited viscoelastic axially moving string, ASME/DETC, Long Beach, California: USA, 2005
    [120]Zhang W, Yao M H, Zhan X P, Bai L L, multi-pulse chaotic motion of a rotor-active magnetic bearing with time-varying stiffness, ASME/DETC, Long Beach, California: USA, 2005
    [121]Yao M H, Zhang W, Multi-pulse Shilnikov orbits and chaotic dynamics of a parametrically and externally excited thin plate, International Journal of Bifurcations and Chaos, 2007, 17(3): 1~25
    [122]胡宇达,邱家俊,塔娜,压板松动时大型发电机端部绕组的主共振与分岔,应用数学和力学, 2005, 26(4): 465~473
    [123]贾启芬,于雯,邱家俊,郎作贵,机电非线性振动系统参强联合激励的分岔,机械强度, 2003, 25(6): 624~627
    [124]Niu X Z, Q J J, Investigation of torsional instability, bifurcation, and chaos of a generator set, IEEE Taransaction on Energy Conversion, 2002,17(2):164~168
    [125]崔一辉,杨志安, RLC电路弹簧耦合系统的非线性动力学分析,河北理工学院学报, 2005, 27(4): 49~54
    [126]熊万里,段志善,闻邦春,用机电耦合模型研究转子系统的非平稳过程,应用力学学报, 2000, 17(4): 7~12
    [127]陈玲莉,赵建平,陈花玲,一种微机电非线性耦合系统奇点稳定性研究,应用力学学报, 2003, 20(4): 70~74
    [128]梁迪,赵春雨,振动系统机电耦合研究的现状与展望,机械设计与制造, 2005, 2: 111~112
    [129]Yamapi R, Aziz-Alaoui M A, Vibration analysis and bifurcations in the self-sustained electromechanical system with multiple functions, Nonlinear Science and Numerical Simulation, 2007, 12(8): 1534~1549
    [130]Laiho A, Holopainen T P, Klinge P, Arkkio A, Distributed model for electromechanical interaction in rotordynamics of cage rotor electrical machines, Journal of Sound and Vibration, 2007, 302(4-5): 683~698
    [131]Nima Mahmoodi S, Jalili N, Non-linear vibrations and frequency response analysis of piezoelectrically driven microcantilevers, Non-linear Mechanics, 2007, 42(4): 577~587
    [132]邱宇,邱勇,邱家俊,机电耦联系统失稳振荡的动态分岔研究,力学学报, 2004, 36(2): 235~240
    [133]邱勇,邱宇,邱家俊,机电耦联系统余维3动态分岔研究,力学学报, 2006, 38(3): 421~428
    [134]储景云,陈予恕,实现电子闭环控制的非线性动力系统的周期解,应用力学学报, 1991, 8(2): 1~8
    [135]储景云,陈予恕,一类机电耦合非线性动力系统的Hopf分叉,振动工程学报, 1995, 8(2): 150~155
    [136]熊万里,闻邦春,张天侠,段志善,利用机电耦合模型研究自同步振动机械的动力学特性,矿山机械, 1999, 27(7): 64~66
    [137]熊万里,闻邦春,双振头电振机的机电耦合自同步行为研究,矿山机械, 2000, 28(11): 50~51
    [138]熊万里,闻邦春,段志善,自同步振动及振动同步传动的机电耦合机理,振动工程学报, 2000, 13(3): 325~331
    [139]韩清凯,秦朝烨,闻邦椿,自同步振动系统的稳定性与分岔,振动与冲击, 2007, 26(1): 31~34
    [140]熊万里,何勍,闻邦椿,机电耦合自同步系统的过渡过程分析,东北大学学报(自然科学版), 2000, 21(2): 158~161
    [141]闻邦椿,刘凤翘,振动机械的理论及应用,北京:机械工业出版社, 1983
    [142]李崇志,梁宏宝,党进,带有摩擦阻尼振动给料机的动力学仿真分析,计算机仿真, 2004, 21(11): 194~196
    [143]张春良,彭程,电磁式振动给料机振动参数的优化,现代机械, 1999, 3: 17~18
    [144]龙建军,吴金萍,振动料斗电磁激振器微控器控制,机械科学技, 2000, 19(2): 284~285
    [145]Doi. T, Yoshida K, Tamai Y, Kono K, Naito K, Ono T, Feedback control for electromagnetic vibration feeder: (applications of two degrees-of-freedom proportional plus integral plus derivative controller with nonlinear element), JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 2001, 44(1): 44~52
    [146]于月民,丁元柱,电磁振动给料机的振动分析,煤矿机械, 2000, 12: 28~30
    [147]王运池,国内振动给料机设备的现状与发展,煤质技术, 2003, 4: 29~31
    [148]王东,振动给料机隔阵系统的理论和设计,中国矿山工程, 2004, 33(4): 27~29
    [149]万文,谢友宝,吴竹溪,单片机在电磁振动给料机中的应用,煤矿机械, 2005, 12: 74~75
    [150]于辉,刘敏楠,振动给料机物料结合的实验研究,起重运输机械, 2006, 4: 71~72
    [151]周微,陈白宁, MCS51单片机对电磁振动给料机的控制,沈阳理工大学学报, 2006, 25(5): 46~48
    [152]陈永亮,徐燕申,杜玉明,基于耦合场分析的电磁振动料斗的动态设计,机械强度, 2006, 28(1): 104~107
    [153]侯勇俊,闫国兴,三电机激振自同步振动系统的机电耦合机理,振动工程学报, 2006, 19(3): 354~358
    [154]Leung A Y T, Zhang Q C, Chen Y S, Normal form analysis of Hopf bifurcation exemplified by duffing’s equation, Shock and Vibration, 1994, 1(3): 233~240
    [155]Leung A Y T, Ge T, An algorithm for higher order Hopf normal forms, Shock and Vibration, 1995, 2(4): 307-319
    [156]Valverde J C, Simplest normal forms of Hopf-Neimark-Sacker bifurcations, International Journal of Bifurcation and Chaos, 2003, 13(7): 1831-1839
    [157]Ioose G, Bifurcation of maps and applications, Mathematical Studies, 1979, 36: 27~47(Amsterdam: North Holland)
    [158]He W L, Cao J D, Stability and bifurcation of a class of discrete-time neural networks, Applied Mathematical Modelling, 2007, 31(10): 2111~2122
    [159]Kaslik E, Balint S, Bifurcation analysis for a two-dimensional delayed discrete-time Hopfield neural network, Chaos, Solitons & Fractals, 2007, 34(4): 1245~1253
    [160]Guckenheimer J, Holmes P, Nonlinear oscillations, Dynamical Systems and Bifurctions of Vector Fields, Berlin: Springer-Verlag, 1983
    [161]Cugno F, Montrucchio L, Some new techniques for modeling nonlinear economic fluctuations: a brief survey, Berlin: Springer-Verlag , 1984
    [162]Luo G W, Chu Y D, Zhang Y L, Zhang J G, Double Neimark-Sacker bifurcation and torus bifurcation of a class of vibratory systems with symmetrical rigid stops, Journal of Sound and Vibration, 2006, 298(1-2): 154~179
    [163]Luo G W, Zhang Y L, Analyses of impact motions of harmonically excited systems having rigid amplitude constraints, International Journal of Impact Engineering, 2007, 34(11): 1883-1905
    [164]Balibrea Gallego F, Valverde Fajardo J C, Bifurcations under Nondegenerated Conditions of Higher Degree and a New Simple Proof of the Hopf–Neimark–Sacker Bifurcation Theorem, Journal of Mathematical Analysis and Applications, 1999, 237(1): 93~105
    [165]Valverde J C, Simplest normal forms of Hopf-Neimark-Sacker bifurcations, International Journal of Bifurcation and Chaos, 2003, 13(7): 1831~1839
    [166]邹永魁,董险峰,高维离散动力系统中Hopf不变流形的存在性,吉林大学自然科学学报, 2001, 39(4): 13~16
    [167]吴志强,胡海岩,非半单分叉Normal Form计算,力学学报, 1998, 30(4):423~431
    [168]Kuznetsov Yu A, Practical computation of normal forms on center manifolds at degenerate Bogdanov-Takens bifurcations, International Journal of Bifurcation and Chaos, 2005, 15(11): 3535~3546
    [169]Zhang W, Chen Y , Cao D X, Computation of normal forms for eight- dimensional nonlinear dynamical system and application to a viscoelastic moving belt, International Journal of Nonlinear Sciences and Numerical Simulation, 2006, 7(1): 35~58
    [170]张琪昌,梁以德,陈予恕,非共振双Hopf分叉系统的规范形及其应用,振动工程学报, 1998, 11(3): 351-355
    [171]Yu P, Leung A Y T, Normal forms of vector fields with perturbation parameters and their application, Chaos Solitons and Fractals, 2007, 34(2): 564~579
    [172]包刚,那仁满都拉,图布心,额尔顿仓,耦合混沌振子系统完全同步的动力学行为,物理学报, 2007, 56(4): 1971~1974
    [173]王光义,丘水生,许志益,一个新的三维二次混沌系统及其电路实现,物理学报, 2006, 55(7): 3295~3301
    [174]Qi G Y, Du S Z, Chen G R, Chen Z Q, Yuan Z Z, On a four-dimensional chaotic system, Chaos, Solitons and Fractals, 2005, 23(5):1671~1682
    [175]刘扬正,姜长生,林长圣,四维切换超混沌系统,物理学报, 2007, 56(9): 5131~5135
    [176]梁勇,孟桥,陆佶人, Lyapunov指数的算法改进与加权预测,声学技术, 2006, 25(5): 463~467

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700