基于基面力的弹性大变形拟变分原理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于基面力的非保守系统弹性大变形问题是一个新兴的课题。基面力作为一种描述应力状态的新方法,较传统的应力张量表示方法简单。将基面力应用于大变形问题,这种特点就体现得十分明显。对于大变形问题,体系又常常是非保守的。本文研究的非保守系统是指“伴生力”系统,即作用于系统的非保守力随物体的变形而变化。
     本文从基于基面力的弹性大变形的基本方程出发,采用变积方法和Lagrange乘子法,研究了非保守系统弹性大变形的拟变分原理。
     首先,研究了基于基面力的非保守系统弹性大变形的拟变分原理。推导了基于基面力的非保守系统弹性大变形的虚功原理、拟势能原理,余虚功原理、拟余能原理。论述了虚功原理和余虚功原理的宽广适用性,并给出拟势能原理和拟余能原理的其它表示形式。建立了第一类两类变量、第二类两类变量的广义拟势能原理和广义拟余能原理;一对有先决条件的两类变量的广义拟变分原理。建立了三类变量的广义拟势能原理和广义拟余能原理。提出了基于基面力的非保守系统弹性大变形问题的拟驻值条件的概念,通过推导拟变分原理的拟驻值条件对拟变分原理进行了检验。建立了承受伴生力作用的薄壁曲梁大变形的拟势能原理,通过推导其拟驻值条件,得到了非保守大变形薄壁圆弧曲梁的平衡方程;建立了承受伴生力作用的大挠度矩形薄板的第一类两类变量的广义拟势能原理,通过推导其拟驻值条件,得到了非保守大挠度矩形薄板的平衡条件和连续条件。
     其二,研究了基于基面力的非保守系统弹性大变形时域边值问题的Hamilton型拟变分原理。建立了基于基面力的非保守系统弹性大变形的拟Hamilton原理、拟余Hamilton原理,以及它们的其它表示形式。建立了第一类两类变量、第二类两类变量的广义拟Hamilton原理和广义拟余Hamilton原理,以及有先决条件的两类变量的广义拟Hamilton型变分原理。建立了三类变量的广义拟Hamilton原理和广义拟余Hamilton原理。建立了承受伴生力作用的大挠度悬臂梁的拟Hamilton原理,通过推导其拟驻值条件,得到了非保守大挠度悬臂梁的动态平衡条件;建立了承受伴生力作用的大挠度非保守矩形扁壳的三类变量的广义拟Hamilton原理,并推导出其拟驻值条件,它的拟驻值条件正是该问题的全部基本方程。
     其三,研究了基于基面力的非保守系统弹性大变形初值问题的卷积型拟变分原理。建立了基于基面力的非保守系统弹性大变形卷积型拟势能原理和拟余能原理。建立了第一类两类变量、第二类两类变量的卷积型广义拟势能原理和广义拟余能原理,以及有先决条件的两类变量的卷积型广义拟变分原理。建立了卷积型三类变量的广义拟势能原理和广义拟余能原理。
     其四,根据基面力Ti与第一类Piola-Kirchhoff应力张量τ和第二类Piola-Kirchhoff应力张量Σ的对应关系,根据位移梯度gi与ui、Green有限应变张量εG的对应关系,给出以第一类Piola-Kirchhoff应力张量τ和位移梯度ui为变量的非保守系统弹性大变形的各级拟变分原理;给出以第二类Piola-Kirchhoff应力张量Σ和Green有限应变张量εG为变量的非保守系统弹性大变形的各级拟变分原理。
     其五,以静力学为例,研究了建立适用于有限元计算的基于基面力的非保守系统弹性大变形的拟变分原理、广义拟变分原理以及修正的拟变分原理、广义拟变分原理的方法。
     此外,说明了本文所建立的基于基面力的非保守系统弹性大变形各级拟变分原理的含义非常广泛,可以将其退化到基于基面力的保守系统弹性大变形的各级变分原理。
The problem of large elastic deformation in non-conservative systems on the base forces is a jumped-up topic. As a new description of the stress state at a point, the base forces is more simple than traditional stress tensors. Applying the base forces to the problems of large deformation, its virtue is obvious. The systems are usually non-conservative for large deformation problems. In present paper, non-conservative systems are specified as " follower force " system, in which the force changes with the deformation of the object.
     Started from the basic equations of large elastic deformation on the base forces, the quasi-variational principles of large elastic deformation in non-conservative systems were studied by the variational integral method and Lagrange Multiplier Method.
     First of all, the quasi-variational principles of large elastic deformation in non-conservative systems on the base forces were studied. The virtual work principle, quasi-potential energy principle, complementary virtual work principle and quasi-complementary energy principle were deduced. The broad applicability of virtual work and complementary virtual work principle was discussed, and the other forms of quasi-potential energy principle and quasi-complementary energy principle were introduced. The first and second types generalized quasi-potential energy principles and quasi-complementary energy principles with two kinds of variables were established, and so were a couple of quasi-variational principles with two kinds of variables which had precedent conditions. The generalized quasi-potential energy principle and quasi-complementary energy principle with three kinds of variables were established. The concept of quasi-stationary value condition of large elastic deformation in non-conservative systems on the base forces was proposed, and the quasi-variational principles were examined by deriving their quasi-stationary value conditions. The quasi-potential energy principle for thin-walled circular curved beams which bore follower force was established. Then equilibrium equations were gained by deducing its quasi-stationary value conditions. The first type generalized quasi-potential energy principle with two kinds of variables for large deflection rectangular sheet which bore follower force was established. Then equilibrium conditions and continuity conditions were gained by deducing its quasi-stationary value conditions.
     Secondly, the quasi-Hamilton variational principles of large elastic deformation time boundary value problem in non-conservative systems on the base forces were studied. The quasi-Hamilton principle, quasi-complementary Hamilton principle and their other forms were established. The first and second types generalized quasi-Hamilton principles and quasi-complementary Hamilton principles with two kinds of variables were established, and so were the quasi-Hamilton variational principles with two kinds of variables which had precedent conditions. The generalized quasi-Hamilton principle and quasi-complementary Hamilton principle with three kinds of variables were established. The quasi-Hamilton principle for large deformation overhanging beam which bore follower force was established. Then dynamical equilibrium conditions were gained by deducing its quasi-stationary value conditions. The generalized quasi-Hamilton principle with three kinds of variables for large deflection rectangular flat shell which bore follower force was established. Then all of its basic equations were gained by deducing its quasi-stationary value conditions.
     Thirdly, the convolutional quasi-variational principles of large elastic deformation time initial value problem in non-conservative systems on the base forces were studied. The convolutional quasi-potential energy principle and convolutional quasi-complementary energy principle of large elastic deformation in non-conservative systems on the base forces were established. The first and second types convolutional generalized quasi-potential energy principle and convolutional generalized quasi-complementary energy principle with two kinds of variables were established, and so were the convolutional quasi-variational principles with two kinds of variables which had precedent conditions. The convolutional generalized quasi-potential energy principle and quasi-complementary energy principle with three kinds of variables were established.
     Fourthly, according to corresponding relations between base forces Ti and the first Piola-Kirchhoff stress tensorτ、the second Piola-Kirchhoff stress tensorΣ, and according to corresponding relations between displacement gradient gi and ui、Green finite strain tensorεG, the corresponding quasi-variational principles of large elastic deformation in non-conservative systems which only consist of the first Piola-Kirchhoff stress tensorτand displacement gradient ui, were obtained. The corresponding quasi-variational principles of large elastic deformation in non-conservative systems which only consist of the second Piola-Kirchhoff stress tensorΣand Green finite strain tensorεG were obtained.
     Fifthly, taking elastostatics for example, it was worked out the quasi-variational principles and generalized quasi-variational principles of large elastic deformation in non-conservative systems on the base forces which were applicable for the calculation of finite element method.
     Furthermore, it was concluded that the meaning of the quasi-variational principles of large elastic deformation in non-conservative systems on the base forces in the paper was very abundant. They could be degenerated to the corresponding quasi-variational principles of large elastic deformation in conservative systems on the base forces.
引文
[1]#12
    [2]钱伟长.变分法及有限元.北京:科学出版社,1980:5页
    [3]赵学仁,赵旭生,程兆雄.固体力学.北京:中国科学技术出版社,1993:144—147页
    [4]Barr A.D.S.. An extension of the Hu-washizu variational principle in linear elasticity for dynamic problems. Journal of Applied Mechanics.1966,33 (2):465-465 P
    [5]Bufler H.. Generalized variational principles with relaxed continuity requirements for certain nonlinear problems with an application to nonlinear elasticity. Computer Methods in Applied Mechanics and Engineering. 1979,19 (2):235-255 P
    [6]Oliveira A.M., Boruszewski W.. A generalized variational principle for potentialized operators. International Journal of Nonlinear Mechanics. 1992,27 (6):1015-1024 P
    [7]Liu S.K., Jiang Z.X.. General form of the generalized variational principle in elasticity. Communications in Applied Numerical Methods.1988,4 (6): 749-760 P
    [8]Long Y.Q.. Several patterns of functional transformation and generalized variational principles with several arbitrary parameters. International Journal of Solids and Structures.1986, 22 (10):1059-1069 P
    [9]Oden J.T., Reddy J.N.. On dual complementary variational principles in mathematical physics. International Journal of Engineering Sciences.1974,12 (1):1-29 P
    [10]Washizu K.. Note on the principle of stationary complementary energy applied to free vibration of an elastic body. International Journal of Solids and Structures.1966,2 (1):27-35 P
    [11]Wempner G., Hwan C. M.. A simple model of elastic plastic plates. International Journal of Solids and structures.1984,20 (1):77-80 P
    [12]Andrzej Nowakowski, Andrzej Rogowski. On the New Variational Principles and Duality for Periodic Solutions of Lagrange Equations with Superlinear Nonlinearities. Journal of Mathematical Analysis and applications.2001,264 (1):168-181 P
    [13]Biagio Ricceri. A general variational principle and some of its applications. Journal of Computational and Applied Mathematics.2000,113 (1-2): 401-410 P
    [14]Castrenze Polizzotto. Nonlocal elasticity and related variational principles. International Journal of Solids and Structures.2001,38 (42-43):7359-7380 P
    [15]Felippa C.A.. Recent developments in parametrized variational principles for mechanics. Computational Mechanics.1996,18(3):159-174 P
    [16]Philip D. Loewen, Wang Xianfu. A Generalized Variational Principle. Canadian journal of mathematics/the Canadian mathematical society/la societe mathematique du Canada.2001,53(6):1174-1193 P
    [17]Hellinger E.. Der allgemein Ansatz der Machanik der Kontinua. Encyclopqdia der Mathematischen Wiserchaften.1914,4:602-694 P
    [18]Reissner E.. On Variational Theorem of Elasticity. Journal of Mathematics and Physics.1950,29 (2):90-95 P
    [19]Washizu K.. On the variational principles of elasticity and plasticity. Aeroelastic and Structures Research Laboratory, Massachusetts Institute of Technology, Technical Report 25-18, March,1955
    [20]Gurtin M.E.. Variationnal principles for elastodynamics. Arch. Rat. Mech.1964,16:34-50 P
    [21]Ogden R.W.. A note on variational theorems in nonlinear elastostatics. Math. Proc. Camb. Phil. Soc.1975(77):609-615P
    [22]钱令希.余能理论.中国科学.1950,1(2-4):449-456页
    [23]胡海昌.论弹性体力学与受范性体力学中的一般变分原理.物理学报.1954,10(3):259-289页
    [24]钱伟长.高阶拉氏乘子法和弹性理论中更一般的广义变分原理.应用数学和力学.1983,4(2):137—149页
    [25]钱伟长.弹性理论中广义变分原理的研究及其在有限元计算中的应用.力学与实践,1979,1(1):16—24页
    [26]钱令希,钟万勰.论固体力学中的极限分析并建议一个一般变分原理.力学学报.1963,6(4):287-303页
    [27]梁立孚.变分原理及应用.哈尔滨工程大学等五联社.2005:37页,262—272页,257—262页,8页
    [28]梁立孚,胡海昌.一般力学中的三类变量的广义变分原理.中国科学(A辑).2000,30(12):1130—1135页
    [29]梁立孚,刘殿魁,宋海燕.非保守系统的两类变量的广义拟变分原理.中国科学(G辑).2005,35(2):201—212页
    [30]王勖力,邵敏.有限单元法基本原理和数值方法(第二板).清华大学出版社,1997:531页
    [31]何君毅,林祥都.工程结构非线性问题的数值解法.国防工业出版社,1994:102页
    [32]陈惠发,A.F.萨里普著.余天庆,王勋文译.土木工程材料的本构方程(第一卷).武汉:华中科技大学出版社,2001:133—148,94—99页
    [33]李卓球,董文堂.非线性弹性理论基础.北京:科学出版社,2004:73—75页
    [34]殷有泉著.固体力学非线性有限元引论.北京:北京大学出版社,清华 大学出版社,1987:141—146页
    [35]Gao Y.C.. A new description of the stress state at a point with applications. Archive Appl.Mech.2003,73:171-183 P
    [36]Gao Y.C., Gao T J.. Large deformation contact of a rubber notch with a rigid wedge I. J Solids Struct.2000,37:4319-4334 P
    [37]Gao Y.C.. Asymptotic analysis of the nonlinear Boussinesq problem for a kind of incompressible rubber material. J Elasticity.2001,64:111-130 P
    [38]高玉臣.固体力学基础.北京:中国铁道出版社,1999:1-61页
    [39]Gao Y.C., Jin M., Dui G. S.. Stresses, singularities, and a complementary energy principle for large strain elasticity. Appl Mech Reviews. 2008,61:1-16 P
    [40]高玉臣.弹性大变形的余能原理.中国科学(G辑).2006,36(3):298—311页
    [41]Levinson M. The complementary energy theorem in finite elasticity. J Appl. Mech.1965,32:826-828P
    [42]Washizu. K.. Variational methods in elasticity and plasticity. Oxford Pergramon,1968
    [43]Zubov L M.. The stationary principle of complementary work in nonlinear theory of elasticity. J Appl. Math. Mech..1970,34:228-232 P
    [44]Fraeijs de Veubeke B.M.. A new variational principle for finite elastic displacements. Int. J Eng.Sci.1972,10:745-763 P
    [45]Koiter W. T.. On the principle of stationary complementary theory in nonlinear theory of elasticity. Siam.J Appl.Math.1973,25:424-434 P
    [46]Ogden R.W.. Inequalities associated with the inversion of elastic stress deformation relation and their implications. Math. Proc. Camb Phil. Soc.. 1977,81:313-324 P
    [47]Guo Z. H.. The unified theory of variational principles in non-linear elasticity. Arch. Mech.1980,32:577-596 P
    [48]Atluri S.N.. On some new general and complementary theory theorems for the rate problems-in finite strain classical elasticity. J Struct. Mech. 1980,8:62-91 P
    [49]Gao D.Y., Strang G.. Geometric nonlinearity:Potential energy, complementary energy and the gap function. Quartl Appl. Math. 1989,47(3):487-504P
    [50]Gao D.Y.. Pure complementary energy principle and triality theory in finite elasticity. Mech.Resear.Comm.1999,26:31-37 P
    [51]Gao D.Y.. General analytical solutions and complementary variational principles for large deformation nonsmooth mechanics. Meccanica. 1999,34:169-198 P
    [52]Gao D.Y.. Dual extremum principles in finite deformation theory with applications to post-buckling analysis of extended nonlinear beam model. Appl. Mech. Rev.1997,50(11):64-71 P
    [53]Gao D.Y.. Duality, triality and complementary extremum principles in non-convex parametric variational problems with applications. IMA J Appl. Math.1998,61:199-235 P
    [54]Gao Y.C.. Elastostatic crack tip behavior for a rubber-like material. Theor Appl Fract Mech.1990,14:219-231 P
    [55]Gao Y.C.. Large deformation field near a crack tip in rubber-like material. Theor Appl Fract Mech.1997,26:155-162 P
    [56]彭一江.基于基面力概念的新型有限元方法.北京交通大学博士学位论文.2006:31-93页
    [57]彭一江,金明.基面力的概念在势能原理有限元中的应用.北京交通大学学报.2007,31(4):1—4页
    [58]彭一江,金明.基于基面力概念的新型势能原理有限元方法.北京工业 大学学报.2007,33(7):687—692页
    [59]彭一江,金明.基于基面力概念的一种新型余能原理有限元方法.应用力学学报.2006,23(4):649—652页
    [60]彭一江,金明.基面力的概念在余能原理有限元中的应用.北京工业大学学报.2007,33(5):487—492页
    [61]彭一江,金明.基于基面力概念的余能原理任意网格有限元方法.工程力学.2007,24(10):41—45页
    [62]范志会.基于弹性大变形余能原理的有限元法研究.北京交通大学博士学位论文.2007:44-78页
    [63]范志会,金明.一个新的杆系大变形余能计算方法.北京理工大学学报.2006,26(9):757—760页
    [64]范志会,金明.纯余能原理在杆系大变形中的应用.北京交通大学学报.2006,30(4):18—21页
    [65]Leipholz H.H.E.. On conservative elastic system of the first and second kind. Ing. Arch.1974,43:255—271P
    [66]Leipholz H.H.E.. On a generalization of the self-adjointness and of Rayleigh's quotient, Mech. Res. Commun 1974,1:67—72P
    [67]Leipholz H.H.E.. Stability of elastic rods via Liapunov's second method. Ing. Arch.,1975,44:21—26P
    [68]Leipholz H.H.E.. On the buckling of thin plates subjected to non-conservative follower forces. Trans. Can. Soc. Mech. Eng.,1975,3:25— 34P
    [69]Leipholz H.H.E., Waddington D.. On the mode of instability of a simply supported rectangular plate subjected to follwer forces. Mech. Res. Comm., 1981,8:223—229P
    [70]Leipholz H.H.E.. Direct variational methods and eigenvalue problems in engineering. Noordhoff Int. Publ., Leyden,1977
    [71]Leipholz H.H.E.. On some developments in direct methods of the calculus of variations. Appl Mech Rev,1987,40(10):1379-1392P
    [72]Leipholz H.H.E., et al. On the solution of the stability problem of elastic rods subjected to uniformly distributed tangential forces. Ing. Arch.,1975: 347-357P
    [73]Leipholz H.H.E.. Variational principles for nonconservative problems-a foundation for a finite element approach. Comp. Maths. Appl. Mech. Eng.. 1979,17/18, Part Ⅲ
    [74]刘殿魁,张其浩.弹性理论中非保守问题的一般拟变分原理.力学学报.1981,(6):562—570页
    [75]郑泉水.非线性弹性理论的泛变分原理.应用数学和力学.1984,5(2):205—216页
    [76]黄玉盈,王武久.弹性非保守系统的拟固有频率变分原理及其应用.固体力学学报.1987,(2):127—136页
    [77]宋海燕,梁立孚,刘殿魁.非保守弹性动力系统两类变量的广义拟变分原理及其应用.地震工程与工程振动.2005,25(4):24—30页
    [78]樊涛,梁立孚,周利剑.几何非线性非保守系统弹性力学拟变分原理.大庆石油学院学报.2007,31(1):120-125页
    [79]樊涛,周利剑,梁立孚.几何非线性非保守系统弹性力学广义拟余能原理的应用.大庆石油学院学报.2007,31(2):102-109页
    [80]樊涛,赵淑红,梁立孚.几何非线性非保守系统弹性动力学两类变量的广义拟变分原理的应用.东北农业大学学报.2008,39(4):46-50页
    [81]钱伟长.广义变分原理.上海:知识出版社,1985:1—24页
    [82]胡海昌.弹性力学的变分原理及其应用.北京:科学出版社,1981:12—13页,382—388页
    [83]鹫津久一郎.弹性和塑性力学中变分法.北京:科学出版社,1984:1-99页
    [84]C. L. Dym, I. H. Shames著.袁祖贻,姚金山,应达之译.固体力学变分 法.中国铁道出版社,1984:370—373页
    [85]钱伟长.大位移非线性弹性理论的变分原理和广义变分原理.应用数学和力学.1988,9(1):1-11页
    [86]郭仲衡.非线性弹性理论变分原理的统一理论.应用数学和力学.1980,1(1):11—29页
    [87]陈至达.钱氏定理在有限变形极矩弹性力学广义变分原理的应用.应用数学和力学.1981,2(2):191—196页
    [88]戴天民.论非线性弹性理论的各种变分原理.应用数学和力学.1982,3(5):585—595页
    [89]梁立孚,章梓茂.推导弹性力学变分原理的一种凑合法(续).哈尔滨船舶工程学院学报.1985,6(4):1—12页
    [90]金问鲁.变分原理和非线性力学.计算结构力学及其应用.1984,4(3):21—28页
    [91]熊跃熙.非保守系统的有限变形弹性变分原理.力学学报.1983(1):86—90页
    [92]金明.非线性连续介质力学教程.北京:清华大学出版社,北京交通大学出版社,2005:78—145页
    [93]钱伟长.对合变换和薄板弯曲问题的多变量变分原理.应用数学和力学.1985,6(1):25-46页
    [94]宋海燕.非保守系统的拟变分原理及其应用研究.哈尔滨工程大学博士学位论文.2005:39页
    [95]宋海燕,梁立孚,周轶雷.一般力学广义变分原理的对偶形式.哈尔滨工程大学学报.2004,25(6):740-743,760页
    [96]童根树,许强.薄壁曲梁线性和非线性分析理论.北京:科学出版社,2004:53—64页
    [97]钟万勰.弹性力学求解新体系.大连理工大学出版社,1995:1—94页
    [98]钱伟长,卢文达,王蜀.动力学分区变分原理及其广义变分原理.力学 学报.1989,21(3):300—305页
    [99]邢京堂.包含终值条件为驻值条件的哈氏型弹性动力学变分原理.上海力学.1990,11(3):24—34页
    [100]邢京堂,郑兆昌.非线性弹性动力学两时端边值问题的变分原理.上海力学.1992,13(3):45—51页
    [101]邢京堂,郑兆昌.线弹性动力学的某些一般定理及广义与广义分区变分原理.应用数学和力学.1992,13(9):795—810页
    [102]付宝连.弹性力学中的能量原理及其应用.北京:科学出版社,2004:173—231页
    [103]秦荣.工程结构非线性.北京:科学出版社,2006:75—77页
    [104]Finlayson B A, Scriven L. On the search for variational principles. Int J HeatMassTransfer,1967,10:799P
    [105]罗恩,朱慧坚.有限变形弹性动力学的Gurtin型变分原理.固体力学学报.2003,24(1):1—7页
    [106]罗恩,梁立孚,李纬华.分析力学的非传统Hamilton型变分原理.中国科学(G辑).2006,36(6):633-643页
    [107]梁立孚,罗恩,冯晓九.分析力学初值问题的一种变分原理形式.力学学报.2007,39(1):106—111页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700