超细搅拌磨机的流场模拟和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超细搅拌磨机是一种高效节能的超细粉碎设备,是目前制备亚微米粉体或浆料的主要工业生产方法,所以,研制产品粒度细、粒度分布均匀、处理量大、能耗省的工业大型超细搅拌磨机就显得非常重要。但是至今没有形成超细搅拌磨机的设计理论,对其基础理论也研究得较少,这阻碍了超细搅拌磨机的工程放大和应用。因此,本文在系统地评述了超细粉体、超细粉碎设备和超细搅拌磨机的现状和发展的基础上,围绕超细搅拌磨机的结构和工艺参数,从理论模拟建立、粉磨理论研究、设备研制开发、试验研究和应用实践等方面进行了研究工作,其主要内容如下:
     本文对超细搅拌磨机基本结构、粉磨机理和性能参数进行了详细分析,研究认为:超细搅拌磨机主要是以摩擦粉碎为主。在磨机中,应力强度是一个非常重要的参数,通过对棒式和螺旋式搅拌磨机的应力强度分析,得出不同类型的搅拌磨机具有不同的应力强度,因而适应不同的物料粉碎。对磨矿区域研磨介质球的受力和速度分析,得出磨矿作用主要发生在环形磨矿区域,提出了速度梯度大磨矿效果好,而不是以往的速度大磨矿效果好的概念,为工业型超细搅拌磨机的结构放大和优化设计提供了理论基础。
     利用计算流体力学方法(CFD法)对超细搅拌磨机进行了流场仿真数值模拟,分析了盘式、棒式、螺旋式三种搅拌器的流场特性(速度梯度、流场的剪切率分布和粘性耗散率等)。通过综合分析,发现棒式搅拌磨机流场圆周方向速度梯度最大,流场的剪切率分布均匀性最好,是速度梯度大、应力分布均匀和阻力较小的一种磨机。流场仿真数值模拟分析为超细搅拌磨机的参数优化设计和工程放大提供了一种新方法。
     通过采用不同搅拌器的对比试验,表明棒式搅拌磨机的研磨效果较好,这与流场数值的模拟结果是一致的,验证了模型的建立和模拟分析的正确性和可靠性。在3600L大型超细搅拌磨机,在研磨重钙时,条件相同的前提下采用棒式搅拌器的能耗比盘式搅拌器节省15%-17%,处理能力提高13%-15%。
     提出了工业型超细搅拌磨机的结构工程放大方法,应用综合放大原则,对其结构参数和工艺参数进行了优化,搅拌器采用棒式搅拌基本结构,确定了最佳的
Ultrafine stirred mill is a kind of ultrafine grinding equipment with high efficiency and energy conservation, ultrafine grinding is the main industrial equipment to produce submicron powder or submicron pulp, the powder produced by this machine has the advantages of fine particle size, granularity distribution uniformity,great throughput and low energy consumption.hence, the manufacture of large-scale industrial ultrafine stirred mill is very important. But there are still no the design theory of ultrafine stirred mill and the few study of the basic theory, this status hinders the engineering enlargement and the application of ultrafine stirred mill. Therefore, this paper systematically reviewed the present status and the development of ultrafine powder, ultrafine comminution equipment and ultrafine stirred mill. On the basis of literatures, inclosing the structure of ultrafine stirred mill and the process parameter, much work had been done to the foundation of theory simulation,the study of comminution theory,the analysis of experiments,the equipment development and the practical application, the following are the main contents of this paper:The paper analyzed the basic structure, the comminution mechanism and the capability parameter of the ultrafine stirred mill in detail. The following are the conclusions: attrition comminution is the main mode of the ultrafine stirred mill. In the cavum of this machine, the stress intensity is a very important parameter. The conclusion can be educed by analying the stress intensity of the stick type and the spiral type of the stirred mill that different types of the stirred mill have different stress intensity, adapting to different material comminution. The paper concluded that the effect of abrading mineral mainly accured in the area of the annular abrading mineral and put forward the conception that large shear rate of dispersion can reach good effect of abrading mineral by analyzing the strength and speed of the medium ball in the area of the comminution, but
    not former conclusion that large rapidity lead to good effect, this provided the basic theory for structural enlargement and optimizing design of the industrial ultrafine stirred mill.Computational fluid dynamics(CFD) method was utilized to the fiowfield numerical simulation of ultrafine stirred mill, the flowfield characters(velocity gradient, shear rate dispersion of flowfield and the dissipative force of viscosity and so on) of three kinds of stirrer(disc type, stick type and spiral type) were analyzed.Through the generalized analysis,discovered the stick-like stirred mill flowfield circumference direction velocity gradient in the largest way and the flowfield cutting rate distribution uniformity best,this is a kind of stirred mill with big velocity gradient ,uniform stress distribution and small resistance.The analysis of the flowfield simulation provided a new method for parameter optimization design and project enlargement of the ultrafine stirred mill.Through doing some contrast experiments by using different mixer, indicated that the stick-like stirred mill had good grinding effect,this result was consistent with the result of flowfield numerical simulation and confirmed that the accuracy and the reliability of the model establishment and the simulation analysis.In the 3600L large-scale ultrafine stirred mill,grinding the calcium carbonate and under the same condition,the enegy consumption can save 15%-17%,the throughput can inhance 13%-15% by using stick-like mixer comparing to using the disc-like mixer.It was proposed that the structural engineering enlargement method, the application synthesis enlargement principle of the industry ultrafine stirred mill, carried on the optimization to its design parameter and craft parameter; used the stick-like stir basic structure;determined the best ratio of high to diameter of the tube body and the topmost line speed of the mixer;designed and R&D 3600L large-scale ultrafine stirred mill by above analysis.Through the engineering practical application on ultrafine comminution to calcium carbonate and barite,confirmed that the structure
    design of the machine was reasonable and its parameter was superior.This kind of machine had been promoted and applied more than 10 sets in Shan dong,Guang zhou and Hunan.In order to more extend the applied areas of the ultrafine stirred mill, two kind of minerals, pyrite(as the submicron catalyst for the direct liquefaction of coal) and calcium carbonate(as the coarse whiting pulp for the pigment of paper manufacture coating), were experimented by this machine. The technical process, technical parameter and main influencing factor of ultrafine stirred mill were researched in detail. The submicron pyrite oil thick liquid(d50 ^ 0.7um)manufactured by the optimized late-mode ultrafine stirred mill can be regarded as the submicron catalyst for the direct liquefaction of coal;the submicron calcium carbonate(dso^ 0.6um) also manufactured by the optimized late-mode ultrafine stirred mill can be regarded as the pigment of paper manufacture coating.
引文
[1] 李凤生等编著.超细粉体技术.国防工业出版社,2000
    [2] 李良果.加快发展我国的超微粉体工艺.现代化工,1993,(8):3-7
    [3] Andrew, Hanson. European GCC A fine, fine filler. Industrial Minerals, 1996, 6: 50-57
    [4] 郑水林.超细粉碎.北京:中国建材出版社,1999
    [5] 张国旺.超细粉碎设备及其应用,北京:冶金工业出版社,2005
    [6] 张国旺、黄圣生.超细粉体制备技术的应用和发展.化工矿物与加工.2001,12:1-3
    [7] 卢寿慈.超细粉体加工技术.北京:中国轻工业出版社,1998
    [8] 曾凡,胡永平.矿物加工颗粒学.徐州:中国矿业大学出版社,1995
    [9] 段波,肖建中.超微粉制备技术的现状与展望.材料工程.1994,6:5-8
    [10] Tarjan G. Comminution. Mineral Processing(vol. 1). Akade'miai Kiadb, Budpext, 1981
    [11] 陶珍东,郑少毕.粉体工程与设备.北京:化学工业出版社,2003
    [12] S.G.马尔翰,非金属矿超细磨与分选,北京:中国建筑工业出版社,1988
    [13] 孙成林.近年我国超细粉碎与超细分级发展及问题.中国非金属矿工业导刊.2003,1:39-44
    [14] 杨宗志.超微气流粉碎,北京:化学工业出版社,1988
    [15] 裴重华 李凤生.超细粉体分级技术现状及进展.化工进展,1994(5):1-5
    [16] 冯平仓.微细研磨重质碳酸钙的应用及其发展前景.非金属矿,1996(6):16-19
    [17] S. Sohoni, R. Sridhar, G. Mandal. The effect of grinding aids on the fine grinding of limestone, quartz and Portland cement clinker. Powder Technology, 1991, 67(3): 277~286
    [18] 宋宝祥.造纸研磨碳酸钙制造、应用及发展现状.中国非金属矿工业导刊,2004(1):3-8
    [19] 杨华明 邱冠周.超细滑石粉的制备及应用.非金属矿,1998(1):30-32
    [20] 杜淑凤,舒歌平等.依兰煤液化过程中天然矿物催化剂影响的研究.洁净煤技术,2000,6(2):32-35
    [21] 朱继升,杨建丽.四种有应用前景的煤的液化性能评价.煤炭转化,2000,23(2):47-52
    [22] 都有为.超细颗粒的应用.化工进展,1993(4):21-23
    [23] 崔越昭.加快超细粉碎工艺技术的发展.北京:科技日报,1993.10.6(3)
    [24] Kientzler, P. J. Development of ultrasonic Comminution technology, Unversity of Utah, 1991
    [25] H. Z. Kuyumcu, L. Rolf. Application of high-pressure waterjets for comminution. International Journal of Mineral Processing, 2004, 74(1001)
    [26] Clark D., Folz D. Processing Materials With Microwave Energy. Materials and Engineering, 2000, 287(2)
    [27] 神保元二[日]等、王少儒等译.粉碎,北京:中国建筑工业出版社,1985
    [28] 孙宝岐等.非金属矿深加工.北京:冶金工业出版社,1995
    [29] M. He, Y. Wang, E. Forssberg, Slurry rheology in wet ultrafine grinding of industrial minerals: review. Powder Technology, 2004, 147(1-3)
    [30] 原剛.石灰石微粉化.日本工业会誌,1986,102(2):91~95
    [31] 森祐行.石灰石微粉碎.资源處理技术,1986,33(2):50~57
    [32] 森祐行.KD-1型粉碎机石灰石微粉化关研究.资源素材学会誌,1992,108(8):579~583
    [33] D. E. Stief, etal. Tower mill and its application to fine grinding. Minerals and Metallurgical Processing, 1987, (4): 40-45
    [34] 张国旺.黄圣生等.立式螺旋搅拌磨机的研制及其在黄金矿山中的应用.黄金,2003(2):32-35
    [35] 黄云峰.王文潜等.超细磨预处理难浸金矿石的研究.黄金,1999(3):28-31
    [36] 吴敏杰.吴志昆等.塔式磨浸机在二段磨矿中的应用.黄金,2000(2):40-42
    [37] 王零森.特种陶瓷.长沙:中南工业大学,1994
    [38] S. G. Malghan, D. B. Minor and L. S. H. Lum. Silicon nitride powder milling kinetics in a high-energy agitation ball mill. Powder Technology. 1991(67): 201-206
    [39] M. Becker, A. Kwade, J. Schwedes. Ultrafine Grinding of Raw Ceramic Materials and Wear of Grinding Beads in Stirred Media Mills. Aufbereitungs-Technik, 1997, 38(8): 430~438
    [40] 孙志昂,陈燕.搅拌磨机在α-氧化铝超细粉碎中的应用.硅酸盐通报.1997,2:68-71
    [41] 李拴强.球磨机砂磨机制备铁氧体粉料的工艺对比及研究.现代电子技术,2003(14):73-74
    [42] 胡国荣 桂阳海等.锂离子蓄电池正极材料LiCoO2研究进展.电源技术,2003.27(2):125-128
    [43] N. Lefelshtel, S. nadiv. Production of Zinc Ferrite in a Mechano-Chemical Reaction by Grinding in Ball Mill. Powder Technology. 1978(20): 211-217
    [44] 李冷.粉碎机械力化学理论及实验方法,国外金属矿选矿,1991,28(9):36~42
    [45] 杨亚青,韩建军.矿渣超细粉磨技术及装备.建材技术与运用,2001(2):19-21
    [46] 陈明祥.超细水泥灌浆材料的发展现状及应用.水泥,1998(11):8-10
    [47] 张慜,王亮.超微粉碎在食品加工中的研究进展.无锡轻工大学学报,2003(4):106-110
    [48] 庄志发,冯紫慧.细胞级超微粉碎的研究应用.山东食品发酵,2000(3):37-39
    [49] 徐瑛,刘根凡.超细粉碎技术在现代中药的应用.化学与生物工程,2003(6):1-3
    [50] 赵海军,史建新.超微粉碎技术在食品加工中的应用.农产品加 工.2004(4):28-29
    [51] J. lewinski, lmpact of rock single particle on rotational elements of hammer and impact crusher, AUFBEREITUNGS-TECHNIK, 1984(1): 209-217
    [52] J. lewinsku, A. Mazela, Experimental analysis of impact comminution phenomena in a model impact crusher, AUFBEREITUNGS-TECHNIK 1984(10): 580-584
    [53] 王新江,超细粉碎与分级设备的研究及应用.矿产保护与利用,1993,(2):37~39
    [54] J. lewinski, A. Mazela, The analysis of impact of a sigle particle on the hammer of a hammer Crusher, AYFBEREITUNGS-TECHNIK, 1985(10): 605-610
    [55] 郭力等.冲击式超细粉碎机的研制,粉碎技术,1994(2):16-22
    [56] Alison.Russell,郑水林译.超细磨矿(一)国外非金属矿与宝石,1989(2):23-24
    [57] 林春元等.超细粉碎与二流化钼的微粉化,稀有金属材料与工程,1993(2):8-14
    [58] 孙本双.铍粉制取新工艺——冲击研磨制粉方法介绍.粉末冶金技术,1991(2)112-115
    [59] 刘雪东,卓震.扁平式气流粉碎机粉碎室流场的数值模拟.化工学报.2000.51(3):414-417
    [60] Klaus Schonert.粉碎.国外金属矿选矿,1985(1) 21-35
    [61] Stehr N. Recent developments in stirred ball milling. Int. J. Miner. Process, 1988(22): 431-444
    [62] Mary C. Kerr and James S. Reed. Comparative Grinding Kinetics and Grinding Energy during Ball Milling and Attrition Milling. Am. Ceram. Soc. Bull., 1992(71): 1809-1816
    [63] heila A. Padden and James S. Reed. Grinding Kinetics and Media Wear during Attrition Milling. Am. Ceram. Soc. Bull., 1993(72): 101-112
    [64] H. Karbstein, F. Muller and R. Polke. Scale-up for Grinding in Stirred Ball Mills. Aufbereitungs-Technik, 1996, 37(10): 469~479
    [65] 高明炜.搅拌式磨机在细磨过程中的应用现状及发展趋势.徐州:第四届全国颗粒制备与处理学术会议论文集,1995.11.225-258
    [66] 张国旺.搅拌型球磨机的研究和发展.徐州:第四届全国颗粒制备与处理学术会议论文集,1995.11.229-232
    [67] 许宏林.棒搅拌型球磨机粉碎原理与参数初探.选矿机械.1988(4):7-9
    [68] 孙成林.搅拌型磨矿机.金属矿山,1986,12:49-54
    [69] 孙成林等 塔式粉磨机及其应用.选矿机械,1987(2):44-50
    [70] 张国旺.立式螺旋搅拌磨矿机的理论和设计.湖南省科协首届磨矿会论文集,长沙:湖南科学技术出版社,1992.P116-119
    [71] M.-W. Gao, K. S. E. Forssberg, K. R. Weller. Power Predictions for a pilot scale stirred ball mill. Int. J. Miner. Process. 1996(44-45): 641-652
    [72] H. Berthiaux, O. Heitzmann, J. A. Oodds. Validation of a model a stirred bead mill by comparing results obtained in batch and continuous mode grinding. Int. J. Miner. Process. 1996(44-45): 653-661
    [73] 张国旺 我国塔磨的研制和应用.化工矿山技术,1990(6):23-24
    [74] 张国旺等 JM-500型干式螺旋搅拌磨球机的研制.粉碎工程,1990(2):47-49
    [75] J. J. eng, sizing of Tube vibration Mills with the Aid of simulation Mosel Based on Machine Dynamics. AURBEREITUNGS—TECHNIK, 1992(7): 361-372
    [76] 周恩浦.矿山机械(选矿部分),北京:冶金工业出版社,1979
    [77] 神保元二.最近的振动术一儿三儿,化学装置(日),1968(7):29-36
    [78] 川崎重工业株式会社.连续式振动,化学装置(日),1968(12):79-82
    [79] Gock E, etal. Increased Efficiency of the vibratory Milling process with the Eccentric virbratory Mill. AURBEREITUNGS—TECHNIK, 1998(39): 103-111
    [80] H. Roseund Sullivan R. M. E. vibration mills vibration milling, Constable. London 1961
    [81] Rumpf. H. Beanspruchungstheorie der prall. zerkleinerung Chemielngenieur-Technik, 1959(31): 323-337
    [82] 黄圣生.崛起中的高压辊磨机.国外金属矿选矿,1988,10,46-51
    [83] 黄圣生.料层破碎新工艺研究.有色金属(选矿部分),1985,5
    [84] K. Schonert, O. Jung. Rating of Vertical Roller Mills on the Basis of Grindablity Tests. AURBEREITUNGS—TECHNIK, 2002, 43(8): 45-501
    [85] 包玮.王学敏.张永龙.HFCG辊压机及挤压粉磨技术的进展与实践.中国水泥,2003(1):49-53
    [86] 张国旺.破碎粉磨设备的现状及发展.粉体技术,1998,4(3):37~42
    [87] H. Mio, J. kano. etal. Optimum revolution and rotational directions and their speeds in planetary ball milling. Int. J. Miner. Process. 2004. 74(1001)
    [88] 吴一善.粉碎学概论.武汉:武汉工业大学出版社,1993
    [89] 张少明等.粉体工程.北京:中国建材工业出版社,1994
    [90] 盖国胜 陶珍东.管磨机/超细分级系统生产超细水泥的理论与实践.水泥技术,1999(3):12-14
    [91] 李启衡.粉碎理论概要.北京:冶金工业出版社,1993
    [92] 刘建远.关于粉碎的能耗与能量效率.国外金属矿选矿,1993,(9):24~32
    [93] Lan Kerr. ultra fine milling of Ceramics Industrial Minerals, 1998, 9: 10-11
    [94] 段希祥.细磨及超细磨下的功耗规律研究.有色金属(选矿部分),1993,(1):33~39,26
    [95] 盖国胜,张云鹏.搅拌粉磨过程动力学模型研究.非金属矿,1994(6):20-22
    [96] 盖国胜,陈炳辰.粉磨过程数学模型及过程优化研究评述.金属矿山,1995,(1):28~32,14
    [97] 孟宪红等.关于粉碎、超细粉碎理论的实验研究新进展.中国矿业,1996,5(1):51~56
    [98] 孟宪红,宋守志.关于超细粉碎的理论研究.东北大学学报(自然科学版).1996.17(5):461-464
    [99] 朱美玲,颜景平.机械法制备超细粉机理和能耗的理论研究.东南大学学 报(自然科学版),1994.24(4):1-7
    [100] 徐秉权.粉碎新工艺、新设备与节能技术.长沙:中南工业大学出版社,1992
    [101] 陈炳辰.磨矿原理.北京:冶金工业出版社,1989
    [102] 周恩浦等.粉碎机械的理论与应用.长沙:中南工业大学出版社,2004
    [103] Joachim Rottle. Powder Processing the dry way Microns for limestone and talc. Industrial Minerals, 1999, 10: 57-59
    [104] 冯平仓.机械破碎法批量制造纳米材料.中国粉体技术,2000,6(10):296-297
    [105] J.R.麦克劳克林.用超细陶瓷微珠研磨制备无机纳米级材料.国外金属矿选矿,2000,9:36-39
    [106] N. Stehr. German Patent DE-PS 3614980. DRAISWERKE GmbH (U. S. Pat. pend.). 1986.
    [107] Alexander Magrutsch, Wien. Pestle Mill-High-Energy Wet Grinding in a Centrifugal Ball Mill. AYFBEREITUNGS-TECHNIK, 2003, 44(11-12): 17-23
    [108] Alison Russell. Agitated Mills. World Mining Equipment, 1997, 11: 15-17
    [109] 余立新,熊惟皓等.搅拌球磨制备亚微米晶粒Ti(C,N)基金属陶瓷.材料工程,2002,7:12-15
    [110] Ajaal, T. Smith, R. W. Yen, W. T., The Development and Characterization of a Ball Mill for Mechanical Alloying. Canadian Metallurgical Quarterly. 2002, 41
    [111] 杨华明.搅拌磨超细粉碎及机械化学研究.中南大学博士论文,1998
    [112] M. A. van Nierop, G. Glower, etal. A discrete element method investigation of the charge motion and power draw of an experimental two-dimensional mill. Int. J. Miner. Process. 2000(61): 111-115
    [113] Amlan Datta, Raj K. Rajamani. A direct approach of modeling batch grinding in ball mills using population balance principles and impact energy distribution. Int. J. Miner. Process. 2002(64): 181-200
    [114] Paul W. Cleary, Rob Morrisson. Comparison of DEM and experiment for a scale model SAG mill. Int. J. Miner. Process. 2003(68): 129-165
    [115] Paul W. Cleary, David Hoyer. Centrifugal mill charge motion and power draw: comparison of DEM predictions with experiment. Int. J. Miner. Process. 2000(59): 131-148
    [116] Paul W. Cleary. Charge behaviour and power consumption in ball mills: sensitivity to mill operating conditions, liner geometry and charge composition. Int. J. Miner. Process. 2001(63): 79-114
    [117] P. W. Cleary. Recent advances in DEM modelling of tumbling mills. Minerals Engineering, 2001, 14(10):
    [118] Graeme L. LANE. CFD Modeling of a Stirred Bead Mill for Fine Grinding. Second International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia. 6-8 December 1999.
    [119] M. A. van Nierop, G. Glover, A. L. Hinde, M. H. Moys. discrete element method investigation of the charge motion and power draw of an experimental two-dimensional mill. Int. J. Miner. Process. 2001(61): 77-92
    [120] Yutaka Tsuji. Numerical simulation of pedestrian flow at high densities. PEDESTRIAN AND EVACUATION DYNAMICS, 2nd International Conference, August 20-22, London (2003).
    [121] 黄小龙,郝静如等.鼠笼式搅拌磨的流体场建模及计算机仿真.北京机械工业学院学报,2002(1):12-16
    [122] 郝静如,米洁.鼠笼式搅拌磨机性能研究及参数优化.机械设计与研究,2004,20(6):67-70
    [123] 米洁,郝静如.鼠笼式搅拌磨机性能参数对粉碎效果的影响分析,中国机械工程,2004,15(24):2179-2182
    [124] 闫民,贾启芬等.振动磨DEM动力学分析模型.天津大学学报,2000(1):59-62
    [125] 闫民.振动磨动力特性及磨介运动规律的离散单元法研究及应用,西安:西安理工大学博士论文,1998
    [126] 张国旺,黄圣生.高效超细搅拌磨的设计和应用.矿山机械,2002,7:15-17
    [127] S. Nitta, A. Bissombolo, T. Furuyama, S. Mori. Relationship between Bond's work index (Wi) and uniformity constant (n) of grinding kinetics on Tower mill milling limestone. Int. J. Miner. Process. 2002, 66(1-4)
    [128] S. Mori, A. Shibayama, T. Hara. Development of a Tower Mill for Fine Grinding. Proceeding of the ⅩⅩ International Processing Congress. 2, Aachen, Germany, 69-69
    [129] 森祐行.KD-2型粉碎机石灰石微粉化关研究.资源素材,1994,110(9):733~737
    [130] 柴山敦.KD-3型粉碎机搅拌回转速度粉碎效果与影響.资源素材,1997,113(11):842~846
    [131] 张国旺.立式螺旋搅拌磨矿机在工业中的应用.金属矿山,1998(9):36-38
    [132] 赵湘、张国旺等.立式棒式搅拌磨矿机细磨电解二氧化锰的试验和应用.中国锰业,2001:1
    [133] 李冷,曾宪滨.微粉碎技术与硅灰石表面改性的研究,非金属矿,1993(5):13~16
    [134] 李冷,曾宪滨.硅灰石微粉碎工艺试用搅拌磨的研究,非金属矿,1993(1):11~14
    [135] 严金中.立磨机磨矿原理的探讨.矿冶工程,1998,18(1):27~30
    [136] 全朝怀.LM-1000X2000立磨机工业试验.矿冶工程,1992,(3):
    [137] 张平亮.湿式搅拌磨微粉碎技术的研究.化工装备技术,1995,(6):26-31
    [138] 张平亮.砂磨机微研磨介质的应用试验研究.涂料工业,1998,(3):23-25
    [139] 张平亮.砂磨机微粉碎理论及技术参数的研究.中国粉体技术,1999,(1):10-13
    [140] A. Helm, R. Leszczyniecki. Determination of Parameters for Wet-Grinding Model in perl mills. Powder Technology. 1985(41): 173-179
    [141] 杨华明等.搅拌磨在超细粉制备中的应用.矿产综合利用,1997,(1):33~36
    [142] L. Y. SaddlerⅢ, D. A. Stanley and D. R. Brooks. Attrition Mill Operating Characteristics. Powder Technology. 1975(12): 19-28
    [143] M. J. Mankosa, G. T. Adel and R. H. Yoon. effect of Operating Parameters in Stirred Ball Mill Grinding of Coal. Powder Technology. 1989(59): 255-260
    [144] 邢锋,丁浩和冯乃谦.天然沸石搅拌磨湿法超细磨矿技术的研究.矿产保护与利用,1999,4:28-30
    [145] 崔政伟,王有伦,陆振曦.搅拌磨粉碎机理及其主要工作参数的研究.化工装备技术,1995,16(4)
    [146] 孙成林,蔡玲.粉碎工程进展现状.第四届全国粉体工程学术会议,郑州,1996
    [147] T.C.巴顿著,郭隽奎,王长卓译.涂料流动和颜料分散.北京:化学工业出版社,1994
    [148] 刘广文.国外涂料工业新型研磨分散设备.涂料工业,1994(5):20-24
    [149] A. Shibayama, S. Mori, A. Bissombolo. Studies on comminution mechanism of the dry Tower Mill KD-3. Proceeding of the Ⅻ International Processing Congress. C4, 44-52
    [150] 虞惠民.砂磨机在还原染料超细粉研磨中的应用.染料工业,1991(2):42-43
    [151] 史德雅.DCP超级流量和COSMO高效砂磨机的新发展.中国涂料,1999(4):31-34
    [152] 沈锦周.颜料分散设备进展.现代涂料与涂装,1998(3):25-29
    [153] 张国旺.破碎粉磨设备的现状及发展.粉体技术,1998,4(3):37~42
    [154] F. Marmor. Energy-saving fine-grinding using the Sala-Agitated-Mill SAM. Aufbereitungs-Technik, 1993, 34(10): 506~511
    [155] Jacek Kolacz. Optimised dry ball mill grinding. Industrial Minerals, 1999, 4: 49-57
    [156] 郑水林译.超细磨矿(二).国外非金属矿与宝石,1989,(5):13~17
    [157] E. Forssberg. Dry fine grinding of Dolomite with the Sala Agitated Mill SAM 7.5 Effects of grinding media and grinding additive. Aufbereitungs-Technik, 1995, 36 (5): 211~217
    [158] Ben Schneider. Processing of ultra-fine Minerals. Industrial Minerals, 1997, 10: 91-99
    [159] 郑水林,孙成林.超细粉碎(二).粉体技术,1995,1(2):39~44
    [160] 阙煊兰等.国内外碳酸钙的生产应用及发展趋势.非金属矿,1997,增刊:111~115,124
    [161] 郑水林.我国重质碳酸钙生产与应用现状.非金属矿,1997,增刊:107~110
    [162] 方苍舟 陈贤树.重钙类非金属矿超细加工工艺探讨.中国非金属矿工业导刊,1999(5):74-76
    [163] 罗齐新.重质碳酸钙微粉加工技术与装备.非金属矿,1995,(6):35-38
    [164] 赵显东.搅拌型磨矿机应用和发展.矿山机械,2001(1):18-20
    [165] J. Conway-Baker, R. W. Barley. etal. Measurement of motion of grinding media in a veritically stirred mill using positron emission particle tracking(PEPT). Minerals Engineering. 2002, 15: 53-59
    [166] J. Thrurkauf, J. Schwedes. Theoretical and experimental investigation on particalmand fluid motion in stirred media mills. Powder Technology. 1999(105): 406-412
    [167] Blecher L, Kwade A, Schwedes J. Motion and stress intensity of grinding beads in a stirred media mill. Part 1: Energy density distribution and motion of sigle grinding beads. Power Technology, 1996, 86: 59-68
    [168] M. Becker, A. Kwade, J. Schwedes. Stress intensity in stirred media mills and its effect on specific energy requirement. Int. J. Miner. Process. 2001(61): 189-208
    [169] M. J. Mankosa, G. T. Adel and R. H. Yoon. effect of Media Size in Stirred Ball Mill Grinding of Coal. Powder Technology. 1986(49): 75-82
    [170] J. Pokorny and P. Zaloudik. Dry Grinding in Agitated Ball Mills. Powder Technology. 1976(15): 181-186
    [171] C. Tangsathtkulchai. Slurry Density Effects on Ball Milling in a Laboratory Ball Mill. Powder Technology. 1989(59): 285-293
    [172] H. Karbstein, F. Muller and R. Polke. Scale-up for Grinding in Stirred Ball Mills. Aufbereitungs-Technik, 1996, 37(10): 469~479
    [173] Sheila A. Padden and James S. Reed. Grinding Kinetics and Media Wear during Attrition Milling. Am. Ceram. Soc. Bull., 1993(72): 101-1
    [174] A. E. Schollbach. Comminution in Stirred Ball Mills with Additional Introduction of Vibration. Aufbereitungs-Technik, 1998, 39(6): 287~295
    [175] P. Raghuraman, R. Rajiv Raman, B. Pitchumani. Studies in fine grinding in an Attritor Mill. Proceeding of the ⅩⅪ International Processing Congress. C4, 94-98
    [176] 杨华明等.搅拌磨超细粉碎的工艺与应用研究.有色金属,1998,50(3):47~50
    [177] 邱冠周,杨华明.搅拌磨制备超细石英粉的研究.矿产综合利用,1997,(4):5~7
    [178] 肖至培.助磨剂在超细粉碎工艺中的应用.矿产保护与利用,1996,(2):36~39
    [179] 董发勤等.矿物超细效应的产生和表达.矿产综合利用,1997,(5):25~29
    [180] 李冷,涂文懋等.云母微粉碎研究.武汉工业大学学报,1995,17(3):28-32
    [181] 李冷和曾宪滨.立式螺旋搅拌磨在硅灰石微粉碎工艺中的应用研究.武汉工业大学学报,1993,15(2):56-62
    [182] 胡永强.精细陶瓷粉末的制造技术与发展趋势.金刚石与磨料磨具工程,19972(98):37-40
    [183] 张国旺,黄圣生等.大型超细搅拌磨机在造纸涂布用重质碳酸钙中的应用.有色矿冶,2005年增刊,149-150
    [184] 盖国胜等.超细粉碎分级技术.北京:中国轻工业出版社,2000
    [185] 傅德薰,马延文.计算流体力学.北京:高等教育出版社,2002
    [186] John D. Anderson, JR. Computational Fluid Dynamics (The Basics with hpplications) 北京:清华大学出版社,2002
    [187] 李宝宽,郝冀成.炼钢中的计算流体力学.北京:冶金工业出版社,1998
    [188] 吴望一.流体力学.北京:北京大学出版社,1983
    [189] Blecher L, Kwade A, Schwedes J, Motion and stress intensity of grinding beads in a stirred media mill. Part 1: Energy density distribution and motion of sigle grinding beads, Power Technology, 1996, Vol. 86, pp59-68.
    [190] Graeme L. LANE. CFD Modeling of a Stirred Bead Mill for Fine Grinding[J]. Second International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia. 6-8 December 1999.
    [191] Bird R. B., Stewart W. E. and Lightfoot E. N. Transport Phenomena[M]. John Wiley & Sons, 1960. 91.
    [192] Keith R Weller, Mingwei Gao. Ultra-fine grinding. CSIRO Minerals, Pingarra Hills, Queensland, Australia.
    [193] A. Janrovic. Media stress intensity analysis for vertical stirred mills. Minerals Engineering. 2001. 14(10): 1177-1186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700