铁磁性吸波材料的制备及其电磁性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前FeSiAl合金粉吸收剂的形貌较为单一,并且制备方法有限,本文通过对传统的离心制粉方法进行改进,制备了球形FeSi和纺锤形FeSiAl合金粉。同时,由于电子和通讯设备越来越趋于微型化、高度集成化,设备内部元器件之间的电磁干扰以及对人体的辐射危害越来越突出,为了解决这一问题,本文制备了以铁磁性材料为吸收剂、氯化聚乙烯为基体的吸波贴片。此外,针对单一吸收剂吸波涂层吸收频带窄的缺点,制备了由铁磁性材料和炭黑组成的复合吸收剂的单层环氧树脂基吸波涂层,并且引入Si02粉作为透波剂制备了双层结构的吸波涂层。本文借助SEM、XRD、振动样品磁强计、电磁参数测试设备和吸波性能测试装置等材料检测方法对吸收剂、吸波贴片和涂层进行了测试和分析。
     结果表明通过对传统离心设备的改进,能够在低转速(<8000r/min)下制备出粒度较小的球形FeSi和纺锤形FeSiAl合金粉吸收剂。粉体在成形的过程中先后经过了液滴的一次破裂、一次球化、二次破裂和二次球化。较高的转速和过热度有利于合金粉的细化,但会降低实验装置的使用寿命。Al元素的加入导致FeSi和FeSiAl合金粉在形貌上有较大的差异。在球形FeSi合金粉中,当Si的含量较低时,合金粉以α-Fe(Si)固溶体为主,电磁特性较好,尤其是磁损耗性能;当Si含量过高时,合金粉中出现化合物Fe1.34Si0.66或FeSi相,电磁性能显著降低。此外,降低FeSi合金粉的粒度有利于提高其电磁吸波性能。纺锤形FeSiAl合金粉具有优良的电磁特性,尤其磁损耗能力突出,其成分须控制在Sendust合金(Fe85Si9.6Al5.4)附近,A1或Si含量过高均会大大降低粉体的电磁特性,纺锤形FeSiAl合金粉与球形相比在电磁特性上更具优势,通过理论分析和实验对比都证明了这一点。
     羰基铁粉和FeSiAl合金粉作为铁磁性吸收剂均具有优良的电磁特性,尤其磁损耗性能更为优异。分别以这两种材料为吸收剂,所制备的氯化聚乙烯基吸波贴片在2-18GHz和130MHz-1.8GHz两个频段显现出良好的吸波性能,尤其是在厚度较薄的情况下表现出良好的低频吸收效果,具有较强的应用价值。当贴片厚度较薄时,吸收峰随着吸收剂含量的增加向低频区域移动;当厚度较大时,材料阻抗匹配特性被破坏,匹配频率随吸收剂含量的变化不再遵循上述规律。随着贴片厚度的增加,吸收峰向低频段移动。在阻抗匹配特性良好的情况下,贴片的最小反射率随着厚度的增加而减小,吸波性能提高。对于以羰基铁粉为吸收剂的贴片材料,当吸收剂与基体质量比为16:1、厚度为1.5mm时,贴片在2-3.7GHz范围的吸收性能优于-8dB,当厚度为2.0mm时,贴片在650MHz-1.8GHz范围的吸收性能优于-4dB;对于以FeSiAl合金粉为吸收剂的贴片,当吸收剂与基体的质量比为16:1、厚度为1.1mm时,贴片在590MHz-1.8GHz范围的吸收性能均优于-4dB。
     分别以单一的铁磁性合金粉和炭黑为吸收剂的单层环氧树脂基涂层吸波性能较差,吸收带宽较窄,而由铁磁性合金粉与炭黑组成的复合吸收剂能够大大提高涂层的吸波性能,同时降低涂层的面密度和成本。对于FeSi粉/炭黑复合涂层,当FeSi粉、炭黑与基体的质量比为1.8:0.2:1时,反射率小于-4dB的频宽达到15.1GHz,涂层厚度为1.2mm;而羰基铁粉/炭黑复合涂层在高频段具有较好的吸波特性,当羰基铁粉:炭黑:环氧树脂为0.7:0.6:1、涂层厚度为1.5mm时,涂层在7.9-18GHz频率范围的吸波性能均优于-4dB。分析认为,当两种不同类型的吸收剂复合时除了发挥各自对电磁波的衰减作用外,同时彼此互相间隔,当含量较高时形成电阻较大的复合导电网络,这能够在一定程度上抑制涡流效应的影响。此外,首次将Si02粉作为透波剂引入到吸波涂层中,根据阻抗匹配原理设计了双层结构的吸波涂层,Si02粉的加入改善了涂层的阻抗匹配特性,提高了涂层的吸波性能,尤其是在低频段。
Now, for the sigle morphology and limited preparation method of FeSiAl alloy powders, the improved centrifugal atomization method was used in this paper to prepare spherical FeSi and spindly FeSiAl alloy powders. Meanwhile, electromagnetic interference and radiation damage on the human body have become more serious with the rapid development of electronics and communications equipment. To solve the above problem, an absorbing sheet employing ferromagnetic alloy powders as absorbent and chlorinated polyethylene as matrix was prepared. Besides, to broaden the absorption frequency band of the absorbing coatings filled with sigle absorbent, a single-layer coating employing composite absorbents and epoxy resin as matrix was introduced in this paper. We also prepared a double-laye absorbing coating introducing the SiO2 powders as wave-transmitting materials. The absorbent, absorbing patch and coatings were measured by SEM, XRD, vibrating specimen magnetometer, electromagnetic parameters and absorption properties testing device, respectively.
     The results showed spherical FeSi and spindly FeSiAl alloy powders were prepared at lower rotate-speed (<8000r/min) by the improved centrifugal atomization method. The forming process included the first droplet rupture, the first spheroidizing, the second droplet rupture and the second spheroidizing. The higher rotate-speed and degree of superheat were beneficial to obtain the finer powder, but the working life of equipment was reduced. The difference in morphology between FeSi and FeSiAl alloy powders resulted from the addition of Al element. For the FeSi alloy powders, when the content of Si was lower, the phase structure wasα-Fe(Si), and the alloy powders showed excellent electromagnetic properties, especially permeability; when the content of Si was higher, the phase changed into Fe1.34Si0.66 or FeSi compound, microwave absorption properties decreased dramatically. In addition, the decrease of particle size could improve microwave absorption properties of alloy powders. Spindly FeSiAl alloy powders with the near composition of Sendust alloy (Fe85Si9.6Al5.4) showed excellent electromagnetic properties, especially permeability. The higher Al or Si content would decrease obviously the electromagnetic properties. Spindly shape FeSiAl alloy powders showed more excellent electromagnetic properties than the spherical powders which was confirmed by theoretical analysis and contrast test.
     Carbonyl-iron powder and FeSiAl alloy powders as ferromagnetic absorbent both exhibited excellent electromagnetic properties especially permeability. The absorbing sheet with the smaller thickness showed good microwave absorption properties in lower frequency range. When the thickness was small, the absorption peaks moved towards the lower frequency range with the increase of absorbent content, but the rule was unsuitable to the thicker samples due to the broken impedance matching characteristics. The absorption peaks shifted to the lower frequency range with the increase of thickness, and the microwave absorption properties could be improved as the increasing thick while the impedance matching characteristics was good. For the sheets employing carbonyl-iron powder, when the ratio of absorbent to matrix was 16:1, the reflection loss of absorbing sheet with 1.5mm thickness was below -8dB in 2-3.7GHz, and the reflection loss was below -4dB in 650MHz-1.8GHz for the samples with 2mm thickness. For the sheets based on FeSiAl powders, the reflection loss was below -4dB in 590MHz-1.8GHz for the samples with 1.1mm thickness and the ratio of absorbent to matrix was 16:1.
     The microwave absorption properties was bad for the epoxy resin matrix absorbing coating employing single absorbent, such as ferromagnetic alloy powders and carbon black, but the properties could be improved by the application of composite absorbents consisting of ferromagnetic alloy powders/carbon black, and the density and cost of the coating could be reduced. For the FeSi powders/carbon black coating, when the ratio of FeSi powders:carbon black:epoxy resin is 1.8:0.2:1, the absorption bandwidth (reflection loss below -4dB) achieved 15.1 GHz for the samples with 1.2mm thickness. For the carbonyl-iron powder /carbon black coating, when the ratio of carbonyl-iron powder: carbon black: epoxy resin is 0.7:0.6:1, the reflection loss of the samples with 1.5mm thickness was below -4dB in 7.9-18GHz. For the absorbing coatings employing composite absorbents, the different types of absorbent could play their own role respectively in attenuating electromagnetic wave. Moreover, when the content of composite absorbents was higher, the conductive network with larger resistivity was formed in the coating, which was beneficial to suppress the unfavorable eddy-current effect. Besides, according to impedance matching principle, a double-laye absorbing coating with the introduction of the SiO2 powders firstly as wave-transmitting materials was designed. The addition of SiO2 powders improved the impedance matching characteristics of the coating, and the absorption properties increased, especially in low frequency range.
引文
[1]林涛.基站电磁辐射研究[D].吉林:吉林大学,2006.
    [2]刘顺华,刘军民,董星龙.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2007.
    [3]董霞,孟昭敦.电磁环境及其安全防护[J].电气时代,2005,1:114-115.
    [4]湖北省电磁兼容学会.电磁兼容性原理及应用[M].北京:国防工业出版社,1996.
    [5]王颖.电磁辐射对人体健康的危害及防护[J].干旱环境监测,2003,1:22-24.
    [6]刘亚宁.电磁辐射生物效应的机理研究述评[J].基础医学与临床,2000,1:20-24.
    [7]朱重德.电磁辐射污染与防护[J].上海环境科学,2004,2:81-86.
    [8]张淑琴,张彭.电磁辐射的危害与防护[J].工业安全与环保,2008,3:30-32.
    [9]栾孝丰,李鹏.舰载导弹武器电磁干扰防护技术探讨[J].舰船电子工程,2010,9:162-164.
    [10]钟克煌,李中怡.屏蔽电磁波干扰的涂料[J].化工新型材料,1989,3:33-35.
    [11]丁国良,赵强,陈家文,等.电磁信息泄漏研究及进展[J].军械工程学院学报,2008,6:65
    [12]张水霞.计算机的电磁信息泄漏防护[J].中国新技术新产品,2009,18:24.
    [13]熊杰.军用计算机系统中的电磁信息泄漏和防护[J].舰船电子对抗,2007,2:32-36.
    [14]苑金生.电磁辐射的危害及吸收电磁波涂料[J].广东建材,2002,5:15-16.
    [15]罗穆夏,张普选,马晓薇,等.电磁辐射与电磁防护[J].中国个体防护装备,2009,5:26-30.
    [16]黄军福.橡胶基电磁屏蔽复合材料的制备及屏蔽性能研究[D].江西:南昌大学,2010.
    [17]王海.雷达吸波材料的研究现状和发展方向[J].上海航天,1999,1:55-59.
    [18]康青.新型微波吸收材料[M].北京:科学出版社,2006.
    [19]刑丽英.隐身材料[M].北京:化学工业出版社,2004.
    [20]吴明忠.雷达吸波材料的现状和发展趋势[J].磁性材料及器件,1997,2:26-30.
    [21]石敏先,黄志雄.新型吸波材料的研究进展[J].材料导报,2007,3:36-39.
    [22]孟建华,杨桂琴,严乐美,等.吸波材料研究进展[J].磁性材料及器件,2004,4:11-14.
    [23]赵九蓬,李垚,吴佩莲.新型吸波材料研究动态[J].材料科学与工艺,2002,2:219-224.
    [24]李黎明,徐政.吸波材料的微波损耗机理及结构设计[J].现代技术陶瓷,2004,2:31-34.
    [25]巩晓阳,董企铭.吸波材料的研究现状与进展[J].河南科技大学学报(自然科学版),2003,2:19-22.
    [26]王丽熙,张其土.微波吸收剂的研究现状与发展趋势[J].材料导报,2005,9:26.
    [27]段玉平,刘顺华,管洪涛,等.非连续体吸波平板的设计制备及吸波机理分析[J].复合材料学报.2006,23(3):37-43.
    [28]赵东林,沈曾民,迟伟东,等.碳纤维结构吸波材料及其吸波碳纤维的制备[J].高科技纤维与应用.2000,25(3),8-14.
    [29]沈曾民,戈敏,赵东林.螺旋形炭纤维的吸波性能(英文)[J].新型炭材料,2005,20(4):289.
    [30]曹茂盛,高正娟,朱静.CNTs/Polyester复合材料的微波吸收特性研究[J].材料工程,2003, 2:34-36.
    [31]秦嵘,陈雷.国外新型隐身材料研究动态[J].宇航材料工艺,1997,4:17-19.
    [32]杨延安,张文彦,白文峰.不锈钢纤维吸波性能研究[J].稀有金属快报,2006,25(8):33-37.
    [33]郑国禹.导电高分子在隐身材料中的应用[J].工程塑料应用,2007,35(2)70-73.
    [34]郭洪范,朱红,林海燕,等.导电高分子在雷达吸波材料中的应用研究进展[J].化学工程师,2007,10:26-29.
    [35]Wong P T C, Chambers B, Wright A P A A. large area conducting polymer composites and their use in microwave absorbing material[J].Electronics Letters,1992,28(17): 1651-1653.
    [36]刘学东,卢佃清,云月厚.掺杂聚苯胺的合成及电磁性能和吸波性能研究[J].塑料科技,2010,38(4):52-55.
    [37]丁春霞,范丛斌,章洛汗.新型视黄基席夫碱盐的合成与吸波性能研究[J].合成材料老化与应用.2006,35(4):1-3.
    [38]孔巍,杨凯.从吸波机理探析建筑吸波材料的应用及展望[J].上海建材,2010,1:14-15.
    [39]孙晶晶,李建保,张波,等.陶瓷吸波材料的研究现状[J].材料工程.2003(2):43-47.
    [40]陈志彦,王军,李效东.连续含铁碳化硅纤维2-18GHz频段雷达波吸收性能探索[J].功能材料,2010,41(4):574-577.
    [41]王汉功,袁晓静,杨俊华,等.热喷涂纳米β-SiC/LBS涂层的吸波性能[J].中国有色金属学报.2009,19(12):2198-2203.
    [42]王桂芹,陈晓东,段玉平,等.钛酸钡陶瓷材料的制备及电磁性能研究[J].无机材料学报.2007(02).
    [43]Ma L X, Wang G Q, Liu L D, et al. Cobalt-coated barium titanate particles:Preparation, characterization and microwave properties [J]. Journal of Alloys and Compounds,2010, 505:374-378.
    [44]刘顺华,管洪涛,段玉平,等.二氧化锰复合材料吸波特性研究[J].功能材料,2006,37(2):197-199.
    [45]马贺.微/纳米二氧化锰的制备及其电磁特性的研究[D].辽宁:大连理工大学,2009.
    [46]张世远,路权,薛荣华,等.磁性材料基础[M].北京:科学出版社,1988.
    [47]姜寿亭,李卫.凝聚态磁性物理[M].北京:科学出版社,2002.
    [48]郭贻诚.铁磁学[M].北京:人民教育出版社,1965.
    [49]廖绍彬.铁磁学(下册)[M].北京:科学出版社,1992.
    [50]王结良,黄英,梁国正,等.雷达吸波涂层用材料的研究进展[J].现代涂料与涂装,2003,2:28-31.
    [51]王海滨,刘树信,霍冀川,等.无机吸波材料研究进展[J].硅酸盐通报,2008,4:754-758.
    [52]A. N. Yusoff, M. H. Abdullah. Microwave electromagnetic and absorption properties of some LiZn ferrites[J]. Journal of Magnetism and Magnetic Materials,2004,269:271.
    [53]曹晓非,孙康宁,孙昌,等.不同煅烧处理对由溶胶凝胶法制备的锂锌铁氧体的微观结构及 其吸波性能的影响[J].功能材料,2009,40(4):557-559.
    [54]黄啸谷,陈娇,王丽熙,等.钡铁氧体吸波涂层的制备及其影响因素研究[J].电子元件与材料,2010,29(4):27-30.
    [55]Choopani S, Keyhan N, Ghasemi A, et al. Structural, magnetic and microwave absorption characteristics of BaCoxMnxTi2xFe12-4xO19[J]. Materials Chemistry and Physics,2009, 113:717-720.
    [56]徐劲峰,郭方方,徐政.六角晶系铁氧体纳米晶微波吸收剂的微结构与磁性能[J].磁性材料及器件.2005,36(1):20-28.
    [57]颜海燕,胡志毅,寇开昌,等.雷达吸波涂层的研究进展[J].材料导报,2004,18(12):7-9.
    [58]景茂祥,沈湘黔.纳米磁性金属电磁波吸收剂的研究进展及展望[J].材料导报.2005,12:13.
    [59]卿玉长,周万城,罗发,等.羰基铁/环氧有机硅树脂涂层的吸波性能和力学性能研究[J].材料导报.2009,23(3):1-4.
    [60]王磊,毛昌辉,杨志民,等.机械合金化FeCo微波吸收材料的研究[J].稀有金属,2007,31(5):622-626.
    [61]谢炜,程海峰,楚增勇,等.磁性金属纤维吸收剂制备研究进展[J].材料工程,2008,3:72-76.
    [62]张秀成,何华辉.多晶铁纤维铺层的雷达波反射特性研究[J].功能材料,2001,32(5):461-463.
    [63]赵振声,聂彦,张秀成.多晶铁纤维微波吸收剂的分级改性及其应用初探[J].磁性材料及器件,35(3):32-34.
    [64]赵振声,张秀成,聂彦,等.多晶铁纤维吸波材料的微波磁性研究[J].磁性材料及器件,2000,31(1):18.
    [65]吴明忠,赵振声,何华辉.多晶铁纤维吸收剂微波复磁导率和复介电常数的理论计算[J].功能材料,1999,30(1):91.
    [66]唐恩凌,王崇.纳米吸波材料吸收剂的研究现状[J].飞航导弹,2009,7:61-64.
    [67]王光华,董发勤,贺小春.纳米吸波材料研究进展[J].中国粉体技术,2007,4:35-38.
    [68]李世涛,乔学亮,陈建国.纳米复合吸波材料的研究进展[J].宇航学报,2006,2:317-322.
    [69]陈敬中,刘剑洪.纳米材料科学导论[M].北京:高等教育出版社,2006.
    [70]李浩,张喜斌,金真.磁性金属纳米粒子的合成及应用研究进展[J].惠州学院学报(自然科学版),2009,29(6):19-24.
    [71]薛书凯,姚谦.一种新型纳米羰基铁粉吸波涂层的研制[J],纳米科技,2008,5(1):15-18.
    [72]胡建平,庞永强,程海峰,等.组分对FeCoB纳米晶微波电磁参数及吸波性能的影响[J].功能材料,2010,41(4):598-600.
    [73]张晏清,邱琴,张雄.纳米钴、镍铁氧体的制备与吸波性能[J].磁性材料及器件,2009,40(5):30.
    [74]蒲聿,李巧玲,张存瑞,等.纳米钴铁氧体吸波材料的研究现状[J].当代化工,2009,38(4):420
    [75]王丽艳.纳米四氧化三铁制备的研究进展[J].科技资讯,2009,27:3.
    [76]耿健烽,周万城,张颖娟,等.纳米Si/C/N复相粉体-硅溶胶涂层的介电和吸波性能研究[J].材料导报,2010,24(6):23-25.
    [77]赵东林,罗发,周万城.纳米碳化硅、氮化硅和掺杂氮碳化硅粉体的制备及其微波介电特性[J],硅酸盐学报,2008,36(6):783-787.
    [78]江炎兰,梁小蕊.纳米陶瓷材料的性能及其应用[J].兵器材料科学与工程,2008,31(5):91.
    [79]秦秀兰,黄英,杜朝锋.导电高分子吸波材料制备方法研究进展[J].磁性材料及器件,2007,38(4):15.
    [80]付东升,张康助,张强.导电高分子材料研究进展[J].现代塑料加工用,2004,16(1):55-59.
    [81]钟伟,汤怒江,靳长清,等.具有核/壳结构的纳米复合高频软磁材料[J].微纳电子技术,2008,45(7):373-379.
    [82]景茂祥,沈湘黔,李东红,等.纳米铁磁性合金包裹氧化铝复合微球的制备[J].硅酸盐学报,2006,34(5):517-522.
    [83]童国秀,官建国,王维,等.羰基铁/Al2O3核壳复合粒子的制备和性能[J].材料研究学报,2008,22(1):102-106.
    [84]冯永宝,丘泰,张明雪,等.涂覆型雷达吸波材料研究进展[J].材料导报,2003,12:56-58.
    [85]汪世平,隐身吸波涂料概述[J].上海涂料,2006,5:16-18.
    [86]周思华,王剑,郭艳花.等离子体隐身应用研究[J].周口师范学院学报,2010,27(2):51-53.
    [87]江礼,袁晓静,查柏林,等.等离子喷涂纳米莫来石基复合吸波涂层性能研究[J].无机材料学报,2008,23(6):1272-1276.
    [88]饶克谨,赵伯琳,高正平.电路模拟吸收材料原理—特性及设计方法[J].电子科技大学学报,1995,24(2):164-170.
    [89]Weile D S, Eric M. The use of domain decomposition genetic algorithms exploiting model reduction for the design of frequency selective surfaces[J]. Computer Methods in Applied Mechanics and Engineering,2000,186(2-4): 439-458.
    [90]邢丽英,蒋诗才,李斌太.含电路模拟结构吸波复合材料[J].复合材料学报,2004,21(6):27-33.
    [91]邢丽英,蒋诗才,李斌太-含电路模拟结构吸波复合材料力学性能研究[J].航空材料学报,2004,24(2):22-26.
    [92]毕松,苏勋家,侯根良,等.涂覆型雷达/红外复合隐身材料研究现状[J].化工新型材料,2006,3:8-11.
    [93]谷国强,苏勋家,侯根良,等.涂覆型吸波材料的研究现状及展望[J].飞航导弹,2010,11:85-89.
    [94]李瑞琦,何世禹,初文毅.吸波涂层材料研究进展[J].兵器材料科学与工程,2006,3:76.
    [95]李宁,高纪朝,王兆雷.F/A-22A战斗机隐形技术的应用[J].四川兵工学报,2010,31,2: 42-44.
    [96]黄啸谷,陈娇,王丽熙,等.(Zn0.3Co0.7) 2-W型钡铁氧体电磁特性及吸波性能[J].电子元件与材料,2010,29(3):54.
    [97]孟辉,王智慧,胡传圻.碳纤维/羰基铁粉复合涂层吸波效果及机理分析[J].材料保护,2006,1:17-19.
    [98]童国秀,官建国,张五一,等.纳米铁纤维与羰基铁粉共混制备轻质宽带吸波涂层材料[J].金属学报,2008,44(8):1001-1005.
    [99]吕艳红.纳米复合双层雷达吸波涂层研究[J].兵器材料科学与工程,2010,33(1):98-100.
    [100]马成勇,程海峰,唐耿平,等.三层雷达吸波涂层的吸波性能研究[J].材料工程,2008,1:11-13.
    [101]Annadurai P, Mallick A K, Tripathy D K. Studies on microwave shielding materials based on ferrite-and carbon black-filled EPDM rubber in the X-band frequency[J]. JOURNAL OF APPLIED POLYMER SCIENCE,2002,83 (1):145-150.
    [102]李淑环,邹华,张立群,等.磁性填料/硅橡胶吸波复合材料的性能研究[J].特种橡胶制品,2009,30(1):19-23.
    [103]Feng Y B, Qiu T, Shen C Y. Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite[J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS,2007,318(1-2):8-13.
    [104]Y. P. Dun, G. F. Li, L. D. Liu,et al. Electromagnetic properties of carbonyl iron and their microwave absorbing characterization as filler in silicone rubber [J]. Bulletin of Materials and Science,2010,33(5):633-636.
    [105]陈砚朋,徐国跃,郭腾超,等.改性羰基铁粉在红外/雷达兼容涂层中的应用[J].兵器材料科学与工程,2010,33(5):42-45.
    [106]巩晓阳,董企铭,田保红,等.纳米铁/环氧树脂复合材料的介电和吸波特性研究[J].机械工程材料,2004,28(11):32-48.
    [107]安玉良,王俊,袁霞,等.碳包覆铁纳米颗粒制备及电磁性能分析[J].纳米技术与精密工程,2010,8(1):16-19.
    [108]周永江,程海峰,楚增勇,等.吸波多晶铁纤维制备工艺研究[J].高科技纤维与应用,2006,31(2):34.
    [109]S. J. Lee, Y. B. Kim, K. S. Lee,et al. Effect of annealing temperature on electromagnetic absorption properties of crystalline Fe-Si-Al alloy powder-polymer composites [J]. Physica Status Solidi(a),2007,204(12):4121.
    [110]龚荣洲,李享成.羰基铁纤维的磁场诱导制备及其微波电磁特性分析[J].功能材料,2005,36(11):1696.
    [111]丘可昂.离心雾化法的种类、理论和最新用途[J].稀有金属材料与工程,1980,1:25.
    [112]柳戌昊.浅谈雾化法制取金属粉末技术[J].技术与市场,2008,5:56-57.
    [113]王双影,徐庆,胡娅君,等.雾化造粒技术的研究与发展[J].通用机械,2009,6:33-36.
    [114]袁华,李周,许文勇,等.氩气雾化制备高温合金粉末的研究[J].粉末冶金工业,2010,20(4):1-5.
    [115]李志杰,曲家惠,左良,等.金属纳米粉材料的研制[J].东北大学学报(自然科学版),2004,25(3):243-246.
    [116]廉舒,卢忠仁,史桂梅,等.直流电弧法制备金属铁、镍纳米粉体[J].石油化工高等学校学报,2007,20(2):30-33.
    [117]邓联文,江建军,赵振声,等.片状纳米晶微粉的制备及微波吸收特性[J].功能材料与器件学报,2002,8(3):271-275.
    [118]高丽丽,刘力.机械合金化的发展[J].化工科技,2007,15(1):68-70.
    [119]Lee B, Ahn B S,Kim D, et al. Microstructure and magnetic properties of nanosized Fe-Co alloy powders synthesized by mechanochemical and mechanical alloying process[J]. Materials Letters,2003,57:1103-1107.
    [120]Fnidiki A, Lemoine C, Teillet J. Structural and magnetic properties of grain boundaries in Fe60Cr40 alloy synthesized by mechanical alloying [J]. JOURNAL OF PHYSICS:CONDENSED MATTER,2002,14:7221-7232.
    [121]郭欣,王鲜,廖章奇,等.片状FeCoZr合金吸收剂吸波性能的正交实验[J].电子元件与材料,2009,28(7):27-29.
    [122]徐一可,沈春英,冯永宝,等.Fe-Si-Al合金的制备及其微波电磁性能[J].宇航材料工艺,2008,3:66-69.
    [123]Apinaniz E, Garitaonandia J S, Plazaola F, et al. Evolution of the magnetic properties of ordered Fe70Al30 alloy with mechanical milling time [J]. Sensors and Actuators A,2003,106:76-79.
    [124]张雅静,陈岁元,程力智,等.机械合金化Fe-Ni粉末的相结构[J].材料研究学报,2003,17(3):300-303.
    [125]Y Han, W Li, M H Zang, et al. Synthesis and Magnetic Property of Fe-B Amorphous Alloy Nanowires by Inducing DC Magnetic Field[J]. ACTA PHYSICO-CHIMICA SINICA 2008,24 (6):927-931.
    [126]张朝平,邓伟,胡宗超,等.微乳液法制备超细包裹型铁粉[J].应用化学,2000,17(3):248-251.
    [127]李凡,吴炳尧,戴挺,等.机械合金化法制备Fe-Si纳米晶合金[J].特种铸造及有色合金,2001,4:24-26.
    [128]启明.粉末冶金软磁材料的选择(1)[J].金属功能材料,1997,52(6):44-48.
    [129]邓联文,熊惟皓,冯则坤,等.FeSi纳米晶片状微波吸收剂研究[J].电子元件与材料,2006,25(9):52-54.
    [130]周熠,丘泰,冯永宝.扁平化对FeSi吸波材料微波电磁性能的影响[J].电子元件与材料,2010,29(4):31-33.
    [131]Xie G, Yuan L, Wang P, et al. GHz microwave properties of melt spun Fe-Si alloys[J]. Journal of Non-Crystalline Solids,2010,356(2):83-86.
    [132]常红彬,黄润生,蒋正生,等.Fe-Si纳米晶颗粒在2-18GHz频段的电磁性质[J].磁性材料及器件,2006(3):24-27.
    [133]赵海燕,虞维扬,姚中.FeSiAl合金薄膜电感的研制与研究[J].金属功能材料,2001(3):17-21.
    [134]张永刚,韩雅芳,陈国良.金属间化合物结构材料[M].北京:国防工业出版社,2001.
    [135]Yoshida S, Ando S. Crystal structure and microwave permeability of very thin Fe-Si-Al flakes produced by microforging[J]. JOURNAL OF APPLIED PHYSICS,2003, 93(10):6659-6661.
    [136]Ono H, Yoshida S, Ando S. Improvement of the electromagnetic-noise suppressing features for Fe-Si-Al composite sheets by dc magnetic field biasing[J].JOURNAL OF APPLIED PHYSICS,2003,93(10):6662-6664.
    [137]Yoshida S, Sato M, Sugawara E, et al. Permeability and electromagnetic-interference characteristics of Fe-Si-Al alloy flakes-polymer composite[J]. JOURNAL OF APPLIED PHYSICS,1999,85(8):4636-4638.
    [138]Kim S W, Yoon Y W, Lee S J, et al.Electromagnetic shielding properties of soft magnetic powder-polymer composite films for the application to suppress noise in the radio frequency range [J]. Journal of Magnetism and Magnetic Materials, 2007,316:472-474.
    [139]Lee K, Yun Y, Kim S, et al. Microwave absorption of λ/4 wave absorbers using high permeability magnetic composites in quasimicrowave frequency band [J]. JOURNAL OF APPLIED PHYSICS,2008,103:07E504.
    [140]Yanagimoto K, Majima K, Sunada S, et al. Effect of Si and Al content on core loss in Fe-Si-Al powder cores[J]. IEEE TRANSACTIONS ON MAGNETICS,2004,40(3):1691.
    [141]Wang X, Gong R Z, Li P G, et al. Effects of aspect ratio and particle size on the microwave properties of Fe-Cr-Si-Al alloy flakes[J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007,466(1-2):178-182.
    [142]曹琦,龚荣洲,冯则坤,等.Fe-Si-Al系合金粉微波吸收特性[J].中国有色金属学报,2006,16(3):524-529.
    [143]Wang Z Y, Jiang J J, Deng L W, et al. Microwave absorbing mechanism of soft magnetic alloy Fe85Si2Al6Cr7[J]. TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA,2007, 17:1126-1130.
    [144]邓联文,刘秀丽,周克省,等.SrCO3复合改性FeSiAlCr微波吸收剂研究[J].功能材料,2010,41(6):1023-1025.
    [145]王鲜,龚荣洲,何燕飞,等.扁平化Fe-Si-Al合金粉末的磁特性[J].华中科技大学学报(自然科学版),2006,34(5):77-79.
    [146]冯则坤,何华辉.扁平状Fe-Si-Al合金微粉的抗EMI特性研究[J].金属功能材料,2002,9(1):8-11.
    [147]王鲜,龚荣洲,何燕飞,等.高能球磨对雾化磁粉结构与磁性能的影响[J].功能材料,2006,37(10):1545-1547.
    [148]冯则坤,李海华,黄爱萍,等.机械合金化制备的Fe-Si-Al合金的微结构及电磁特性研究[J].磁性材料及器件,2002,33(2):5.
    [149]邓联文,冯则坤,江建军,等.纳米晶Fe85Si1Al6Cr8扁平状颗粒材料微波吸收特性[J].金属学报,2006,42(3):321-324.
    [150]王伟,马天宇,罗伟,等.Co添加对快淬Fe-Si-Al合金结构及磁性能的影响[J].稀有金属材料与工程,2008,37(6):1081-1084.
    [151]Liu J H, Ma T Y, Tong H, et al. Electromagnetic wave absorption properties of flaky Fe-Ti-Si-Al nanocrystalline composites[J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS,2010,322(8):940-944.
    [152]Wang W,Ma T Y, Yan M. Microstructure and magnetic properties of nanocrystalline Co-doped Sendust alloys prepared by melt spinning[J]. JOURNAL OF ALLOYS AND COMPOUNDS,2008,459(1-2):447-451.
    [153]王伟,马天宇,罗伟,等.快淬Fe-Si-Al软磁合金的扁平化、微结构与电磁性能研究[J].稀有金属材料与工程,2008,37(3):513-516.
    [154]Zhou T D.Deng L J, Liang D F. EFFECT OF Si CONTENT ON ORDERING DEGREE AND ELECTROMAGNETIC CHARACTERISTIC IN FeSiAl Alloys[J]. ACTA Metallurgica Sinca (English letters),2008,21 (3):191-196.
    [155]周廷栋,邓龙江,梁迪飞,等.FeSiA1纳米晶片状微粉的结构及磁性能研究[J].金属热处理,2008,3:36-39.
    [156]Zhou T D, Zhou P H, Liang D F, et al. Structure and electromagnetic characteristics of flaky FeSiAl powders made by melt-quenching [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2009,484(1-2):545-549.
    [157]张永清,阴生毅,黄云平,等.FeSiAl粉末形貌对微波衰减涂层性能的影响[J].微波学报,2010,1:690-693.
    [158]张永清,丁耀根,阴生毅,等.FeSiAl微波衰减涂层电磁特性分析[J].真空电子技术,2006,6:39.
    [159]高峰,李鹏飞,王群.扁平化对FeSiAl合金结构及电磁特性的影响[J].电子元件与材料,2009,28(1):31-33.
    [160]高峰,李鹏飞,王群.退火温度对FeSiAl合金微结构及电磁特性的影响[J].电子元件与材料,2009,28(5):11-13.
    [161]葛副鼎,朱静,陈利民.单层及双层手性吸波涂料的计算机辅助设计[J].功能材料, 1996,27(2):143-146.
    [162]曹茂盛,王彪,袁杰,等.单涂层微波吸收材料参量的匹配机制分析[J].纺织高校基础科学学报,1999,12(2):150-152.
    [163]周志安.多层纳米吸波材料的遗传优化设计及数值计算[D].江苏:南京理工大学,2008.
    [164]周克省,黄可龙,孔德明,等.吸波材料的物理机制及其设计[J].中南工业大学学报(自然科学版),2001,32(6):617-621.
    [165]Perini J, Cohen L S. DESIGN OF BROAD-BAND RADAR-ABSORBING MATERIALS FOR LARGE ANGLES OF INCIDENCE [J]. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY,1993, 35(2):223-230.
    [166]Michielssen E, Sajer J M, Ranjithan S, et al. DESIGN OF LIGHTWEIGHT, BROAD-BAND MICROWAVE ABSORBERS USING GENETIC ALGORITHMS [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,1993,41(6-7):1024-1031.
    [167]Musal H M, Hahn H T. Thin-layer electromagnetic absorber design[J]. IEEE TRANSACTIONS ON MAGNETICS,1989,25(5):3851-3853.
    [168]朱正和.多层微波隐身材料反射系数的理论研究[J].战术导弹技术,2002,6:56-60.
    [169]罗洁,徐国亮,蒋刚,等.双层结构碳团簇型微波隐身材料的吸波性能研究[J].功能材料,2002,33(4):401-402.
    [170]黄志洵,王晓金.微波传输线理论与实用技术[M].北京:科学出版社,1996.
    [171]Jacquart P, Acher O. Permeability measurement on composites made of oriented metallic wires from 0.1 to 18 GHz[J]. Microwave Theory and Techniques, IEEE Transactions on,1996,44(11):2116-2120.
    [172]董树义.微波测量技术[M].北京:北京理工大学出版社,1990.
    [173]Barry W. A Broad-Band, Automated, Stripline Technique for the Simultaneous Measurement of Complex Permittivity and Permeability[J]. Microwave Theory and Techniques, IEEE Transactions on,1986,34(1):80-84.
    [174]Queffelec P, Le Floc' H M, Gelin P. Broad-band characterization of magnetic and dielectric thin films using a microstrip line[J]. Instrumentation and Measurement, IEEE Transactions on,1998,47(4):956-963.
    [175]何山.雷达吸波材料性能测试[J].材料工程,2003,6:25-28.
    [176]张晓宁.Fe-Ni软磁合金吸波材料的设计与制备[D].北京:北京工业大学,2003.
    [177]孙怀涛,方莹.高能球磨法制备FeSiA1纳米晶合金粉[J].机械工程材料,2008,32(7):1-4.
    [178]陈振华.金属液体的雾化问题[J].粉末冶金技术,1998,16(4):284-291.
    [179]Upadhyay R K, Spacil H S. Intelligent processing for metal atomization [J]. Surface and Coatings Technology,1989,37(4):379-397.
    [180]刘允中,陈振华,黄培云.多级雾化分裂模式研究[J].中南工业大学报,1998,29(5):464-467.
    [181]黄迎红.旋转盘离心雾化制备球形焊粉设备及工艺研究[D].云南:昆明理工大学,2007.
    [182]黄培云.粉末冶金原理第2版[M].长沙:冶金工业出版社,1982.
    [183]袁章福,柯家骏,李晶.金属及合金的表面张力[M].北京:科学出版社,2006.
    [184]贝多J.K.雾化法生产金属粉末[M].北京:冶金工业出版社,1985.
    [185]刘辉,戚颖,谭光讯,等.离心雾化制备预氧化银金属氧化物触头材料[J].电工合金,1999,3:18-21.
    [186]耿浩然,孙春静,王瑞,等.Sb和Bi熔体的密度变化[J].科学通报,2007,7:756-759.
    [187]顾惕人.表面的物理化学[M].北京:科学出版社,1984.
    [188]宋吉德,韩仁田.雾化工艺因素对喷焊合金粉末性能的影响[J].粉末冶金工业,1997,2:33-36.
    [189]胡赓祥,蔡殉,戎咏华.材料科学基础[M].上海:上海交通大学出版社,2006.
    [190]周玉.材料分析方法[M].北京:机械工业出版社,2000.
    [191]杨洪才,左秀忠,刘国禄.Fe-Si合金的价电子结构及磁性、范性的微观机制[J].东北工学院学报,1981,3:67-77.
    [192]张建民,张瑞林,郑伟涛,等.A1含量对Fe-Al无序固溶体性能的影响[J].材料科学与工艺,1995,3(3):20-24.
    [193]左秀忠.Fe-Al合金相及相变的价电子结构分析[J].金属学报,1982,6:735-745.
    [194]A. H. Kasama, A. Moreira J. J., W. J. Botta F, et al. Influence of the atomization gas on the microstructure and magnetic properties of spray-formed Fe-3%Si-3.5%A1 alloys[J]. Materials Science and Engineering A,2008,477:9-14.
    [195]Schmool D S, Araujo E, Amado M M, et al. Magnetic properties of the Fe-rich FexAl1-x alloy system[J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS,2004,272-276: 1342-1344.
    [196]Cable J W, David L, Parra R. NEUTRON STUDY OF LOCAL ENVIRONMENT EFFECTS AND MAGNETIC CLUSTERING IN FE0.7AL0.3[J]. PHYSICAL REVIEW B,1977,16(3):1132-1137.
    [197]Bowler N. Designing dielectric loss at microwave frequencies using multi-layered filler particles in a composite[J]. IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION,2006,13(4):703-711.
    [198]Kim S S, Kim S T, Yoon Y C, et al. Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies[J]. JOURNAL OF APPLIED PHYSICS,2005,97:10F90510.
    [199]Lu B,Dong X L, Huang H, et al. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles[J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS,200,320(6):1106-1111.
    [200]Liu L D, Duan Y P, Liu S H, et al. Microwave absorption properties of one thin sheet employing carbonyl-iron powder and chlorinated polyethylene[J]. Journal of Magnetism and Magnetic Materials,2010,322:1736-1740.
    [201]Tsutaoka T. Frequency dispersion of complex permeability in Mn-Zn and Ni-Zn spine ferrites and their composite materials[J]. JOURNAL OF APPLIED PHYSICS,2003,93(5): 2789-2796.
    [202]Cho H S, Kim A S, Kim S M, et al. Study of electromagnetic wave-absorbing materials made by a melt-dragging process[J]. PHYSICA STATUS SOLIDI A-APPLIED RESEARCH,2004, 201 (8):1942-1945.
    [203]Sunny V,Kurian P, Mohanan P, et al. A flexible microwave absorber based on nickel ferrite nanocomposite[J].JOURNAL OF ALLOYS AND COMPOUNDS,2010,489(1):297-303.
    [204]Chen N, Mu G H, Pan X F, et al. Microwave absorption properties of SrFe12O19/ZnFe2O4 composite powders [J]. MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY,2007,139(2-3):256-260.
    [205]Duan Y P, Liu S H, Wen B, et al. A discrete slab absorber:Absorption efficiency and theory analysis[J]. JOURNAL OF COMPOSITE MATERIALS,2006,40(20):1841-1851.
    [206]宛德福,马兴隆.磁性物理学[M].成都:电子科技大学出版社,1994.
    [207]郭贻诚.铁磁学[M].北京:人民教育出版社,1982.
    [208]Z. D Shi, H. W. Liu, P. Tang. Frequency dependence of the RCS of an arbitrarily shaped simple scatterer[J]. Microwave and Optical Technology Letters,1994,7(9):412-414.
    [209]陈利民,葛副鼎,朱静.吸收剂颗粒形状对吸波材料性能的影响[J].宇航材料工艺,1996,5:42-49.
    [210]陈利民,葛副鼎,朱静.超微颗粒吸收与散射截面[J].电子学报,1996,24(6):82-85.
    [211]谷臣清.材料工程基础[M].北京:机械工业出版社,2004.
    [212]谭延江.改性羰基铁粉-氯丁橡胶复合薄膜的制备及吸波特性[D].哈尔滨:哈尔滨工业大学,2007.
    [213]Zhang X F, ong X L, uang H, t al. Microstructure and microwave absorption properties of carbon-coated iron nanocapsules[J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS,2007, 40(17):5383-5387.
    [214]Miles P A, Westphal W B.Vonhippel A. DIELECTRIC SPECTROSCOPY OF FERROMAGNETIC SEMICONDUCTORS[J]. REVIEWS OF MODERN PHYSICS,1957,29(3):279-307.
    [215]Sugimoto S,Maeda T, Book D, et al. GHz microwave absorption of a fine a-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen [J]. JOURNAL OF ALLOYS AND COMPOUNDS,2002,330:301-306.
    [216]王晨,顾家琳,康飞宇.吸波材料理论设计的研究进展[J].材料导报,2009,23(3):5-8.
    [217]郭隽奎,龚怀耀.化工百科全书(第15卷)[M].北京:化学工业出版社,1996.
    [218]张雄伟,黄锐.LDPE/炭黑复合导电材料性能的研究[J].中国塑料,1994,8(3):26-34.
    [219]Tang X, Tian Q,Zhao B Y, et al.The microwave electromagnetic and absorption properties of some porous iron powders[J]. MATERIALS SCIENCE AND ENGINEERING A,2007,445:135-140.
    [220]陆怀先,蒉纪圣,钱鉴,等.X波段一些磁铅石型铁氧体电磁参数的初步研究[J].宇航材料工艺,1989,4:44-47.
    [221]李炳炎.炭黑生产与应用手册[M].北京:化学工业出版社,2000.
    [222]Dishovsky N, Grigorova M. On the correlation between electromagnetic waves absorption and electrical conductivity of carbon black filled polyethylenes[J]. MATERIALS RESEARCH BULLETIN,200,35(3):403-409.
    [223]C. Hirayama, H. Ihara, S. Nagaoka, et al. Characterization of perfluoroalkyl polymer spherical particles for high-performance liquid chromatography[J]. Journal of Applied Polymer Science:Applied Polymer Symposium,1992,52(1-4):213-217.
    [224]Mather P J, Thomas K M. Carbon black high density polyethylene conducting composite materials.2. The relationship between the positive temperature coefficient and the volume resistivity[J]. JOURNAL OF MATERIALS SCIENCE,1997,32(7):1711-1715.
    [225]Mather P J, Thomas K M. Carbon black/high density polyethylene conducting composite materials.1. Structural modification of a carbon black by gasification in carbon dioxide and the effect on the electrical and mechanical properties of the composite[J]. JOURNAL OF MATERIALS SCIENCE,1997,32(2):401-407.
    [226]Y. P. Duan, Y. Yang, H. Ma, et al. Absorbing properties of a-manganese dioxide/carbon black double-layer composites[J]. JOURNAL OF PHYSICS D:APPLIED PHYSICS,2008,41:125403-125406.
    [227]Moon K S, Choi H D, Lee A K, et al. Dielectric properties of epoxy-dielectrics-carbon black composite for phantom materials at radio frequencies[J]. JOURNAL OF APPLIED POLYMER SCIENCE,2000,77(6):1294-1302.
    [228]Chung K T, Sabo A, Pica A P. ELECTRICAL PERMITTIVITY AND CONDUCTIVITY OF CARBON-BLACK POLYVINYL-CHLORIDE COMPOSITES [J]. JOURNAL OF APPLIED PHYSICS,1982, 53(10):6867-6879.
    [229]Barba A A, Lamberti G.D' Amore M, et al. Carbon black silicone rubber blends as absorbing materials to reduce Electro Magnetic Interferences (EMI)[J]. POLYMER BULLETIN,2006,57(4):587-593.
    [230]梁兵.结构型吸波材料研究[J].航空材料学报,1993(4):34-43.
    [231]赵东林,周万城.涂敷型吸波材料及其涂层结构设计[J].兵器材料科学与工程,1998,21(4):58-62.
    [232]何燕飞,龚荣洲,何华辉.双层吸波材料吸波特性研究[J].功能材料,2004,35(6):782.
    [233]苟清泉,朱正和,曾蓉,等.研制碳团簇型微波隐身材料的参考准则[J].化学研究与应用,1995,7(2):147-153.
    [234]Cao M S, Shi X L, Fang X Y, et al. Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites[J]. APPLIED PHYSICS LETTERS,2007,91:20311020.
    [235]布列堆霍夫斯基赫.分层介质中的波[M].北京:科学出版社,1960.
    [236]秦柏,秦汝虎,金崇君.“广义匹配规律”的论证及在隐身材料中的应用[J].哈尔滨工业大学学报,1997(4):115-117.
    [237]韩磊,王自荣.单层雷达吸波涂层电磁参量匹配解析式的推导及其应用[J].光电技术应用,2006,21(2):55-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700