萘酰亚胺和罗丹明类新功能性荧光染料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,以萘酰亚胺和罗丹明为基础衍生得到的荧光染料凭借其优越的光化学和光物理性能吸引了众多研究者们的目光,萘酰亚胺类荧光染料在多个领域当中具有巨大的应用空间,因此开发更多性能优越的此类荧光染料是我们当前面临的重要机遇与挑战。另外随着罗丹明类长波长荧光染料在生物环境中越来越多的应用,对其种类的需求日益增长,因此开发新型性能优越的罗丹明类长波长荧光染料已成为当前科学家们急需解决的重要课题。鉴于上述考虑,本论文设计并合成了三种作为探针用途的萘酰亚胺类荧光染料和一种硅杂罗丹明类长波长荧光染料。
     1.利用良好的质子受体N~1,N~1,N~8,N~8-双二甲基-1,8-二胺基萘(DMAN)设计并合成了三个基于PET机理的萘酰亚胺类荧光质子海绵A1、A2和A3,结果表明它们能够在低浓度质子环境下捕获质子。尤其是质子海绵A3,其对质子的最低检测浓度为1.25×10~(-13)mol/L(即pH=12.9)。计算得到其pKa为11,实现了极低浓度下对质子的荧光识别。
     2.利用FRET机理设计并合成了基于萘酰亚胺和方酸双荧光团氟离子荧光探针SN-1、SN-2和SN-3,打破了常规氟离子识别模式,该类型探针将能量转移和化学反应性识别有机结合起来,利用化学反应破坏一个荧光团来抑制能量转移实现对氟离子离子的双波长比例荧光检测。其中SN-2和SN-3对氟离子有很好的识别性能,利用吸收和荧光光谱中双波长的比例变化可以实现量化检测。SN-2对氟离子检测所用时间非常短,仅为3min,其检测氟离子的最低浓度为2μM(0.2倍摩尔当量),平衡浓度为1.2 mM。SN-3对氟离子检测时间为30 min,检测最低浓度为1μM(0.1倍摩尔当量),平衡浓度为50μM。
     3.通过在萘酰亚胺4-位上引入手性官能团合成了两个手性荧光探针NNH和NNM。其中NNH能够通过吸收光谱的蓝移和荧光光谱的增强与蓝移识别D-扁桃酸,对L-扁桃酸没有响应;而NNM则能够通过荧光光谱和圆二色光谱识别质子,利用这两种方法得到其pKa值分别为8.5和8.8,二者非常吻合,证明利用圆二色光谱研究NNM对pH的响应是可行的。
     4.利用硅原子作为功能性原子,设计并合成了两个新型硅杂罗丹明类长波长荧光染料TMDHS和TMDPS,它们的最大吸收峰分别位于641nm和628nm,荧光发射峰分别位于659 nm和664 nm。相对于哌罗宁Y,由单一桥原子的改变使其吸收和荧光波长红移了90 nm以上。据我们所知这是首次利用硅原子作为功能性元素来调控荧光染料的光谱性能。通过电化学方法和理论计算证明了硅原子相对氧原子强的供电子能力提高了其HOMO能级,特殊的δ~*-π~*共轭作用降低了其LUMO能级,二者的协同作用大大减小了能隙能量,使吸收和荧光光谱明显红移。
The naphthalimides and rhodamines have had great attention because of their good photochemical and photophysical properties.Naphthalimides had large potential application market in various fields,so it was a chance and a challenge for us to develop more functional derivatives of naphthalimide with better properties.Since the extentisively appilication of rhodamines in bioliogical environment,it was necessary and urgent to develop more kinds of such long wavelength rhodamine derivatives to meet the increasing demands.In this work, three kinds of fluorescent sensors based on naphthaiimdes and one kind of silicon-substituted rhodamine dyes with long absorption and emission wavelength had been synthsized.
     1.The new PET fluorescent proton sponges-A1,A2 and A3 had synthesized based on naphthalimides.DMAN was proved a good proton receptor unit to develop sensitive fluorescent switches triggered by lower-concentration proton.A3 exhibited significant fluorescence enhancement upon protonation in high pH(pH=12.9) aqueous solutions,the pKa of which was 11.The lowest detection concentrition was 1.25×10~(-13) mol/L.
     2.Based on the approach of switching off FRET by wrecking the acceptor part, cassette-type sensors(SN-1,SN-2 and SN-3) for fluoride anion containing naphthalimide and squaraine units has been developed.These sensors show sensitive response to fluoride anion through both naked-eye detectable colour changes and ratiometric fluorescence changes.The detection process was realized by the combination of the reactive recognition and FRET mechanism.SN-2 and SN-3 showed excellent ratiometric fluorescence changes which made the quantitive measurement to be avaliable.The detection limit and equilibrium concentrion of F~- for SN-2 was 2μM and 1.2 mM with short reaction time(3min).The detection limit and equilibrium concentrion of F~- for SN-3 was 1μM and 50μM with the reaction time about 30min.
     3.Two chiral fluorephores NNH and NNM had been synthesized by introducing the chiral center into 4-position of the naphthalimide.NNH can be used as the mandelic acid sensor.The absorption and emission of NNH blue shifted 12 nm with the addition of the D-mandelic acid,as same time the emission increased to 1.2 flod.The absorption and emission of NNH had no changes with the addition of L-mandelic acid.The NNM can be used as pH sensor by fluorescent emission and circular dichroism properties,the pKa caculated by the two menthods were 8.5 and 8.8 respectively,which machted very well.It proved that circular dichroism could be used as a reasonable method for NNM to detect the recognition of pH.
     4.Two new strong fluorescence silicon-substituted rhodamine dyes TMDHS and TMDPS,in the red region had been developed through substitution of rhodamine's oxygen bridge atom by silicon.Such a small structural change resulted in a 90 nm red shift.The absorption wavelength of the two compounds was at 641 nm and 628 nm respectively.The emission wavelength of which was at 659nm and 664nm respectively.As we known,this was the first case that silicon atom was adopted as the functional element into the key position of a conventional excellent dye to successfully modulate the spectral properties.The electrochemical and the theoretical computational studies indicated that the smaller energy gap of TMDHS resulted from both energy decrease of LUMO attributed to specialδ~*-π~* and energy increase of HOMO attributed to the electron donating ability of silicon atom.
引文
[1]Guo.X,Qian X,Jia L.A Highly Selective and Sensitive Fluorescent Chemosensor for Hg2+ in Neutral Buffer Aqueous Solution [J].J.Am.Chem.Soc.,2004,126(8):2272-2273.
    [2]Zhang Z,Guo X,Qian X,et al.Fluorescent imaging of acute mercuric chloride exposure on cultured human kidney tubular epithelial cells[J].Kidney Int.,2004,66(6):2279-2282.
    [3]Wang J,Qian X,Cui J.Detecting Hg2+ Ions with an ICT Fluorescent Sensor Molecular:Remarkable Emission SpectraShift and Unique Selectivity [J].J.Org.Chem.2006,71(11):4308-4311.
    [4]Wang J,Qian X.Two regioisomeric and exclusively selective Hg(Ⅱ) sensor moleculars composed of a naphthalimide fluorophore and an o-phenylenediamine derived triamide receptor [J].Chem.Commun.,2006:109-111.
    [5]Xu Z,Xiao Y,Qian X,et al.Ratiometric and Selective Fluorescent Sensor for Cull Based on Internal Charge Transfer (ICT) [J].Org.Lett.2005,7(5):889-892.
    [6]Xu Z,Qian X,Cui J,et al.Exploiting the deprotonation mechanism for the design of ratiometric and colorimetric Zn2Ⅱ fluorescent chemosensor with a large red-shift in emission [J].Tetrahedron,2006,62 (43):10117-10122.
    [7]LuC,XuZ,Cui J,et al.Ratiometric and Highly Selective Fluorescent Sensor for Cadmium under Physiological Range:A New Strategy to Discriminate Cadmium from Zinc [J].J.Org.Chem.2007,72(9):3554-3557.
    [8]De Silva A P,Rice T E.A small supramolecular system which emulates the unidirectional,path-selective photoinduced electron transfer (PET) of the bacterial photosynthetic reaction centre (PRC)[J].Chem.Commun.1999,2:163-164.
    [9]Cui D,Qian X,Liu F,et al.Novel Fluorescent pH Sensors Based on Intramolecular Hydrogen Bonding Ability of Naphthalimide [J].Org.Lett.,2004,6(16):2757-2760
    [10]Xu Z,Tang J,Tian H.A highly sensitive colorimetric and ratiometric sensor for fluoride ion [J].Chinese Chemical Letters,2008,19(2):1353-1357.
    [11]Duke R M.Gunnlaugsson T.Selective fluorescent PET sensing of fluoride (F~-) using naphthalimide-thiourea and-urea conjugates [J].Tetrahedron Lett.,2007,48 (45):8043-8047.
    [12]Veale E B,Gunnlaugsson T.Bidirectional Photoinduced Electron-Transfer Quenching Is Observed in 4-Amino-1,8-naphthalimide-Based Fluorescent Anion Sensors [J].J.Org.Chem.,2008,73 (20):8073-8076.
    [13]Esteban-Gmez D,Fabbrizzi L,and Licchelli M.Why,on Interaction of Urea-Based Receptors with Fluoride,Beautiful Colors Develop[J].J.OrB.Chem.,2005,70(14):5717-5720.
    [14]Duan L,Xu Y,Qian X,et al.Highly selective fluorescent chemosensor with red shift for cysteine in buffer solution and its bioimage:symmetrical naphthalimide aldehyde [J].Tetrahedron Lett.,2008,49(47):6624-6627.
    [15]陈荣圻.染料化学(第一版)[M].纺织工业出版社.1987.
    [16]杨建新.新颖1,8-萘酰亚胺类荧光化合物的合成及光谱性能研究[D].(博士学位论文).大连:大连理工大学,2004.
    [17]严宏宾,沈永嘉,董黎芬.1,8-萘酰亚胺类阳离子荧光增白剂的合成及应用[J].精细化工1997,14(3):39-40.
    [18]Peters A T,Bide M J.Phenylazo derivatives of 1,8-naphthalimides and of 7H-benzimidazo (2,1-a)benz(d,e)isoquinolin-7-ones:dyes for synthetic polymer fibres[J].Dyes and Pigments,1986,7(4):237-247.
    [19]Chang S C,Utecht R E,Lewis D E.Synthesis and Bromination of 4-alkylamino-N-1,8-naphthalimides[J].Dyes and Pigments,1999:43(2),83-94.
    [20]Grayshan P H,Peters A T.Heterocyclic Derivatives of Naphthalene-1,B-Dicarboxylic Anhydride.Part Ⅰ.Nitro-7H-benzimidazo[2,1-a]benz[de]isoquinolin-7-ones[J].J.Heterocyclic Chew.1973,10:699-703.
    [21]Bra(?)a M F,Castellano J M,Roldan C M.Synthesis and mode(s) of action of a new series of imide derivatives of 3-nitro-1,8- naphthalic acid[J].Cancer Chemother Pharmacol.,1980,4:61-66.
    [22]谢丽娟.含氮稠杂环化合物合成及抗肿瘤细胞活性研究[D].(博士学位论文).大连:大连理工大学,2008.
    [23]Bra(?)a M F,Sanz A M,Castellano J M.Synthesis and cytostatic activity of benz[de]iso-quinoline-1,3-diones:Structure-activity Relationships[J].Eur.J.Med.Chem.Chim.rher.,1981,16:207-212.
    [24]Hsiang Y H,Jiang J B,Liu L F.Topoisomerase Ⅱ-mediated DNA cleavage by amonafide and itsstructural analogs[J].Mol.Phamacol.,1989,36:371-376.
    [25]Bra(?)a M F,Castellano J M,Moran M,et al.Synthesis,structure and antitumor activity of new benz[d,e]isoquinoline-1,3-diones[J].Arzneim-Forsch.1995,45:1311-1318.
    [26]Bra(?)a M F,Cacho M,Carcia M A,et al.Synthesis,antitumor activity,molecular modeling and DNA binding properties of a new series of imidazonaphthalimides[J].J.Med.Chem.2002,45(26):5813-5816.
    [27]Bra(?)a M F,Cacho M,Ramos A.Synthesis,biological evaluation and DNA binding properties of novel mono and binaphthalimides[J].OrB.giomol.Chem.2003,1:648-6545.
    [28]Bra(?)a M F,Cacho M,Carcia M A,et al.New analogues of amonafide and elinafide,containingaromatic heterocycles:synthesis,antitumor activity,molecular modeling and DNA bonding properties[J].J.Med.Chem.2004,47(6):1391-1399.
    [29]Sami S M,Dorr R T,Albert D S,et al.2-substituted 1,2-dihydro-3H-dibenz[de,h]isoquinoline-1,3-diones.A new class of antitumor agent[J].J.Med.Chem.1993,36(6):765-770.
    [30]Sami S M,Dorr R T,Solyom AM,et al.Amino-substituted 2-[2' -(dimethylamino)ethyl]-1,2-dihydro-3H-dibenz[de,h]isoquinoline-1,3-diones.Synthesis,antitumor activity,and quantitativestructure-acitvity relationship[J].J Med.Chem.1995,38(6):983-993.
    [31]Sami S M,Dorr R T,Albert D S,et al.Analogues of aminofide and azonafide with novel ring systems[J].J.Med.Chem.2000,43(16):3067-3073.
    [32]杨鹏.新型杂环并萘酰亚胺化合物的设计合成及生物活性研究[D].(博士学位论文).大连:大连理工大学,2006.
    [33]李志刚.新型萘系硫杂环类化合物的设计合成及其生物活性研究[D].(博士学位论文).大连:大连理工大学,2005.
    [34]李永刚.含硫稠环萘酰亚胺DNA嵌入剂和光敏切断剂及其抗肿瘤效果[D].(博士学位论文).上海:华东理工大学,2003.
    [35]Li Z,Yang Q,Qian X.Synthesis,antitumor evaluation and DNAphotocleaving activity of novelmethylthiazonaphthalimides with aminoalkyl side chains[J].Bioorg Med Chem Lett.2005,15(12):3143-3146.
    [36]Li Z,Yang Q,Qian X.Novel thiazonaphthalimides as efficient antitumor and DNA photocleaving agents:Effects of intercalation,side chains,and substituent groups.Bioorg.Med.Chem.,2005,13(16):4864-4870.
    [37]Zhan W,Wu W,Hua J,et al.Photovoltaic properties of new cyanine - naphthalimide dyads synthesized by 'Click' chemistry[J].Tetrahedron Lett.,2007,48(14):2461 -2465.
    [38]Liu B,Zhu W,Wu W,et al.Hybridized ruthenium(Ⅱ) complexes with high molar extinction coefficient unit:Effect of energy band and adsorption on photovoltatic performances[J].J.of Photochem.and Photobio.A:Chem.,2008,194(2-3):268-274.
    [39]Gan J A,Song Q L,Hou X Y,et al.1,8-Naphthalimides for non-doping OLEDs:the tunable emission color from blue,green to red[J].Photochem.Photobio.A:Chem.,2004,162(2-3):399-406.
    [40]Wang S,Zeng P J,Liu Y Q.Luminescent properties of a novel naphthalimide-fluorene molecular[J].Synth.Met.2005,150(1):33-38.
    [41]Kim H,Jin J,Lee Y,et al.An efficient luminescence conversion LED for white light emission,fabricated using a commercial InGaNLED and a 1,8-naphthalimide derivative [J].Chem.Phys.Lett.,2006,431(4-6):341-345.
    [42]BianB,Ji S J,Shi H B.Synthesis and fluorescent property of some novel bischromophore compounds containing pyrazoline and naphthalimide groups [J].Dyes and Pigments 2008,76(2):348-352.
    [43]Du P,Zhu W,Xie Y,et al.Dendron-Functionalized Macromoleculars:Enhancing Core Luminescence and Tuning Carrier In jection [J].Macromoleculars,2004,37 (12):4387-4398.
    [44]Jiang G,Wang S,Yuan W,et al.Highly Fluorescent Contrast for Rewritable Optical Storage Based on Photochromic Bisthienylethene-Bridged Naphthalimide Dimer[J].Chem.Mater.,2006,18(2):235-237.
    [45]Meng X,Zhu W,Zhang Q,et al.Novel Bisthienylethenes Containing Naphthalimide as the Center Ethene Bridge:Photochromism and Solvatochromism for Combined NOR and INHIBIT Logic Gates[J].J.Phys.Chem.B,2008,112 (49):15636-15645.
    [46]Meng X,Zhu W,Guo Z,et al.Highly stable and fluorescent switching spirooxazines [J].Tetrahedron,2006,62:9840-9845.
    [47]Qiu Z,Wu S,Li Z,et al.Sulfonated Poly(arylene-co-naphthalimide) s Synthesized by Copolymerization of Primarily Sulfonated Monomer and Fluorinated Naphthalimide Dichlorides as Novel Polymers for Proton Exchange Membranes [J].Macromolecules,2006,39 (19):6425-6432.
    [48]Malval J P,Suzuki S,Savary F M,et al.Photochemistry of Naphthalimide Photoacid Generators[J].J.Phys.Chem.A,2008,112 (17):3879-3885.
    [49]黄晓峰,张远强,张英起.荧光探针技术[M],北京,人民军医出版社,2004,p49-53.
    [50]Pires M M,Chmielewski.Fluorescence Imaging of Cellular Glutathione Using a Latent Rhodamine [J].Org.Lett.,2008,10(5):837-840.
    [51]Julien O,Mercier P,Spyracopoulos L,et al.NMR Studies of the Dynamics of a Bifunctional Rhodamine Probe Attached to Troponin C [J].J.Am.Chem.Soc.,2008,130(8):2602-2609.
    [52]Houghten R A,Dooley C T,Appel J R.De novo identification of highly active fluorescent kappa opioid ligands from a rhodamine labeled tetrapeptide positional scanning library[J].Bioorg.Med.Chem.Lett.,2004,14(8):1947-1951.
    [53]Mercier P,Ferguson R E,Irving M,et al.NMR Structure of a Bifunctional Rhodamine Labeled NHDomain of Troponin C Complexed with the Regulatory “Switch” Peptide from Troponin I:Implications for in Situ Fluorescence Studies in Muscle Fibers [J].Biochemistry,2003,42(15):4333-4348.
    [54]Vinayak R.A convenient,solid-phase coupling of rhodamine dye acids to 5'amino-oligonucleotides [J].Tetrahedron.Lett.,1999,40(43):7611-7613.
    [55]Kumagai I,Takahashi T,Hamasaki K,et al.HIV Rev peptides conjugated with peptide nucleic acids and their efficient binding to RRE RNA [J].Bioorg.Med.Chem.Lett.,2001,11(9):1169-1172.
    [56]Jiao G S,ThoresenLH,Burgess K.Fluorescent,Through-Bond Energy Transfer Cassettes for Labeling Multiple Biological Moleculars in One Experiment [J].J.Am.Chem.Soc.,2003,125(48):14668-14669.
    [57]Kwon J Y,Jang Y J,Lee Y J,et al.A highly selective fluorescentchemosensor for Pb~(2+) [J].J.Am.Chem.Soc,2005,127(28):10107-10111.
    [58]Xiang Y,Tong A J.A new rhodamine-based chemosensor exhibiting selective Felll-amplified fluorescence [J].Org.lett.,2006,8(8):1549-1552.
    [59]Ko S K,Yang Y K,Tae J et al.In Vivo Monitoring of Mercury Ions Using a Rhodamine-Based Molecular Probe [J].J.Am.Chem.Soc,2006,128(43):14150-14155.
    [60]ZhangX,Xiao Y,Qian X.A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg2+ Ions in Living Cells [J].Angew.Chem.Int.Ed.2008,47 (42):8025-8029.
    [61]Gaillard S,Yakovlev A,Luccardini C,et al.Synthesis and Characterization of a New Red-Emitting Ca~(2+) Indicator,Calcium Ruby [J].Org.Lett.,2007,9(14):2629-2632.
    [62]Kojima H,Hirotani M,Urano Y.Fluorescent indicators for nitric oxide based on rhodamine chromophore [J].Tetrahedron.Lett.,2000,41(1):69~72.
    [63]Tang B,Xing Y L,Li P,et al.A Rhodamine-Based Fluorescent Probe Containing a Se—N Bond for Detecting Thiols and Its Application in Living Cells[J].J.Am.Chem.Soc.,2007,129(38):11666-11667.
    [64]Kenmoku S,Urano Y,Kojima H,et al.Development of a Highly Specific Rhodamine-Based Fluorescence Probe for Hypochlorous Acid and Its Application to Real-Time Imaging of Phagocytosis [J].J.Am.Chem.Soc,2007,129(23):7313-7318.
    [65]Dela J L,Blanchard G J,The influence of chromophore structure on intermolecular interactions,A study of selected rhodamines in polar protic and aprotic solvents [J].J.Phys.Chem.A,2002,106(44):10718-10724.
    [66]Liu J,Diwu Z,Leung W,et al.Rational design and synthesis of a novel class of highly fluorescent rhodamine dyes that have strong absorption at long wavelengths [J].Tetrahedron Lett.2003,44 (23):4355-4359.
    [67]Miljani S,Cimerman Z,Frkanec L,et al.Lipophilic derivative of rhodamine 19:characterization and spectroscopic properties,Analytica.Chimica.Acta,2002,468(1):13-25.
    [68]Josel H,Herrmann R,Heindl D,et al.Rhodamine derivatives and the use thereof,U.S.Patent,6184379 B1,2001-02-06.
    [69]Adamczyk M,Grote J.Synthesis of probes with broad pH range fluorescence [J].Bioorganic Medcinal.Chem.Lett.,2003,13 (14):2327-2330.
    [70]Arden-Jacob J,Frantzeskos J,Kemnitzer N U,et al.New fluorescent markers for the red region [J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2001,57(11):2271-2283.
    [71]Graves E E,Weissleder R,Ntziachristos V.Fluorescence Molecular Imaging of Small Animal Tumor Models [J].Current Molecular Medicine,2004,4(4):419-430.
    [72]Gurfinkel M,Ke S,Wen X,et al.Near-infrared fluorescence optical imaging and tomography [J].Disease Markers,2003-2004,19 (2-3):107-121.
    [73]Elslager E F.9-Substituted 3,6-Bis(dimethylamino)acridines[J].J.Org.Chem.,1962,27 (12):4346-4349.
    [74]Wolf M,Bauder-Wüst U,Pipkorn R,et al.Fluorophor-labeled spermidine derivatives as fluorescent markers in optical tumor imaging [J].Bioorg.Med.Chem.Lett.,2006,16(12):3193-3196.
    [75]Detty M R,Prasad P N,Donnelly D J,et al.Synthesis,properties,and photodynamic properties in vitro of heavy-chalcogen analogues of tetramethylrosamine[J].Bioorg.Med.Chem.Lett.,2004,12(10):2537-2544.
    [76]Holt J J,Calitree B D,Vincek J,et al.A Microwave-Assisted Synthesis of Julolidine-9-carboxamide Derivatives and Their Conversion to Chalcogenoxanthones via Directed Metalation [J].J.Org.Chem.,2007,72 (7):2690-2693.
    [77]Pistolis G,BoyatzisS,Chatzichristidi M,et al.Highly Efficient Bicolor (Green—Blue) Fluorescence Imaging in Polymeric Films [J].Chem.Mater.,2002,14 (2):790-796.
    [78]Kim J M,Chang T E,Kang J H,et al.Photoacid-Induced Fluorescence Quenching:A New Strategy for Fluorescent Imaging in Polymer Flims[J].Angew.Chem.Int.Ed.2000,39(10):1780-1782.
    [79]Gao X,Zhang Y,Wang B.New Boronic Acid Fluorescent Reporter Compounds.2.A Naphthalene-Based On—Off Sensor Functional at Physiological pH~+ [J].Org.Lett.,2003,5(24):4615-4618.
    [80]Qian X,Xiao Y.4-Amino-1,8-dicyanonaphthalene derivatives as novel fluorophore and fluorescence switches:efficient synthesis and fluorescence enhancement induced by transition metal ions and protons [J].Tetrahedron Lett.2002,43(16):2991-2995.
    [81]Rodriguez G,Corma A,et al.Catalytic Activity of Proton Sponge:Application to Knoevenagel Condensation Reactions [J].Journal of Catalysis,1999,183(1):14-23.
    [82]Corma A,Iborra S,Rodriguez I,et al.Immobilized Proton Sponge on Inorganic Carriers:The Synergic Effect of the Support on Catalytic Activity [J].Journal of Catalysis,2002,211(1):208-215.
    [83]Pozharskii A F,Ryabtsova O V,Ozeryanskii V A,et al.Organometallic Synthesis,Molecular Structure,and Coloration of 2,7-Disubstituted 1,8-Bis(dimethylamino) naphthalenes.How Significant Is the Influence of “Buttressing Effect” on Their Basicity? [J].J.Org.Chem.,2003,68(26):10109-10122.
    [84]Hong S W,Kim K H,Huh J,et al.Design and synthesis ofa new pH sensitive polymeric sensorusing fluorescence resonance energy transfer[J].Chem.Mater.,2005,17(25):6213-6215.
    [85]Grabowski Z R,Rotkiewicz K.Structural changes accompanying intramolecular electron transfer:focus on twisted intramolecular charge-transfer states and structures[J].Chem.Rev.,2003,103(10):3899-4032.
    [86]Wang Z,Zheng G,Lu P.9-(Cycloheptatrienylidene)-fluorene derivative:remarkable ratiometric pH sensor and computing switch with NOR logic gate[J].Org Lett,2005,7(17):3669-3672.
    [87]Tanaka K,Kumaga T,Aok H,et al.Application of 2-(3,5,6-trifluoro-2-hydroxy-4-methoxyphenyl) benzoxazole and benzothiazole to fluorescent probes sensing pH and metal cations [J].J.Org.Chem.,2001,66(22):7328-7333.
    [88]Chou Shang-Shing P,YehYu-Hsin P P.Synthesis of novel sulfonyl-substituted pyrrole chromophores for second-order nonlinear optics[J].Tetrahedron Lett:2001,42(7):1309-1312.
    [89]Lukas A S,Bushard P J,Weiss E A,et al.Mapping the Influence of Molecular Structure on Rates of Electron Transfer Using Direct Measurements of the Electron Spin—Spin Exchange Interaction[J].J.Am.Chem.Soc.,2003,125 (13):3921-3930.
    [90]Sapsford K E,Berti L,Medintz I L.Materials for Fluorescence Resonance Energy Transfer Analysis:Beyond Traditional Donor-Acceptor Combinations[J].Angew.Chem.Int.Ed.,2006,45 (28):4562-4589.
    [91]MllerBK,Reuter A,Simmel F C,et al.Single-Pair FRET Characterization of DNA Tweezers [J].Nano Lett.,2006,6 (12):2814-2820.
    [92]Albers A E,Okreglak V S,Chang C J.A FRET-Based Approach to Ratiometric Fluorescence Detection of Hydrogen Peroxide.J.Am.Chem.Soc,2006,128(30):9640-9641.
    [93]Balbo-Block M A,Khan A,Hecht S.Avenues into the Synthesis of Illusive Poly(m-phenylene-alt-squaraine)s:Polycondensation of m-Phenylenediamines with Squaric Acid Intercepted by Intermediate Semisquaraines of Exceptionally Low Reactivity[J].J.Org.Chem.,2004,69 (1):184-187.
    [94]Beverina L,Crippa M,Landenna M,et al.Assessment of Water-Soluble-Extended Squaraines as One-and Two-Photon Singlet Oxygen Photosensitizers:Design,Synthesis,and Characterization [J].J.Am.Chem.Soc,2008,130 (6):1894-1902.
    [95]Ros-Lis J V,M(?)ez R M,Soto J.A selective chromogenic reagent for cyanide determination [J].Chem.Commun.,2002,12:2248-2249.
    [96]Ros-Lis J V,Garca B,Jimnez D,et al.Squaraines as Fluoro—Chromogenic Probes for Thiol-Containing Compounds and Their Application to the Detection of Biorelevant Thiols [J].J.Am.Chem.Soc.,2004,126 (13):4064-4065.
    [97]Ros-Lis J V,Marcos M D,M(?)ez R M.A Regenerative Chemodosimeter Based on Metal-Induced Dye Formation for the Highly Selective and Sensitive Optical Determination of Hg~(2+) Ions [J].Angew.Chem.Int.Ed.2005,44 (28):4405-4407
    [98]Neumann T,Dienes Y,Baumgartner T.Highly Sensitive Sensory Materials for Fluoride Ions Based on the Dithieno[3,2-b:2',3'-d]phosphole System[J].Org.Lett.,2006,8(3):495-497.
    [99]ZhangS,Swager T M.Fluorescent Detection of Chemical Warfare Agents:Functional Group Specific Ratiometric Chemosensors [J].J.Am.Chem.Soc,2003,125 (12):3420-3421.
    [100]Coskun A,Akkaya E U.Dif luorobora-s-diazaindacene dyes as highly selective dosimetric reagents for fluoride anions [J].Tetrahedron Lett.,2004,45(25):4947-4949.
    [101]Peng X,Wu Y,Fan J,et al.Colorimetric and Ratiometric Fluorescence Sensing of Fluoride:Tuning Selectivity in Proton Transfer [J].J.Org.Chem.,2005,70(25):10524-10531.
    [102]Li Y,Cao L,Tian H.Fluoride Ion-Triggered Dual Fluorescence Switch Based on Naphthalimides Winged Zinc Porphyrin[J].J.Org.Chem.,2006,71 (21):8279-8282.
    [103]Lee M,Quang D T,Jung H S,et al.Ion-Induced FRET On—Off in Fluorescent Calix[4]arene[J].J.Org.Chem.,2007,72 (11):4242-4245.
    [104]Berberan-Santos M N,Choppinet P,Fedorov A,et al.Multichromophoric Cyclodextrins.8.Dynamics of Homo-and Heterotransfer of Excitation Energy in Inclusion Complexes with Fluorescent Dyes [J].J.Am.Chem.Soc,2000,122(48):11876-11886.
    [105]B.Valeur,Molecular Fluorescence:Principles and Applications[M].Wiley-VCH,Verlag GmbH,2001.
    [106]Pietrzak M,Meyerhoff M E.Malinowska E.Polymeric membrane electrodes with improved fluoride selectivity and lifetime based on Zr(Ⅳ)-and Al(Ⅲ)-tetraphenylporphyrin derivatives[J].Analytica Chimica Acta,2007,596(2):201-209.
    [107]Liang X,James T D,Zhao J.6,6'-Bis-substituted BINOL boronic acids as enantioselective andchemoselective fluorescent chemosensors for D-sorbitol[J].Tetrahedron,2008,64 (7):1309-1315.
    [108]Li Z,Lin J,Qin Y,et al.Enantioselective Fluorescent Recognition of a Soluble “Supported” Chiral Acid:Toward a New Method for Chiral Catalyst Screening[J].Org.Lett.,2005,7(16):3441-3444.
    [109]Zhang X,Bradshaw J S,Izatt R M.Enantiomeric Recognition of Amine Compounds by Chiral Macrocyclic Receptors[J].Chem.Rev.1997,97 (8):3313-3361.
    [110]Berthod A.Chiral Recognition Mechanisms[J].Anal.Chem.,2006,78 (7):2093-2099.
    [111]Kacprzak K,Grajewski J,Gawronski J.Indicator displacement sensor for efficient determination of α-hydroxydicarboxylic acids and their chiral discrimination[J].Tetrahedron:Asymmetry 2006,17(4):1332 - 1336.
    [112]Chi L,Zhao J,James T D.Chiral Mono Boronic Acid As Fluorescent Enantioselective Sensor for Mono -Hydroxyl Carboxylic Acids[J].J.Org.Chem.,2008,73(12):4684-4687.
    [113]Beer G,Rurack K,Daub J.Chiral discrimination with a fluorescent boron dipyrromethene dye[J].J.Chem.Soc.,Chem.Commun.2001:l138-1139.
    [114]Gawroski J,Gawroska K,Skowronek P,et al.1,8-Naphthalimides as Stereochemical Probes for Chiral Amines:A Study of Electronic Transitions and Exciton Coupling[J].J.Org.Chem.,1999,64(1):234-241.
    [115]Yang X,Wang G,Zhong C,et al.Novel NMR chiral solvating agents derived from (1R,2R)-diaminocyclohexane:synthesis and enantiodiscrimination for chiral carboxylic acids[J].Tetrahedron:Asymmetry,2006,17(6):916-921.
    [116]Loving G,Imperiali B.A Versatile Amino Acid Analogue of the Solvatochromic Fluorophore 4-N,N-Dimethylamino-1,8-naphthalimide:A Powerful Tool for the Study of Dynamic Protein Interactions[J].J.Am.Chem.Soc.,2008,130(41):13630-13638.
    [117]Shirakawa S,Moriyama A,Shimizu S.Design of a Novel Inherently Chiral Calix[4]arene for Chiral Molecular Recognition[J].Org.Lett.2007,9(16):3117-3119.
    [118]Zhu L,Anslyn E V.Facile Quantification of Enantiomeric Excess and Concentration with Indicator-Displacement Assays:An Example in the Analyses of α -Hydroxyacids[J].J.Am.Chem.Soc.,2004,126(12):3676-3677.
    [119]Zhao J,Davidson M G,Mahon M F,et al.An Enantioselective Fluorescent Sensor for Sugar Acids[J].J.Am.Chem.Soc.,2004,126(49):16179-16186
    [120]Rekharsky M V,Yamamura H,Inoue C,et al.Chiral Recognition in Cucurbituril Cavities[J].J.Am.Chem.Soc.2006,128(46):14871-14880.
    [121]时磊.二氧化碳与环氧烷烃的不对称、区域及立体选择性交替共聚[D].(博士学位论文).大连:大连理工大学,2007.
    [122]张晓琳.基于氟硼吡咯的多发色团FRET体系的构建及其应用研究[D].(博士学位论文).大连:大连理工大学,2009.
    [123]Nishiyama K,Oba M,Takagi H,et al.Synthesis,structure,and photochemical reaction of 9,10-dihydro-9-silaanthracene derivatives carrying bulky substituents[J].J.Organomet.Chem.,2000,604(1):20-26.
    [124]Nishiyama K,Oba M,Takagi H,et al.Radical isomerization of 9,10 - dihydro -9,10-disilaanthracene derivatives:stabilization factor of silyl radicals[J].J.Organomet Chem.,2001,626(1):32-36.
    [125]Oba M,Watanabe Y,and Nishiyama K.Thermal Generation and Trapping of Transient 9-Silaan thracene Derivatives[J].Organometallics,2002,21(17):3667-3670.
    [126]Takeda N,Shinohara,A,Tokitoh N.The First Stable 9-Silaanthracene[J].Organometallics,2002,21 (2):256-258.
    [127]Yamaguchi S,Tamao K.Silole-containing δ~* and π~*conjugated compounds [J].J.Chem.Soc.,Dalton Trans.,1998:3693-3702.
    [128]Li Z,Dong Y,Mi B,et al.Structural Control of the Photoluminescence of Silole Regioisomers and Their Utility as Sensitive Regiodiscriminating Chemosensors and Efficient Electroluminescent Materials [J].J.Phys.Chem.B.2005,109(6):10061-10066.
    [129]Lee S H,Jang B B,Kafafi Z H.Highly Fluorescent Solid-State Asymmetric Spirosilabifluorene Derivatives [J].J.Am.Chem.Soc,2005,127(25):9071-9078.
    [130]Chan K L,Mckieman M J,Towns C R,et al.Poly(2,7-dibenzosilole):A Blue Light Emitting Polymer [J].J Am.Chem.Soc,2005,127(24):7662-7663.
    [131]Sartin M M,Boydston A J,Pagenkopf B L,et al.Electrochemistry,Spectroscopy,and Electrogenerated Chemi luminescence of Silole-Based Chromophores [J].J.Am.Chem.Soc,2006,128 (31):10163-10164.
    [132]Usta H,Lu G,Facchetti A,et al.Dithienosilole— and Dibenzosilole—Thiophene Copolymers as Semiconductors for Organic Thin-Film Transistors [J].J.Am.Chem.Soc,2006,128 (28):9034-9035.
    [133]Boydston A J,Yin Y,Pagenkopf B L,Synthesis and Electronic Properties of Donor-Acceptor π-Conjugated Siloles[J].J.Am.Chem.Soc.2004,126 (12):3724-3725.
    [134]Manring L E,Peters K S.Picosecond Dynamics of Proton Transfers[J].J.Am.Chem.Soc.1985,107(23):6452-6458.
    [135]Barker A,Barker C C.3:6-Disubstituted fluorenes.Part Ⅱ.The preparation of 3:6-diaminofluorene from fluorene,and the attempted internuclear cyclisation of derivatives of 4:4'-diaminodiphenylmethane[J].J.Chem.Soc,1954:870-872
    [136]Hagberg D P,Edvinsson T,Marinado T,et al.A Novel Organic Chromophore for Dye-Sensitized Nanostructured Solar Cells[J].Chem.Commun.,2006,21:2245-2247.
    [137]Hara K,Sato T,Katoh R,et al.Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells[J].J.Phys.Chem.B,2003,107 (2):597-606.
    [138]Risko C,Zojer E,Brocorens P,et al.Bis-aryl substituted dioxaborines as electron-transport materials:a comparative density functional theory investigation with oxadiazoles and siloles [J].Chem.Phys.2005,313 (1):151-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700