贴压电层的功能梯度层合梁的振动与稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多载荷作用下单层或多层智能材料结构元件的静动态力学行为已成为固体力学研究的热点内容,同时也是结构智能控制的关键性问题之一。本论文讨论和分析了压电-功能梯度材料单层及层合梁结构的静动态力学行为。主要研究了贴压电层的功能梯度梁的过屈曲行为和过屈曲构型附近的自由振动,包括以下三个方面的内容:
     1.在精确考虑轴线伸长基础上,建立了功能梯度Euler梁在热过屈曲构型附近小振幅线性自由振动的控制方程。采用打靶法同时求解热过屈曲和振动问题的控制方程,得到了随温度载荷变化的热过屈曲平衡路径以及前几阶固有频率的数值解。分析和讨论了梁的材料梯度参数、温度场分布参数等对过屈曲变形和振动响应的影响。
     2.基于精确Timoshenko理论,建立了压电-功能梯度Timoshenko层合梁在热-电-机载荷作用下的几何非线性控制方程。打靶法数值求解了相应的强非线性边值问题,获得了在均匀电场和横向非均匀升温场内两端固定Timoshenko梁的静态非线性屈曲和过屈曲数值解。绘出了梁的变形随热载荷、逆压电效应及材料梯度参数变化的特性曲线。结果表明,通过施加电压在压电层产生拉应力可以有效地提高梁的热屈曲临界载荷,延缓热过屈曲发生。
     3.定量分析了上下表面粘贴压电层的FGM层合梁,在横向非均匀升温以及对压电层施加驱动电压载荷下的几何非线性大变形以及大变形构形附近的小振幅自由振动。对于屈曲前的微幅振动,得到了两端固定和简支压电-FGM层合梁在横向均匀电场和非均匀升温作用下线性振动的解析解。对于过屈曲梁振动问题,采用打靶法数值求解了两端固支梁的非线性边界值问题,给出了与热、电载荷参数有关的过屈曲平衡路径及频率-载荷曲线,详细分析和讨论逆压电效应、热载荷和材料梯度性质对变形和振动特性的影响。
In recent years, the problem of static deformation and dynamic response of single-layer or multi-layer intelligent structures subjected to multiple loads have been extensively investigated and become one of the most important and key issues in solid mechanics and intelligent control field. In this thesis, responses of post-buckling and linear free vibration of FGM beams with surface-bonded piezoelectric layers are studied. The main content andresents are as following:
     1. By accurately considering the axial extension, governing equations for the small amplitude free vibration of functionally graded material Euler beams in the vicinity of thermal post-buckling configuration under thermal loadings, were formulated. By using shooting method to solve simultaneously the governing equations both for thermal post-buckling and vibration, numerical solutions of thermal post-buckling equilibrium paths and the first three natural frequencies of the FGM beam depending on the temperature rise are obtained. The effect of the parameters of material gradients, temperature field on the responses of post-buckling and vibration of the beam are examined.
     2. Based on geometrically nonlinear theory for axial extensive Timoshenko beam, nonlinear governing equations, for functionally graded beams with surface-bonded piezoelectric layers subjected to thermo-electro-mechanical loadings were formulated. By using a shooting method, the obtained nonlinear boundary value problem was numerically solved and buckling and post-buckling response of the beams with the both ends fixed, subjected to transversely non-uniform heating and uniform electric field, were presented. Characteristic curves of the post-buckling deformation of the beam varying with thermal load, the electrical load, and the power law index are plotted. Numerical results show that the tensional force produced in the piezoelectric layers by the voltage can efficiently increase the critical buckling temperature and defer the thermal post-buckling to occur.
     3. Geometrically nonlinear deformation and free vibration for functionally graded beams with surface-bonded piezoelectric layers in the vicinity of the post-buckling configuration, subjected to thermo-electro-mechanical loadings were analysised quantitatively. For the small amplitude free vibration befor the pre-buckling, analytical solutions of the laminated beam with surface-bonded piezoelectric layers subjected to transversely non-uniform heating and uniform electric field were arrived at. By using a shooting method, the boundary value problems for the post-buckling and linear vibration of the beam with the ends fixed was numerically solved. Characteristic curves of the post-buckling deformation and the lower order frequencies versus thermal load, the electrical load, and the power law index are plotted. Influence of the inverse piezoelectric effect, the temperature rise and the properties of the material gradients on the deformation and vibration are discussed.
引文
[1]周又和,郑晓静,电磁固体结构力学,科学出版社,1999.
    [2]杨大智,智能材料与智能控制,天津大学出版社,2000.
    [3]Winzer S R,Shankar N,Ritter A P,Designing cofired multilayer electrostrictive actuators for reliability,J.Am.Ceram.Soc.,1989,72:2246-2257.
    [4]Cross L E,Ferroelectric:tailoring prosperities for specific applications.In:Setter N and Colla E L,eds.Ferroelectrics Ceramics.1993,Beirkhauser,Basel,1-85.
    [5]郑哲敏、周恒、张涵信等,21世纪的力学发展趋势,力学进展,1995,25(4):443-441.
    [6]王晓明,沈亚鹏,尹林,机敏材料和机敏结构的力学分析,力学进展,1995,25(2):209-222.
    [7]陶宝祺,智能结构材料,北京:国际工业出版社,1997.
    [8]杨卫,电致失效力学,力学进展,1996,26(3):338-352.
    [9]Cross L E,Polarization controlled ferroelectric high strain actuators,Journal of Intelligent.Material Systems and Structures,1991,2(3):241-260.
    [10]Damjanovie D Newnham R E,Electrostrictive and piezoelectric materials for actuators application,Journal of Intelligent Material Systems and Structures.1992,3(2):190-208.
    [11]杨卫,力电失效学,北京:清华大学出版社,2001,1-2.
    [12]江冰,李兴丹,吴代华,Smart结构及其应用,力学进展,1994,24(3):353-361.
    [13]Crawley E F,Luis J de,Use of piezoelectric actuators as elements of intelligent structures,AIAA Journal,1987,25(10):1373-1385.
    [14]Crawley E E,Lazarus K.B.,Induced strain Actuation of Isotropic and Anisotropic Plates,1991,AIAA Journal,29(6),944-951.
    [15]Lee.C.K.,Theory of Laminated Piezoelectric Plates for the Design of Distributed Sensors/Actuators.Part Ⅰ:Goveming Equations and Reciprocal Relationships,Journal of Acoustical Society of America.1990,87(3):1144-1158.
    [16]Dimitriadis E.F.,Fuller C.R.and Rogers C.A.,Piezoelectric Actuators for distributed Vibration Excitation of Thin Plates,Journal of Vibration and Acoustics,1991,Vol.113:100-107.
    [17]Shen H-S,Postbuckling of FGM plates with piezoelectric actuators under thermo-electro-mechanical loadings.Int.J.of Solids and Structures,2005,42:6101-6121.
    [18]Shen H-S,Post-buckling of shear deformable laminated with piezoelectric actuators under complex loading conditions,Int.J.of Solids and Structures,2001,38:7703-7721.
    [19]Huang X-L,Shen H-S,Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments,Journal of Sound and Vibration,289(2006):25-53.
    [20]黄小林,沈惠申,带压电层的混合层合板的自由振动和动力响应,力学季刊,2004,25(1),107-112.
    [21]Hom C.L,Shankar N,Fully coupled constitutive model for electrostrictive ceramic materials,Journal of Intelligent Material Systems and Structures,1994,5(6):775-801.
    [22]江冰,方岱宁,铁电材料的本构关系及相关问题的研究进展,力学进展,1998,28(3):312-322.
    [23]Beoma H.G.,Atlurib S.N.,Effect of electric fields on fracture behavior of fe rroelectric ceramics,J.Mech.Phys.Solids,2003,51:1107-1125.
    [24]Ray M.C.,Bhatacharya R,Samanta B,Exact solutions for static analysis of intelligent structures,AIAAJ,1993,31(9):1684-1691.
    [25]Sosa H,Castro M,Electroelastic analysis of laminated structure,Appl.Mech.Rev.,1993,46(11):S21-S28.
    [26]Tzou H S,A new distributed sensor and actuator theory for intelligent shells,Journal of Sound and Vibration,1992,152(2):335-349.
    [27]Lee C.Y.,Choi S.B.,Thompson B.S.and Gandhi.M.V.,A Variational Formulation for the Finite Element Analysis and control of Linkage and Robotic Systems Featuring smart Materials Incorporating Piezoelectric Materials,First National applied Mechanics and Robotics Conference,Cincinnati,OH,1989,1-10.
    [28]Tzou H.S.,Tzeng C.I..,Distributed Piezoelectric Sensor/Actuator Design for Dynamics Measurement Finite Element Approach,Journal of Sound and Vibration,1990,138(1):17-34.
    [29]Kulkarni.G.,S.V.Hanagud.,Modeling Issues in the Vibration Control with Piezoceramic Actuators,Smart Structures and Materials,ASME AD-Vol.24/AMD-1991,Vol.123:7-17.
    [30]Ha,S.K.,Keilers C.,Chang.F.K.Finite element Analysis of Composite Structures Containing Distributed Piezoceramic Sensors and Actuators,AIAA Journal,1992,30(3):772-780.
    [31]尹林,王晓明,沈亚鹏,结构变形最优控制的数值分析,力学学报,Vol.27(6):711-718.
    [32]Rao S.S.,Sunar M.Analysis of distributed thermo-piezoelectric sensors and actuators in advanced intelligent structures.AI AAJ,1993,31(7):1280-1286.
    [33]Reddy J.N.,A Generalization of two-dimensional theories of laminated composite plates,Comm Appl.Numer.Mech,1987,No.3:173-182.
    [34]Robbins D.H.Reddy J.N.,Analysis of piezoelectricity actuated beams using a layer-wise displacement theory,Computers & Structures,1991,41(2):265-279.
    [35]Hwang W.S.,Park H.C.Finite element modeling of piezoelectric sensors and actuators,AIAAJ,1993,31(5):930-937.
    [36]Jonnalagadda K.D,Blandford G.E.,Tauchert T.R.,Piezothermoeleasitic composite plate analysis using first-order shear deformaion theory.Computer&Structures,1994,51(1):79-89.
    [37]Chandrashekhara K.,Agarwal A.N.,Active Vibration Control of Laminated Composite Plates Using Piezoelectric Devices:A Finite Element Approach,Journal of Intelligent Material Systems and Structures,1993,Vol.4,496-508.
    [38]Ray M.C.,Bhatacharyya.R.,Samanta.B.,Static analysis of an intelligent structures by the finite element method,Computer&Structures,1994,52(4):617-631.
    [39]Lo K.H.Christensen R.M.Wu E.M.,A high-order theory of plate deformation,Part 2:laminated plate.JAppl.Mech,1977,Vol.44,669-676.
    [40]周履,范赋群,复合材料力学,1991,4,高等教育出版社.
    [41]谢贻权,何福保主编,弹性和塑性力学中的有限单元法.
    [42]Yu.Y.Y.,Some Recent Advances in Linear and Nonlinear Dynamical Modeling of Elastic and Piezoelectric Plates,Journal of Intelligent Material Systems and Structures,1995,Vol.6:237-536.
    [43]Gibbs G.P,Fuller CR,Excitation of thin beams using asymmetric piezoelectric actuator,[J]Acoust Soc.Am,1992,92(6):3221-3227.
    [44]Chandra R,Inderjit,Structural modeling of composite beams with induced strain actuators,AIAA J,1993,31(9):1692-1701.
    [45]Lee S.W.R.,On the sensing and actuation of clamped elliptic piezoelectric laminates.Adaptive Structures and Composite Materials:Analysis and Application,AD-Vol.45/MD-Vol.54,ASME,1994,275-279.
    [46]尹林,沈亚鹏,压电类智能结构的力学行为和工程应用,力学进展,1998,28(2):163-172.
    [47]Lee C.K.Moon F.C.Modal sensors and actuators,J.of Applied Mechanics,1990,Vol.57,434-441.
    [48]Lee C.K.Chiang W.W.,O'Sullivan T.C.,Piezoelectric modal sensor/actuator pairs of critical active damping vibration control.J.Of acoustics Society of America.1991,Vol.85.
    [49]Chen C.Q.,ShenY.P.,Optimal control of active structures with piezoelectric modal sensors and actuators,Smart Mater.Struct.1997,No.6,403-409.
    [50]Hsu C.Y.,Lin C.C,Vibration and sound radiation controls of beams using layered modal sensors and actuators,Smart Mater.Struct.1998,Vol.7,446-455.
    [51]Balas M.J.,Direct of velocity feedback control of large space structures,J.Guidance and Control.1979,Vol.2,No.3.
    [52]Clark R.L.,Moving away from collocated control,J.Of Sound & Vib,1996,Vol.190,No.1.
    [53]Nam C.H.,Kim Y,Optimal Design of composite Lifting surface for flutter suppression piezoelectric actuators,AIAA Journal,1995(10):1897-1904.
    [54]Anderson E.H.Hagood E.W,Self-sensing piezoelectric actuation:analysis and Application to controlled structures.AIAA,Paper,AIAA-92-2465-cp.
    [55]Zhou Y.H.,Wang J-Z,Vibration control of piezoelectric beam-type-plates with geometrical nonlinear deformation,Int.J.Non-Linear Mech.,2004,39:909-920.
    [56]石艺娜,周又和,赵强,压电层合圆板传感器的非线性静力耦合分析,力学季刊,2003,24(1):36-43.
    [57]王杰,周又和,压电智能梁振动控制的样条小波分解法,振动工程学,2002,15(3):279-284.
    [58]周又和,王记增,基于小波理论的悬臂板压电动力控制模型,力学学,1998,34(4):622-628.
    [59]Zhou Y-H,Wang J-Z,Zheng X-J,Jiang Q,Vibration control of variable thickness plates with piezoelectric sensors and actuators based on wavelet theory,J.Sound and Vibration,2000,237(3):395-410.
    [60]Zhou Y-H,Wang J-Z,Zheng X-J,Applications of wavelet Galerkin FEM to bending of beam and plate structures.Appl.Math.Meth,1998,19(18):745-755.
    [61]Zhou You-He,Tzou H.S.,Active control of nonlinear piezoelectric circular shallow spherical shells,International Journal of Solids and Structures 37(2000)1663-1677.
    [62]Tzou H S,Zhou Y H,Dynamics and control of non-linear circular plates with piezoelectric actuators,Journal of Sound and Vibration,1995,188(2),189-207.
    [63]Tzou H S,Zhou Y H,Non-linear piezothermoelectricity and multi-field actuations,Part 2:Control of non-linear deflection,buckling and dynamics.ASME J.of vibration and acoustics,119:382-389.
    [64]周又和,郑晓静,变温环境对压电圆板频率主动控制的影响,力学学报,1998,30(1):58-64.
    [65]Yamanouchi M,Koizumi M,Hirai T,et al.Proceedings of the International Symposium on Functionally Gradient Materials[C].Sendai,Japan,1990.
    [66]Koizumi M.The Concept of FGM.Cerzrnic Trans.[J].Functionally Gradient Materials,1993,34:3-10.
    [67]Suresh S,Mortensen A.功能梯度材料基础[M].北京:国防工业出版社,2000.
    [68]Rdel J,Neubr A.Proc.Conf.Functionally Graded Materials[C].Tsukuba,Japan,1996,I.Shiota and Y.Miyamoto,eds,Elsevier,Amsterdam,pp.9-14.
    [69]李永.梯度功能力学[M].北京:清华大学出版社,2003.
    [70]Lee Y D,Erdogen FResidual/thermal stresses in functionally graded material and laminated thermal barrier coatings[J].International Journal of Fracture,1994/1995,69:145-165.
    [71]Fukui Y,Takashimima K,Ponton C B.Measurement of Young's modulus and internal friction of an in site Al-Al3Ni functionally gradient material[J].J.Mater Sci,1994,29:2281-2288.
    [72]Markworth A J,Saunders J H.A model of structural optimization for a functionally graded material[J].Mater.Letters,1995,22(1-2):103-107.
    [73]Williamson R L,Rabin B H,Drake J T.Finite element analysis of thermal residual stress at graded ceramic-metal interfaces,part Ⅰ:Model description and geometric effects[J],J.Appl.Phys.,1993,74(2):1310-1320.
    [74]Drake J T,Williamson R L,Rabin B H.Finite element analysis of thermal residual stress at graded ceramic-metal interfaces,part Ⅱ:Interface optimization for residual stress reduction[J].Journal of Applied Physics,1993,74(2):1321-1326.
    [75]Sasaki M,Wang Y,Hirano T,Hirai T.Design of SiC/C functionally graded material and its preparation bychemical vapor deposition[J].J Ceram Soc Jap Inter ED,1989,97:530-534.
    [76]Tanigawa Y,Oka N,Akai T,Kawamura R.One-dimensional transient thermal stress problem for nonhomogeneous hollow circular cylinder and its optimization[J].Transactions of the Japan Society of Mechanical Engineers,Series A,1996,62(599):1656-1664.
    [77]Sumi,N,Sugano,Y.Dynamic thermal stresses in a functionally graded materials with temperature-dependent materials properties[J].Transactions of the Japan Society of Mechanical Engineerings,Series A,1995,61(590):2296-2301.
    [78]Senthil S Vel,R C Brtra.Three-dimensional analysis of transient thermal stresses in functionally graded plates[J].International Journal of Solids and structures,2003,40:7181-7196.
    [79]Erdogen,F.Stracture mechanics of functionally graded materials[J].Composites Engineering,1995,5(7):753-770.
    [80]Jin Z H,Noda N.Minization of thermal stress intensity factor for a crack in a metal-ceramic mixture[J].Ceramic Trans.Finctionally Gradient Materials.1993,3447-3454.
    [81]赵希淑.功能梯度材料的裂纹及热应力问题研究[D].中国科学院博士研究生学位论文,2001.
    [82]Reddy J N,Chin C D.Thermomachanical analysis of functionally graded cylinders and plates[J].Journal of Thermal stresses,1998,21:593-626.
    [83]Tanigawa Y,Motsumoto M,Akai T.Optimization problem of material composition for nonhomogeneous plate to minimize thermal stresses when subjected to unsteady heat supply[J].Transactions of the Japan Society of Mechanical Engineers,Series A,1996,62(593):115-122.
    [84]李永,宋健,张志民.功能梯度材料悬臂梁受复杂载荷作用的分层剪切理论[J].宇航学报,2002,23:62-67.
    [85]Sankar B.V.An elasticity solution for functionally graded beams[J].Composites Science and Technology2001,61:689-696.
    [86]Chakraborty A,Gopalakrishnan S,Reddy J N,A new beam finite element for the analysis of functionally graded materials[J].International Journal of Mechanical Sciences 2003.45:519-539.
    [87]Rajesh K.Bhangale,N.Ganesano Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core[J]Tournal of Sound and Vibration 295(2006)294-316.
    [88]于涛,仲政.均布荷载作用下功能梯度悬臂梁弯曲问题的解析解[J].固体力学学报,2006,27(1):15-20.
    [89]LI Shi-rong,ZHANG Jing-hua,ZHAO Yong-gang.Thermal Post-Buckling of Functionally Graded Material Timoshenko Beams,Applied Mathematics and Mechanics,2006,27(6):709-715.
    [90]Robert C.Wetherhold,Steven Seelman & Jianzhong Wang.The use of functionally graded materials to eliminate or control thermal deformation.Composites Science and Technology,1996,56:1099-1104.
    [91]Yang Y.Y.,Stress analysis in a joint with a functionally graded material under a thermal loading by using the Mellin transform method.Int.J.Solids Structure,1998,35(12):1261-1287.
    [92]Chakraborty A.,Gopalakrishnan.S.,A spectrally formulated finite element for wave propagation analysis in functionally graded beams.International Journal of Solids and Structures,2003,40:2421-2448.
    [93]Praveen G N,Reddy J N.Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates[J].International Journal of Solids and structures,1998,35:4457-4476.
    [94]Cheng Z.Q,Batra R.C.Three dimensional thermoelastic deformations of a functionally graded elliptic plate[J].Composites B,2000,40(7):1421-1433.
    [95]Reddy J N,Cheng Z-Q.Three-dimensional thermomechanical deformations of functionally graded rectangular plates[J],Eur.J.Mech.A/Solids,2001,20:841-855.
    [96]Ma L S,Wang T J.Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings[J].International Journal and Structures,2003,40:3311-3330.
    [97]张靖华,李世荣,赵永刚.功能梯度材料扁锥壳的热弹性变形分析[J].固体力学学报,2006,27(4):362-368.
    [98]Ma L S,Wang T J.Axisymmetric Post-Buckling of a Functionally Graded Circular Plate Subjected to Uniformly Distributed Radial Compression.Material Science Forum[J].2002,423-425:719-724.
    [99]Ma L S,Wang T J.Relationships between the solutions of axisymmetric bending and buckling of functionally graded circular plates based on the third-order plate theory and the classical solutions for isotropic circular plates[J].International Journal of Solids and Structures,2004,41(1):85-101.
    [100]Liew K M,Yang J,Kitipornchia S.Postbucking of piezoelectric FGM plates subject to thermo-electro-mechanical loading[J].International Journal of Solids and Structures,2003,41(15):3869-3892.
    [101]Yang J,Shen H S.Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions[J].Composite:Part B,2003,34:103-115.
    [102]Park Jae-Sang,Kim Ji-Hwan.Thermal postbuckling and vibration analyses of functionally graded plates[J].Journal of sound and Vibration,2006,289:77-93.
    [103]马连生,赵永刚.功能梯度材料圆(环)板的屈曲分析[J].甘肃工业大学学报,2003,29(4):140-143.
    [104]Ng T.Y.,Lam K.Y.,Liew K.M.,Reddy J.N..Dynamic stability analysis functionally graded cylindrical shells under periodic axial loading.International Journal of Solids and structures,2001,38:12951309.
    [105]Loy C T,Lam K Y,Reddy J N.Vibration of functionally graded cylindrical shells[J].International Journal of Mechanical Sciences,1999,41(3):309-324.
    [106]Yang J,Shen H S.Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments[J].Journal of Sound and Vbiration,2002,255(3):579-602.
    [107]Yang J,Shen H S.Dynamic response of initially stressed functionally graded rectangular thin plates[J].Composite Structures,2001,54:497-508.
    [108]陈伟球,叶贵如,蔡金标等.球面各向同性功能梯度球壳的自由振动[J].力学学报,2001,33(4):768-775.
    [109]马连生.功能梯度板的弯曲、屈曲和振动:线性和非线性分析[D].西安交通大学博士论文,2003.6.
    [110]黄小林,沈惠申.热环境下功能梯度材料板的自由振动和动力响应[J].工程力学,2005,22(3):224-227.
    [111]黄小林,沈惠申,带压电层的混合层合板的自由振动和动力响应,力学季刊,2004,25(1),107-112.
    [112]Coffin D W,Bloom F,Elastica solution for the hygrothermal buckling of a beam[J],International Journal of Non-Linear Mechanics,1999,34,935-947.
    [113]Vaz M A,Solano R F.Post-buckling analysis of slender elastic rods subjected to uniform thermal loads[J].Journal of Thermal Stresses,2003,26(9):847-860.
    [114]Vaz M A,Solano R F.Thermal post-buckling of slender elastic rods with hinged ends constrained by a linear spring[J].Journal of Thermal Stresses,2004,27:367-380.
    [115]Li Shi-rong,Zhou You-he,Zheng Xiao-jing.Thermal post-bucking of a heated elastic rod with pinned-fixed ends[J],Journal of Thermal Stresses.2002,25(1):45-56.
    [116]Li.S.-R.Cheng.C.J.,Thermal Post-Buckling Analysis of Heated Elastic Rods,Applied Mathematics and Mechanics,2000,21(2):133-140.
    [117]Li.S R,Cheng,C.J,Zhou.Y.H.Thermal post-buckling of elastic beams subjected to a transversely non-uniform temperature rising[J].Applied Mathematics and Mechanics(English Edition),2003,24(5),514-520.
    [118]Li.S-R,Cheng.C-J,Thermal buckling of thin annular plates under multiple loads,Applied Mathematics and Mechanics.1991,12(3):301-308.
    [119]Li.S.R,Zhou Y.H.Geometrically nonlinear analysis of Timoshenko beams under thermomechanical loadings[J].Journal of Thermal Stresses,2003,26(9):867-872.
    [120]Li S-R,Teng.Z-C,Zhou Y-H.Free vibration of heated Euler-Bernoulli beams with thermal post-buckling deformations,Journal of Thermal Stresses,2004,17:843-856.
    [121]Zhu H,Sankar B V.A Combined Fourier Series-Galerkin Method for the Analysis of Functionally Graded Beams.Journal of Applied Mechanics,2004,71:1-4.
    [122]李世荣,范亮亮,热环境中功能梯度材料圆板的自由振动,振动工程,2007,20(4):353-360.
    [123]李世荣.非线性柔韧梁板结构的热过屈曲和振动[D].兰州大学博士学位论文,2003.4.
    [124]尚福林,王子昆,李中华.压电层合板热屈曲问题的精确分析,固体力学,1997,18(1):1-10.
    [125]于涛,仲政,功能梯度压电悬臂梁的弯曲分析,中国科学G辑,2006,36(5):518-529.
    [126]李世荣,钮鹏,非均匀升温下Timoshenko夹层梁热过屈曲精确数学模型及其数值解,兰州理工大学学报,2007,33(4),156-160.
    [127]丁皓江,徐荣桥,国风林,轴对称层合横观各向同性压电圆板的精确解[J],中国科学(E),1999,29(3):214-221.
    [128]丁皓江,陈伟球,徐荣桥,压电板壳自由振动的三维精确分析[J],力学季刊,2001,22(1):1-9.
    [129]林启荣,刘正兴,王宗利,电场作用下压电层合梁的分析[J],应用数学和力学,2001,22(9):969-975.
    [130]Fridman Y.L,Abramovich H.,Enhanced structural behavior of flexible laminated composite beams,Composite Structures,2008,82:140-154.
    [131]Dai K.Y.,Liu G.R.,X.Han,Lim K.M.,Thermo-mechanical analysis of functionally graded material(FGM)plates using element-free Galerkin method,Computers and Structures 83(2005)1487-1502.
    [132]Yang.J.,Kitipornchai S.,Liew K.M.,Large amplitude vibration of thermo-electro-mechanically stressed FGM laminated plates,Comput.Methods Appl.Mech.Engrg.192(2003)3861-3885.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700