功能梯度材料梁、壳结构的静态力学响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了功能梯度Timoshenko梁和扁薄锥壳结构在变温场作用下的几何
    非线性静态响应问题。主要内容包括以下几个方面:
    1. 介绍了功能梯度材料(FGMs)的性质、特点及其在现代科技和工程中的应
    用。在查阅大量文献的基础上,总结了近几年国内外研究人员对这种材料结构力
    学行为的研究成果,特别是对FGM梁、板(壳)结构在机械和热载荷作用下的
    宏观力学响应研究现状和最新进展进行了详细说明。
    2. 基于轴线可伸长和横向可剪切的几何非线性理论,采用打靶法研究了功
    能梯度材料Timoshenko梁在横向非均匀升温下的静态热屈曲和热过屈曲响应。
    在精确考虑轴线伸长和一阶横向剪切变形的基础上,建立了功能梯度材料
    Timoshenko梁在热-机载荷同时作用下的大变形控制方程。其中,功能梯度材
    料梁的材料性质采用了沿厚度方向按照幂函数形式连续变化的形式。采用打靶法
    数值求解所得强非线性边值问题,获得了横向非均匀升温载荷作用下两边固支
    Timoshenko梁的静态非线性屈曲和过屈曲数值解。绘出了梁的挠度随温度载荷
    及材料梯度参数变化的特性曲线,分析和讨论了温度载荷及材料的梯度性质参数
    对梁变形的影响。研究结果表明,由于材料在横向的非均匀性,变形过程中存在
    拉-弯耦合效应。
    3. 研究了陶瓷/金属FGM扁薄锥壳在横向非均匀温度场中的几何非线性大
    变形问题。在假设材料的物性参数只沿厚度按幂函数均匀变化的前提下,基于
    Kirchhoff直法线假设和von Karman几何非线性理论推导出了以中面位移为基本
    未知量的功能梯度材料扁薄锥壳在横向非均匀热载荷作用下的轴对称大挠度控
    制方程。采用打靶法数值求解所得非线性常微分方程边值问题,得到了扁锥壳
    静态温度载荷作用下大挠度弯曲变形数值解。给出了壳体变形随壳体的形状参
    数、载荷和材料参数变化的特征关系曲线,重点分析和讨论了温度参数和材料梯
    度参数对变形的影响。
In this thesis, geometrically nonlinear static responses of a functionally graded Timoshenko beam and a shallow conical shell, subjected to thermal loadings, are studied. The main contents of it are as follows:
    1. Firstly, the characteristics of functionally graded materials (FGMs) and the applications of FGMs in modern engineering, science and technology are briefly introduced. And then, according to my survey of the corresponding literatures, an outline about the research results and advances in the structural mechanical behaviors of FGM structures is summarized, especially about the macroscopical mechanical responses of FGM beams and plates (shells), subjected to thermal and mechanical loadings, are also presented in details.
    2. Based on the geometrically nonlinear theory for axially extensible and transversely shearable beams, the thermal buckling and post-buckling of the FGM Timoshenko beams, subjected to transversely non-uniform temperature rise, are investigated. Accurately considering the axial extension and transverse shearing of the beams, the governing equations for FGM Timoshenko beams, subjected to thermal and mechanical loadings with large elastic deformations, were formulated. In the analysis, the material properties of the functionally graded Timoshenko beam are assumed to vary continuously through the thickness of the beam, according to a power law distribution of the volume fraction of the constituents. By using shooting method to numerically solve the above mentioned strongly nonlinear boundary value problems of ordinary differential equations. The results of thermal buckling and post-buckling of transversely non-uniformly heated Timoshenko beams with pinned-pinned edges are obtained. The deformation param
    eters of the FGM beams versus thermal loading and material gradient constant are plotted. The effects of material gradient properties and thermal loading on deformations of beam are discussed in details. The results show that there exist tension-bend coupling in the deformation because of the transversely non-uniform characteristic of materials.
    3. Geometrically nonlinear large deformation problem of ceramic/metal FGM thin shallow conical shell is examined. Firstly, by assuming the mechanical properties of the functionally graded conical shells varying continuously through the thickness of the shells and obeying a power law distribution of the fraction of the graded shells and on the basis of the Kirchhoff straight normal assumption together with von Karman's geometrically nonlinear theory, the governing equations for axi-symmetrical large deformation of functionally graded shallow conical shell subjected to non-uniform
    
    
    
    temperature rise are derived. Numerical results of bending of the statically thermal loaded shell with large deflection are obtained through solving the boundary value problem for nonlinear ordinary differential equations by using shooting method. The characteristic curves of the deformation parameter versus the shape parameter, thermal loadings and material gradient constant of the FGM shells are illustrated and also the effects of material gradient property, shape parameters and temperature parameters on deformations of shells are discussed in details.
引文
1. 杨瑞成等.机械工程材料.重庆:重庆大学出版社,2000.
    2. M Koizumi and M Niino. Overview of FGM research in Japan. MRS Bull, 1995, 20: 19-21.
    3. W.A.Kaysser and B.Iisechner. FGM research in Europe. MRS Bull, 1995, 20: 22-26.
    4. Z.H.Jin, R.C.Batra. Some basie fracture mechanics concepts in functionally graded materials. Journal of the Mechanics and Physics of Solids, 1996, 44: 1221-1235.
    5. J.Rdel and A.Neubrand: Proc.Conf. Functionally Graded Materials 1996, Tsukuba, Japan, 1996,I. Shiota and Y.Miyamoto, eds, Elsevier, Amsterdam, pp. 9-14.
    6. 郑慧雯等.功能梯度材料的研究进展.西南师范大学学报,2002,27(5) : 788-793.
    7. 王引真等.功能梯度材料的研究动态.机械工程材料,1997,21(4) :35-37.
    8. 张伟.功能梯度材料研究的现状和前景.新材料·新技术,2003,17(4) :216-29.
    9. 陈东等.功能梯度材料的进展.青岛建筑工程学院学报,2001,22(4) :92-95.
    10. 沈惠申.功能梯度复合材料板壳结构的弯曲、屈曲和振动.力学进展,2004, 34(1) :53-60.
    11. S.Suresh[美]和A.Mortensen[瑞士]著.功能梯度材料基础-制备及热机械行 为.李守新 等译. 北京:国防工业出版社,2000.
    12. M.B.Bever and P.E.Duwez:Mate.Sci & Eng.,1972,10:1-8.
    13. Cherradi,D.Delfosse,B.Ilschner and A.Kawasaki:La Revue de Metallurgie-CIT, February 1996,pp.l85-196.
    14. J,Rdel and A.Neubrand: Proc. Conf. Functionally Graded Materials 1996. Tsukuba, Japan, 1996,I.Shiota and Y.Miyamoto, eds, Elsevier, Amsterdam, pp.9-14.
    15. Lee.Y.D., Erdogen.F. Residual/thermal stresses in functionally graded material and laminated thermal barrier coatings. International Journal of Fracture, 1994/1995,69:145-165.
    16. Fukui.Y., Takashimima.K., Ponton.C.B. Measurement of Young's modulus and internai friction of an in site A1-A13Ni functionally gradient material. J. Mater Sci, 1994,29:2281-2288.
    17. Markworth-AJ, Saunders-JH . A modei of structural optimization for a functionally graded material. Mater. Letters,1995,22(l-2) :103-107.
    18. Giannakopoulos.A.E., Suresh.S., Finot.N., Olsson.M. Elastoplastic analysis of thermal cycling: layered materials with compositional gradients. Acta Metall
    
    Mater, 1995,43 (4) : 1335-1354.
    19. Williamson.R.L., Rabin.B.H., Drake.J.T. Finite element analysis of thermal residual stress at graded ceramic-metal interfaces, part Ⅰ. Modei description and geometric effects. J. Appl. Phys., 1993,74(2) :1310-1320.
    20. Drake.J.T., Williamson.R.L., Rabin.B.H. Finite element analysis of thermal residual stress at graded ceramic-metal interfaces, part Ⅱ. Interface optimization for residual stress reduction. Journal of Applied Physics,1993,74(2) :1321-1326.
    21. Mori.T, Tanaka.K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica,1973,21:571-574.
    22. Sumi.N., Sugano.Y. Dynamic thermal stresses in a functionally graded materials with temperature-dependent materials properties. Transactions of the Japan Society of Mechanical Engineerings, Series A, 1995. 61(590) :2296-2301.
    23. Zuiker.J.R. Functionally graded materials: chose of micromechanics modei and limitations in property variation. Comp Engng, 1995,5(7) :807-819.
    24. Reiter.T., Dvorak.G, Tvergaard.V. Micromechanics modei for graded composite materials. Journal of Mechanics and Physics of Solids,1997,45(8) :1281-1302.
    25. Erdogen.F. The crack problem for bonded inhomogeneous materials under anti-plane shear loading. J.Appl. Mech. 1985,52:823-828.
    26. Jin.Z.H., Noda.N. Minimization of thermal stress intensity factor for a crack in a metal-ceramic mixture. Ceramie Trans., Functionally Gradient Materials, 1993, 34:47-54.
    27. 赵希淑.功能梯度材料的裂纹及热应力问题研究.中国科学院博士学位研究 生学位论文,2001.
    28. Tanigawa Y, Akai T, Kawamura R, Oka N. Transient heat conduction and thermal stress problems of a nonhomogeneous plate with temperature-dependent material properties. Journal of Thermal Stresses,1999,19:77-102.
    29. Noda Naotake, Tsuji Tomoaki. Steady thermal stresses in a plate of functionally gradient material[J].日本机械学会论文集A编,1991,57(535) :625-631.
    30. Cheng Z Q, Batra R C. Three-dimensional thermoelastic deformations of a functionally graded elliptic plate. Composites Part B: Engineering,2000, 31:97-106
    31. J.N.Reddy and C.D.Chin. Thermomachanical analysis of functionally graded cylinders and plates. Journal of Thermal stresses, 1998,21:593-626.
    32. Obata Y, Noda N. Steady thermal stresses in a hollow circular cylinder and a hollow sphere of a functionally graded materials. Journal of thermal Stresses, 1994,17:471-178.
    
    
    33. Y. Ootaoa, Y. Tanigawa, T. Nakamurac. Optimization of material composition of FGM hollow circular cylinder under thermal loading: a neural network approach. Composites: Part B, 1999,30 : 415-422
    34. Y. Ootao, Y. Tanigawa. Three-dimensional transient piezothermoelasticity in functionally graded rectangular plate bonded to a piezoelectric plate. International Journal of Solids and Structures,2000,37:4377-4401.
    35. J.N.Reddy, Zhen-Qiang Cheng . Three-dimensional thermomechanical deformations of functionally graded rectangular plates, Eur. J. Mech. A/Solids, 2001,20:841-855.
    36. J.N.Reddy, C.M.Wang, S.Kitipornchai. Axisymmetric bending of functionally graded circular and annular plates. Eur. J. Mech.,1999,18:185-199.
    37. L.S. Ma, T.J. Wang. Axisymmetric post-buckling of a functionally graded circular plate subjected to uniformly distributed radial compression. Materials Science Forum, 2003,423-425:719-724.
    38. GN.Praveen and J.N.Reddy. Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. Int. J. Solids Structures,1998,135: 4457. 4476.
    39. J.N. Reddy. Analysis of functionally graded plates. International Journal for numerical Methods in Engineering, 2000,47:663-684.
    40. L.S.Ma,T.J.Wang. Nonlinear bending and postbuckling of a functionally graded circular plate under mechanical and thermal loadings. International Journal of Solids and Structures, 2003,40,3311-3330.
    41. 杨杰,沈惠申.热/机械载荷下功能梯度材料矩形厚板的弯曲行为.固体力学 学报,2003,24(1) :119-124.
    42. J.Woo, S.A.Meguid. Nonlinear analysis of functionally graded plates and shallow shells. International Journal of Solids and Structures, 38:7409-7421,2001.
    43. Esther Feldman and Jacob Aboudi, Buckling analysis of functionally graded plates subjected to uniaxial loading, Composite Strctures, 1997, 38:29-36.
    44. L.S.Ma,T.J.Wang. Relationships between the solutions of axisymmetric bending and buckling of functionally graded circular plates based on the third-order plate theory and the classical solutions for isotropic circular plates. International Journal of Solids and Structures, 2004,41(1) :85-101.
    45. Yang. J, Shen. H.S. Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions. Composite: Part B 2003,34:103-115.
    46. T.Y.Ng, K.Y.Lam, K.M.Liew, J.N.Reddy . Dynamic stability analysis of
    
    functionally graded cylindrical shells under periodic axial loading. International Journal of Solids and structures,2001, 38: 1295-1309.
    47. R.Javaheri, M.R. Eslami. Thermal buckling of functionally graded plates. AIAA Journal, 2002,40: 162-169.
    48. Sherman Dov. The mechanical behavior of ceramic-metal laminate under thermal shock. Journal of Materials Research, 1999,14(9) : 3544-3551.
    49. 杨杰.功能梯度复合材料板结构的非线性力学行为与动力特性.上海交通大 学博士学位论文,2001. 12.
    50. C.T.Loy, K.Y.Lam, J.N.Reddy. Vibration of functionally graded cylindrical shells. International Journal of Mechanical Science, 41:309-324,1999.
    51. Liew K M,Yang J,Kitipornchia S. Postbucking of piezoelectric FGM plates subject to thermo-electro-mechanical loading. International Journal of Solids and Structures, 2003,41(15) :3869-3892.
    52. Yang. J, Shen. H.S . Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments. Journal of Sound and Vbiration,2002, 255(3) ,579-602.
    53. Yang. J, Shen. H.S. Dynamic response of initially stressed functionally graded rectangular thin plates. Composite Structures, 2001, 54:497-508.
    54. S.C.Pradhan, C.T.Loy,K.Y.Lam, J.N.Reddy . Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Applied Acoustics, 2000,61: 111-129.
    55. G Oliveto. Dynamic Stiffness and flexibility functions for axially strained Timoshenko beans. Journal of Sound and Vibration, 1992,154(1) :1-23.
    56. A. Y. T. Leung, W. E. Zhou, C. W. Lim et al., Dynamic stiffhess for piecewise non-uniform Timoshenko column by power series---part Ⅰ: Conservative axial force, International Journal for numerical methpds in Engineering, 2001, 51: 505-529.
    57. A. Y. T. Leung, W. E. Zhou, C. W. Lim et al.. Dynamic stiffness for piecewise non-uniform Timoshenko column by power series---part Ⅱ: Conservative axial force. International Journal for numerical methods in Engineering, 2001, 51: 531-552.
    58. A.Libai. Equations for the nonlinear planar deformation of beams. Transactions of the ASME,1992,10,59:9253-9265.
    59. R.B.Maretic and T.M.Atanackovic. Buckling of column with base attached to elastic half-space. Journal of Engineering Mechanics,2001,127:242-247.
    60. Shirong Li,Youhe Zhou. Geometrically nonlinear analysis of Timoshenko beams
    
    under thermomechanical loadings. Journal of Thermal stresses.2003,26:861-872.
    61. 李世荣.非线性柔韧梁板结构的热过屈曲和振动.兰州大学博士学位论 文,2003. 4.
    62. Shirong Li. Thermal post-buckling of a heated elastic rod with pinned-fixed ends. Journal of Thermal stresses,2002,25:45-56.
    63. Robert C.Wetherhold, Steven Seelman &Jianzhong Wang. The use of functionally graded materials to eliminate or control thermal deformation. Composites Science and Technology, 1996,56:1099-1104.
    64. Y.Y.YANG. Stress analysis in a joint with a functionally graded material under a thermal loading by using the Mellin transform method. Int. J. Solids Structure, 1998,35(12) : 1261-1287.
    65. A.Chakraborty, S.Gopalakrishnan. A spectrally formulated finite element for wave propagation analysis in functionally graded beams. International Journal of Solids and Structures, 2003,40: 2421-2448.
    66. 李世荣.弹性杆热过屈曲精确模型及其打靶法.甘肃工业大学学报,1997, 23(3) .
    67. 王新志等.扁锥壳在静载荷下的非线性振动.第六届全国振动理论及应用学 术会议论文集,1997.
    68. X.Z.Wang,Y.GZhao,K.Y.Ye. Non-symmetrical Large Deformation of a Shallow Thin Conical Shell. Applied Mathematics and Mechanics, 1998, 19(10) : 917-928.
    69. Y.G.Zhao,J.N.Yang,S.R.Li,L.S.Ma. Large deflection for structure composed of a thin annular plate and a shallow conical shell subjected to temperature and uniform transverse load. ICNM-Ⅳ,Shanghai ,2002:531-535.
    70. 赵永刚等.扁薄锥壳在周边弯矩和横向载荷共同作用下的非线性振动.应用 数学和力学,2003,24(12) :1223-1230.
    71. 赵永刚.扁薄锥壳非对称大变形问题.兰州理工大学硕士学位论文,1996.
    72. 何福宝,沈亚鹏.板壳理论.西安:西安交通大学出版社,1993.
    73. 叶开源.柔韧构件(杆、膜、板壳)的大挠度问题.兰州,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700