6种共栖菊头蝠共存机制及菲律宾菊头蝠组蝙蝠声波主频偏离机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
翼手目(Chiroptera)动物是哺乳动物中仅次于啮齿目的第二大目,具有极高的物种多样性,对维持生态系统平衡具有重要作用。然而,近年来由于生境丧失、滥用农药等人为干扰因素,翼手目动物的生物多样性急剧丧失。因此,亟需开展对翼手目动物的生态学研究。物种的稳定共存是维持生物多样性的基础之一,而翼手目动物常多个物种混居,且群落成员多为生态需求相似的同一共位群(Guild)物种,为研究物种共存机制提供了理想的模型。通过对翼手目动物共存机制的研究,可为制定物种保护措施提供科学依据及理论指导。此外,回声定位蝙蝠的声波结构是其生态适应力的重要体现,有的蝙蝠声波结构会发生异于常规的变化,这种非常规现象可能暗示了蝙蝠在进化过程中对自然选择压力的应答,研究这种现象的产生机制为全面揭示蝙蝠的进化辐射及适应性进化提供了新视角。
     本研究以云南省6种共栖菊头蝠科蝙蝠:马铁菊头蝠(Rhinolophus ferrumequinum)、中华菊头蝠(R. sinisus)、中菊头蝠(R. affinis)、大耳菊头蝠(R. macrotis)、短翼菊头蝠(R. lepidus)及菲菊头蝠(R. pusillus)为对象,基于生态位分化理论研究物种的共存机制。同时,首次通过猎物选择行为学实验研究了大耳菊头蝠声波主频偏离与体型负相关规律的生态驱动力;首次基于生理结构角度揭示了发声器官及声信号接收器官形态的非常规变化是菲律宾菊头蝠组蝙蝠声波产生非常规分化的生理基础。主要内容如下:
     1.通过几何形态测量法比较了6种同域共存菊头蝠头骨的形态差异。结果表明,6种共栖菊头蝠头骨的大小和形状均存在显著差异,头骨形状的变化协同于尺寸的变化。上颌骨形状的种间差异体现了蝙蝠对回声定位功能、猎物咀嚼等多重功能的适应,下颌骨的形状变化主要体现了蝙蝠对食物咀嚼功能的适应。
     2.通过Variance Test检验了6种共栖菊头蝠的5个重要特征参数:回声定位声波主频、前臂长、翼载及头骨质心的种间差异及其排布模式,结果表明在6种共栖蝙蝠中,声波主频的种间差异呈均匀排布,而其余参数的种间差异为随机排布。该结果不能回答竞争作用是否是群落结构的决定作用,但声信号的群落特征替代(Community-wide characters displacement))暗示了共栖蝙蝠感官能力的差异对维持物种共存的重要作用。
     3.通过猎物选择行为学实验验证了菲律宾菊头蝠组蝙蝠声波主频偏离常规的生态驱动力。猎物选择实验表明,菲律宾菊头蝠组蝙蝠——大耳菊头蝠的猎物选择模式与和其同域共存,体型相似但声波主频存在明显分化的短翼菊头蝠的猎物选择模式之间存在差异,表明了群落内食物资源利用分化的竞争作用是促使大耳菊头蝠声波主频偏离常规的生态驱动力之一。
     4.鼻腔及外耳是菊头蝠科蝙蝠声波发射及回声信号接收系统中的重要组成部分。通过对比10种菊头蝠科蝙蝠的鼻腔形态及外耳长度研究了3种菲律宾菊头蝠组蝙蝠声波主频偏离常规的生理结构基础。结果表明,10种蝙蝠的鼻腔尺寸及外耳长度分别与其体型呈正相关,而声波主频偏离与体型负相关规律的3种菲律宾菊头蝠组蝙蝠的鼻腔大小及外耳长度均相应的偏离了其与体型的正相关规律。该结果暗示形态偏离常规的声信号处理系统是3种菲律宾菊头蝠组蝙蝠声波主频偏离与体型负相关规律的生理基础之一。对前臂长、鼻腔大小及外耳长度的偏相关分析结果表明发声器官与回声信号接收器官之间的相关性强于其与体型之间的相关性,暗示了声信号接收器官与发声器官的形态之间具有良好的适应性。
     5.研究了10种蝙蝠前臂长、鼻腔大小及耳长与蝙蝠的回声定位声波主频之间的关系。简单相关分析及一元线性回归分析的结果表明,蝙蝠的回声定位声波主频分别负相关于这3个形态参数;3种菲律宾菊头蝠组蝙蝠的声波主频偏离了与体型的负相关关系,但均符合基于鼻腔尺寸或外耳长度的预测。Mantel检验结果表明,10种蝙蝠的声波主频种间分歧程度与其鼻腔大小及耳长的种间差异程度呈正相关,而与体型差异相关性较弱。偏相关分析、多元线性回归分析及通径分析结果表明,声信号处理系统及体型均作用于蝙蝠的回声定位声波主频,但声信号处理系统形态与声波主频相关性更高且影响更加直接。在声信号处理系统中,发声器官与回声定位声波主频的相关性高于回声接收器官与声波主频的相关性,暗示了发声器官的形态结构是影响回声定位蝙蝠声波主频的首要生理因素。
Bats constitute the second largest order of mammals worldwide with high species richness. As an important biological indicator for ecosystem, the bats diversity has declined dramatically due to human disturbance. So, the ecology study for bats is seriously needed. The stable coexistence of sympatric species maintains species diversity. Bats are ideal organisms with which to test hypotheses related to coexistence. Research on the coexistent mechanism in bats communities can provide the significant knowledge for conservation biology. Furthermore, the echolocation calls and morphologies of bats have profound effects on the way they live and they often have an allometry relationship. However, some bats species deviated from this correlation. The physics of echolocation is intimately related to the ecology of insectivorous bats. Deviations from allometric relationships may imply the response of bats to nature selection pressure, providing insight into the evolutionary radiation and the adaptive evolution of bats.
     From 2004 to 2008, we studied the coexistent mechanism in six sympatric rhinolophids species: Rhinolophus ferrumequinum, R. sinisus, R. affinis, R. macrotis, R. lepidus, R. pusillus in Shuanghe town, Yunnan Province. We also studied the ecological and physical factors which are responsible for deviation of echolocation call frequencies from allometry in rhinolophids from Phillippinensis-group. The details are as follow.
     1. The skull form of six sympatric rhinolophids species was compared by geometric morphometrics method. Both size and shape of crania and mandible were significant different among these sympatric species. The variances in shape of crania and mandible were related to the size variances of crania and mandible, respectively. The variances in crania may imply the complex adaptation for multiply functions, such as echolocation and food chew, while the variances in mandible may be the result of adaptation for diet.
     2. The Variance Tests were used to detect community-wide characters displacement in five character parameters collected from 6 sympatric species, including peak frequency, forearm length, wing loading and centroid size of crania and skull, which associated with the resource using. The results showed support for evenly displaced acoustic character, no support on other four parameters. These results showed the importance of sensory echology in maintaining animal coexistence and the mixed support for competition.
     3. The prey selection experiment was conducted to test the ecological factor leading to deviating peak frequency of echolocation call in Rhinolophus macrotis, one species from Phillippinensis-group. The prey selection strategy of R. macrotis was compared with the R.lepidus. These two sympatric species are morphologically similar but acoustically divergent: R.macrotis has an echolocation frequency significantly lower than that predicted by the allometric relationship, whereas that of R. lepidus agreed with expectations. These results confirmed the existence of finely tuned trophic niche differentiation and suggested that food resource partitioning is one of the factors leading to lower peak frequency of calls in R. macrotis.
     4. Nasal cavity and outer ear are important part of sound emission and echo reception for rhinolophids, respectively. We compared the nasal chamber size and ear length of 10 species rhinolophids, including three species from Phillippinensis-group, to investigate the physical factor relating the divergent peak frequency of echolocation call in Phillippinensis-group bats. The results showed that the nasal cavity size and ear length were positively related to the forearm length, respectively. We found that both of the nasal chamber size and ear length of three species of rhinolophids from Phillippinensis-group also deviated from the allomety relationship with body size. This result indicated that the distinct developed sound signal system is one of the physical bases for divergent peak frequency of echolocation call from prediction by forearm in Phillippinensis-group bats. The result of partial correlation among three morphology parameters showed that the relationship between sound emission and echo reception were stronger than that with body size, implying the closely adaption between those different functional parts.
     5. We also studied the relationship between echolocation call frenquency and different morphology parameters. The results of bivariate correlation analysis and linear regression analysis showed that the call peak frequency was negtively related to the forearm length, nasal cavity size and ear length, respectively. The call peak frequencies of three rhinolophid species from Phillippinensis-group were accordance with the prediction basing on nasal cavity size or ear length. The results of Mantel test suggested that the divergence in call frequency were positively with divergences in nasal cavity size or era length but not to that in forearm length. The results of partial correlation analysism, multiply regression analysis and path analysis suggested that the peak frequency was stronger with the morphology of sound manage system than that with body size. Those results also implied that the nasal cativty form may be the most important physical factor influencing the call frequency.
引文
[1] Jablonski D. Extinction: past and present[J]. Nature, 2004, 427 (6975): 589-589.
    [2] Loreau M, Naeem S, Inchausti P, et al. Biodiversity and ecosystem functioning: current knowledge and future challenges[J]. Science, 2001, 294 (5543): 804-808.
    [3] Tilman D. Biodiversity: population versus ecosystem stability[J]. Ecology, 1996, 77 (2): 350-363.
    [4]李延梅.塑造可持续的未来:IUCN 2009—2012年计划. 2009
    [5] Amarasekare P. Coexistence of competing parasitoids on a patchily distributed host: local vs. spatial mechanisms[J]. Ecology, 2000, 81 (5): 1286-1296.
    [6] Chave J. Neutral theory and community ecology[J]. Ecology Letters, 2004, 7 (3): 241-253.
    [7] Simmons N B. Order chiroptera. Mammal species of the world: a taxonomic and geographic reference (DE Wilson and DM Reeder, eds.). 3rd ed. Johns Hopkins University Press, Baltimore, Maryland, 2005: 312-329.
    [8] Jones G, Jacobs D S, Kunz T H, et al. Carpe noctem: the importance of bats as bioindicators[J]. Endangered Species Research, 2009, 8: 93-115.
    [9] Hutson A M, Mickleburgh S P, Racey P. Microchiropteran bats: global status survey and conservation action plan[M]. World Conservation Union, 2001.
    [10] Arlettaz R, Perrin N, Hausser J. Trophic resource partitioning and competition between the two sibling bat species Myotis myotis and Myotis blythii[J]. Journal of animal ecology, 1997, 66 (6): 897-911.
    [11] Stevens R D, Willig M R. Geographical ecology at the community level: perspectives on the diversity of New World bats [J]. Ecology, 2002, 83 (2): 545-560.
    [12] Patten M A. Correlates of species richness in North American bat families [J]. Journal of Biogeography, 2004, 31: 975-985.
    [13] Acharya L, Fenton M B. Echolocation behaviour of vespertilionid bats (Lasiurus cinereus and Lasiurus borealis) attacking airborne targets including arctiid moths[J]. Canadian Journal of Zoology, 1992, 70: 1292-1298.
    [14] Bogdanowicz W, Fenton M B, Daleszczyk K. The relationships between echolocation calls, morphology and diet in insectivorous bats[J]. Journal of Zoology, 1999, 247 (03): 381-393.
    [15] Campbell P, Schneider C J, Zubaid A, et al. Morphological and ecological correlates of coexistence in Malaysian fruit bats (Chiroptera: Pteropodidae)[J]. Journal Mammalogy, 2007, 88 (1):105-118.
    [16] Feng J, Chen M, Li Z, et al. Correlation between echolocation calls and morphological features among three kinds of bats[J]. Progress in Natural Science, 2002, 12 (9): 673-678.
    [17] Heller K G, Helversen O. Resource partitioning of sonar frequency bands in rhinolophoid bats[J]. Oecologia, 1989, 80 (2): 178-186.
    [18] Houston R D, Boonman A M, Jones G. Do echolocation signal parameters restrict bats' choice of prey[M]. Chicago: University of Chicago Press, 2004. 339–345.
    [19] Jacobs D S. Community level support for the allotonic frequency hypothesis[J]. Acta chiropterologica, 2000, 2 (2): 197-207.
    [20] Jacobs D S, Barclay R M R, Walker M H. The allometry of echolocation call frequencies of insectivorous bats: why do some species deviate from the pattern?[J]. Oecologia, 2007, 152 (3): 583-594.
    [21] Jones G. Scaling of echolocation call parameters in bats [J]. Journal of Experimental Biology, 1999, 202 (23): 3359-3367.
    [22] Kingston T, Rossiter S J. Harmonic-hopping in Wallacea's bats[J]. Nature, 2004, 429 (6992): 654-657.
    [23] Siemers B M, Gütinger R. Prey conspicuousness can explain apparent prey selectivity[J]. CurrentBiology, 2006, 16 (5): 157-159.
    [24] Siemers B M, Schnitzler H U. Echolocation signals reflect niche differentiation in five sympatric congeneric bat species[J]. Nature, 2004, 429 (6992): 657-663.
    [25] Siemers B M, Swift S M. Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae)[J]. Behavioral Ecology and Sociobiology, 2006, 59 (3): 373-380.
    [26] Dietz C, Dietz I, Siemers B M. Wing measurement variations in the five European horseshoe bat species (Chiroptera: Rhinolophidae)[J]. Journal of Mammalogy, 2006, 87 (6):1241-1251.
    [27] Dumont E R. Feeding mechanisms in bats: variation within the constraints of flight [J]. Integrative and Comparative Biology, 2007,47(1):3-7.
    [28] Dumont E R, Herrel A, Medellín R A, et al. Built to bite: cranial design and function in the wrinkle-faced bat[J]. Journal of Zoology, 2009, 279 (4): 329-337.
    [29] Herrel A, De Smet A, Aguirre L F, et al. Morphological and mechanical determinants of bite force in bats: do muscles matter?[J]. Journal of Experimental Biology, 2008, 211 (1): 86-91.
    [30] Nogueira M R, Peracchi A L, Monteiro L R. Morphological correlates of bite force and diet in the skull and mandible of phyllostomid bats[J]. Functional Ecology, 2009, 23 (4): 715-723.
    [31] Santana S E, Dumont E R. Connecting behaviour and performance: the evolution of biting behaviour and bite performance in bats[J]. Journal of Evolutionary Biology, 2009, 22 (11): 2131-2145.
    [32] Santana S E, Dumont E R, Davis J L. Mechanics of bite force production and its relationship to diet in bats[J]. Functional Ecology, (In press).
    [33] Aguirre L F, Herrel A, Van Damme R, et al. Ecomorphological analysis of trophic niche partitioning in a tropical savannah bat community[J]. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2002, 269 (1497): 1271-1278.
    [34] Arita H T, Fenton M B. Flight and echlocation in the ecology and evolution of bats[J]. Trends in Ecology & Evolution, 1997, 12 (2): 53-58.
    [35] Galis F. The application of functional morphology to evolutionary studies[J]. Trends in Ecology & Evolution, 1996, 11 (3): 124-129.
    [36] Norberg U M, Rayner J M V. Ecological Morphology and Flight in Bats (Mammalia; Chiroptera): Wing Adaptations, Flight Performance, Foraging Strategy and Echolocation[J]. Philosophical Transactions of the Roya Society of London. Series B, Biological Sciences, 1987, 316 (1179): 335-427.
    [37] Suthers R A, Hartley D J, Wenstrup J J. The acoustic role of tracheal chambers and nasal cavities in the production of sonar pulses by the horseshoe bat, Rhinolophus hildebrandti[J]. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1988, 162 (6): 799-813.
    [38] Swartz S M, Freeman P W, Stockwell E F. Ecomorphology of bats: comparative and experimental approaches relating structural design to ecology[M]. Chicago: University of Chicago Press, 2003. 580–621.
    [39] Chesson P L, Warner R R. Environmental variability promotes coexistence in lottery competitive systems[J]. Am Nat, 1981, 117: 923-943.
    [40] Petraitis P S, Latham R E, Niesenbaum R A. The maintenance of species diversity by disturbance[J]. The Quarterly Review of Biology, 1989, 64 (4):393-418.
    [41] Armstrong R A, McGehee R. Competitive exclusion[J]. Am Nat, 1980, 115: 151-170.
    [42] Brown Jr W L, Wilson E O. Character displacement[J]. Systematic Biology, 1956, 5 (2): 49-65.
    [43] MacArthur R H. Geographical ecology: patterns in the distribution of species[M]. Princeton Univ Pr, 1984.
    [44] Arlettaz R. Habitat selection as a major resource partitioning mechanism between the two sympatric sibling bat species Myotis myotis and Myotis blythii[J]. Journal of Animal Ecology, 2001, 68 (3): 460-471.
    [45] Kerth G, Wagner M, K nig B. Roosting together, foraging apart: information transfer about food is unlikely to explain sociality in female Bechstein's bats (Myotis bechsteinii)[J]. Behavioral Ecology andSociobiology, 2001, 50 (3): 283-291.
    [46] Barclay R M R, Brigham R M. Prey detection, dietary niche breadth, and body size in bats: Why are aerial insectivorous bats so small?[J]. American Naturalist, 1991, 137 (5): 693-703.
    [47] Burles D W, Brigham R M, Ring R A, et al. Diet of two insectivorous bats, Myotis lucifugus and Myotis keenii, in relation to arthropod abundance in a temperate Pacific Northwest rainforest environment[J]. Canadian Journal of Zoology, 2008, 86 (12): 1367-1375.
    [48] Ma J, Liang B, Zhang S, et al. Dietary composition and echolocation call design of three sympatric insectivorous bat species from China[J]. Ecological Research, 2008, 23 (1): 113-119.
    [49] O'Neill M G, Taylor R J. Feeding ecology of Tasmanian bat assemblages[J]. Austral Ecology, 1989, 14 (1): 19-31.
    [50]韦力,周善义,张礼标,梁冰,洪体玉,张树义三种共栖蝙蝠的回声定位信号特征及其夏季食性的比较[J].动物学研究, 2006, 27 (003): 235-241.
    [51] Jacobs D S, Barclay R M R. Niche Differentiation in Two Sympatric Sibling Bat Species, Scotophilus Dinganii and Scotophilus Mhlanganii[J]. Journal of Mammology, 2009, 90 (4):879-887.
    [52] Kingston T, Jones G, Zubaid A, et al. Resource partitioning in rhinolophoid bats revisited[J]. Oecologia, 2000, 124 (3): 332-342.
    [53]张礼标,梁冰,周善义,卢立仁,张树义.广西扁颅蝠与褐扁颅蝠的食物选择.动物学研究, 2004, 25 (002): 105-110.
    [54] Jiang T, Feng J, Sun K, et al. Coexistence of two sympatric and morphologically similar bat species Rhinolophus affinis and Rhinolophus pearsoni[J]. Progress in Natural Science, 2008, 18 (5): 523-532.
    [55]叶根先,施利民,孙克萍,朱旭冯江.形态和声波相似的中华菊头蝠与中菊头蝠的共存机制[J].生态学报, 2009, 29 (010): 5330-5338.
    [56] Weinbeer M, Kalko E K V. Ecological niche and phylogeny: the highly complex echolocation behavior of the trawling long-legged bat, Macrophyllum macrophyllum[J]. Behavioral Ecology and Sociobiology, 2007, 61 (9): 1337-1348.
    [57] Aguirre L F, Herrel A, van Damme R, et al. Ecomorphological analysis of trophic niche partitioning in a tropical savannah bat community[J]. Proceedings of the Royal Society B: Biological Sciences, 2002, 269 (1497): 1271-1278.
    [58] Heller K G. Echolocation and body size in insectivorous bats: the case of the giant naked bat Cheiromeles torquatus (Molossidae)[J]. Le Rhinolophe, 1995, 11: 27-38.
    [59] Hickey M B C, Acharya L, Shannon P. Resource Partitioning by Two Species of Vespertilionid Bats (Lasiurus cinereus and Lasiurus borealis) Feeding around Street Lights[J]. Journal of Mammalogy, 1996, 77 (2): 325-334.
    [60] Gannon W L, Rácz G R. Character displacement and ecomorphological analysis of two long-eared Myotis (M. auriculus and M. evotis)[J]. Journal of Mammalogy, 2006, 87 (1):171-179.
    [61] Jones G. Does echolocation constrain the evolution of body size in bats? [A]. In: Minature verebrates: the implications of small vertebrate. Miller PJ ed. Symp Zool Soc Lond. 1996, 69: 111-128.
    [62] Novick A. Acoustic orientation[A]. In Biology of bats, Wimsatt W A ed. 1977, 3: 73-287.
    [63] Jones G. Bats vs moths: studies on the diets of rhinolophid and hipposiderid bats support the allotonic frequency hypothesis[M]. Prague: Charles University Press, 1992. 87–92.
    [64] Csorba G, Ujhelyi P, Thomas N. Horseshoe bats of the world (Chiroptera: Rhinolophidae)[M]: Shropshire: Alana Books 2003.
    [65] Schnitzler H U, Moss C F, Denzinger A. From spatial orientation to food acquisition in echolocating bats[J]. Trends in Ecology & Evolution, 2003, 18 (8): 386-394.
    [66] Jones G. Sensory Ecology: Echolocation Calls Are Used for Communication [J]. Current Biology, 2008, 18 (1): 34-35.
    [67] Siemers B M, Beedholm K, Dietz C, et al. Is species identity, sex, age or individual quality conveyedby echolocation call frequency in European horseshoe bats?[J]. Acta Chiropterologica, 2005, 7 (2): 259-274.
    [68] Kazial K A, Masters W M. Female big brown bats, Eptesicus fuscus, recognize sex from a caller's echolocation signals[J]. Animal Behaviour, 2004, 67 (5): 855-863.
    [69] Ruczynski I, Kalko E K V, Siemers B M. The sensory basis of roost finding in a forest bat, Nyctalus noctula[J]. Journal of Experimental Biology, 2007, 210 (20): 3607-3615.
    [70] Pye J D. Echolocation and countermeasures[A]. In: Bioacoustics. Acomparative approach, Lewis ed. Academic, New York, 1983: 407-429.
    [71] Pye J D. Is fidelity futile? the true signal is illusory, especially with ultrasound[J]. Bioacoustics (Berkhamsted), 1993, 4 (4): 271-286.
    [72] Jones G, Barlow K E. Cryptic species of echolocating bats [A]. In: Echolocation in bats and dolphins, Thomas J A, Moss C F, Vater M ed. 2004: 345-349.
    [73] Rydell J. Hearing and bat defence in geometrid winter moths [J]. Proceedings of the Royal Society B: Biological Sciences, 1997, 264 (1378): 83-88.
    [74] Schoeman C M, Jacobs D S. Support for the allotonic frequency hypothesis in an insectivorous bat community[J]. Oecologia, 2003, 134 (1): 154-162.
    [75] Zhou Z M, Guillén-Servent A, Lim B K, et al. A new species from southwestern China in the Afro-Palearctic lineage of the horseshoe bats (Rhinolophus)[J]. Journal of Mammalogy, 2009, 90 (1).
    [76]周昭敏,吴杨,夏彭.中国蝙蝠新记录——马氏菊头蝠. [J].动物学杂志,2004, 39 (005): 109-110.
    [77]王应祥.中国哺乳动物种和亚种分类名录与分布大全[M].北京:中国林业出版社, 2003.
    [78]张劲硕张,赵辉华中国翼手类新记录——小褐菊头蝠[J].动物学杂志, 2005, 40 (002): 96-98.
    [79] Siemers B M, Ivanova T. Ground gleaning in horseshoe bats: comparative evidence from Rhinolophus blasii, R. euryale and R. mehelyi[J]. Behavioral Ecology and Sociobiology, 2004, 56 (5): 464-471.
    [80] Connell J H. Diversity and the coevolution of competitors, or the ghost of competition past[J]. Oikos, 1980, 35 (2): 131-138.
    [81] Zhang L, Jones G, Rossiter S, et al. Diet of flat-headed bats, Tylonycteris pachypus and T. robustula, in Guangxi, South China[J]. Journal of Mammalogy, 2005, 86 (1): 61-66.
    [82] Findley J S. Bats: a community perspective[M]. Cambridge Univ Pr, 1993.
    [83] Arlettaz R, Godat S, Meyer H. Competition for food by expanding pipistrelle bat populations (Pipistrellus pipistrellus) might contribute to the decline of lesser horseshoe bats (Rhinolophus hipposideros)[J]. Biological Conservation, 2000, 93 (1): 55-60.
    [84] Dayan T, Simberloff D. Ecological and community-wide character displacement: the next generation[J]. Ecology Letters, 2005, 8 (8): 875-894.
    [85] Griffin D R, Webster F A, Michael C R. The echolocation of flying insects by bats[J]. Animal Behaviour, 1960, 8: 141-154.
    [86] Schnitzler H U, Kalko E K V. Echolocation by insect-eating bats[J]. BioScience, 2001, 51 (7): 557-569.
    [87] Surlykke A, Kalko E K V. Echolocating bats cry out loud to detect their prey[J]. PLoS ONE, 2008, 3 (4): e2036.
    [88] Bookstein F L. Morphometric tools for landmark data: geometry and biology[M]. Cambridge Univ Pr, 1997.
    [89] Zelditch M. Geometric morphometrics for biologists: a primer [M]. Academic Press, 2004.
    [90] Schaefer K, Bookstein F L. Does geometric morphometrics serve the needs of plasticity research?[J]. Journal of Biosciences, 2009, 34 (4): 589-599.
    [91] Slice D E, Ross A. Geometric Morphometric Classification of Crania for Forensic Scientists[M]. 2009.
    [92] Cardini A, Nagorsen D, PO’Higgins P, et al. Detecting biological distinctiveness using geometricmorphometrics: an example case from the Vancouver Island marmot[J]. Ethology Ecology and Evolution, 2009, 21: 3-4.
    [93] Mitteroecker P, Gunz P. Advances in geometric morphometrics[J]. Evolutionary Biology, 2009, 36 (2): 235-247.
    [94] Sokal R R, Rohlf F J. Biometry: the principles and practice of statistics in biological research[M]. New York: 1995.
    [95]Rohlf F J. TPSDig Version 2.1[M]. Stony Brook, NY: State University of New York, 2006.
    [96] Zelditch M L, Swiderski D L, Sheets H D, Fink WL. Geometric Morphometrics for Biologists. A Primer. [M]. San Diego: Elsevier Academic Press; 2004.
    [97] Pleasants J M. Null-model tests for competitive displacement: the fallacy of not focusing on the whole community[J]. Ecology, 1990, 71 (3): 1078-1084.
    [98] Pleasants J M. A comparison of test statistics used to detect competitive displacement in body size[J]. Ecology, 1994, 75 (3): 847-850.
    [99] Stynder D D. Tooth crown form as an indicator of niche partitioning among Late Miocene/Early Pliocene hyenas from“E”E'Quarry, Langebaanweg, South Africa[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 283 (3-4): 148-159.
    [100] Williams M R. Critical values of a statistic to detect competitive displacement[J]. Ecology, 1995, 76 (2): 646-647.
    [101] Jones G. Prey selection by the greater horseshoe bat (Rhinolophus ferrumequinum): Optimal foraging by echolocation?[J]. Journal of Animal Ecology, 1990, 59 (2): 587-602.
    [102] Safi K, Siemers B M. Implications of sensory ecology for species coexistence: biased perception links predator diversity to prey size distribution[J]. Evolutionary Ecology, 2009: 1-11.
    [103] Pavey C R, Burwell C J. Bat predation on eared moths: a test of the allotonic frequency hypothesis[J]. Oikos, 1998, 81 (1): 143-151.
    [104] Jones G. Bats vs moths: studies on the diets of rhinolophid and hipposiderid bats support the allotonic frequency hypothesis[M]. Prague: Charles University Press, 1992. 87–92.
    [105] Fenton M B, Portfors C V, Rautenbach I L, et al. Compromises: sound frequencies used in echolocation by aerial-feeding bats[J]. Canadian Journal Of Zoology, 1998, 76: 1174-1182.
    [106] Fullard J H. Sensory ecology and neuroethology of moths and bats: Interactions in a global perspective[M]. Camridge: Cambridge University, 1987. 244-272.
    [107] Jacobs D S, Ratcliffe J M, Fullard J H. Beware of bats, beware of birds: the auditory responses of eared moths to bat and bird predation[J]. Behavioral Ecology, 2008, 19 (6): 1333-1342.
    [108] Montoya I, Burns K C. Community-wide character displacement in New Zealand skinks[J]. Journal of Biogeography, 2007, 34: 2139-2147.
    [109] Marroig G, Cheverud J M. A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology, and ontogeny during cranial evolution of New World monkeys[J]. Evolution, 2001, 55 (12): 2576-2600.
    [110] Marroig G, Cheverud J M. Did natural selection or genetic drift produce the cranial diversification of neotropical monkeys?[J]. Am Nat, 2004, 163: 417-428.
    [111] Zhen F, Jiang X, Zhang S Y. Relationship between echolocation frequency and body size in eight species of horseshoe bats (Rhinolophidae)[J]. Acta Zoologica Sinica, 2002, 48 (6): 819-823 [In Chinese].
    [112] Fox J W. Modelling the joint effects of predator and prey diversity on total prey biomass[J]. Journal of Animal Ecology, 2004: 88-96.
    [113] Svenning J C. Microhabitat specialization in a species-rich palm community in Amazonian Ecuador[J]. Journal of Ecology, 1999, 87 (1): 55-65.
    [114] Tilman D. Resource competition and community structure[M]. Princeton University Press, 1982.
    [115] Houston R D, Boonman A M, Jones G, et al. Echolocation in bats and dolphins[M]. 2001.
    [116] Swift S, Racey P. Gleaning as a foraging strategy in Natterer's bat Myotis nattereri[J]. Behavioral Ecology and Sociobiology, 2002, 52 (5): 408-416.
    [117] Kalka M, Kalko E K V. Gleaning bats as underestimated predators of herbivorous insects: diet of Micronycteris microtis (Phyllostomidae) in Panama[J]. Journal of Tropical Ecology, 2005, 22 (01): 1-10.
    [118]郑乐怡,归鸿.昆虫分类(Volumes 1, 2)[D].南京师范大学出版社. 1999.
    [119] Scoble M J. The Lepidoptera: Form, Function and Diversity[D]: New York: Oxford University Press 1992.
    [120] Dingle H, Blakley N R, Miller E R. Variation in body size and flight performance in milkweed bugs (Oncopeltus)[J]. Evolution, 1980: 371-385.
    [121] Nijhout H F, Emlen D J, Competition among body parts in the development and evolution of insect morphology. In National Acad Sciences: 1998,95: 3685-3689.
    [122] Wickman P O, Karlsson B. Abdomen size, body size and the reproductive effort of insects[J]. Oikos, 1989: 209-214.
    [123] Xue R D, Ali A. Relationship between wing length and fecundity of a pestiferous midge, Glyptotendipes paripes(Diptera: Chironomidae)[J]. Journal of the American Mosquito Control Association, 1994, 10 (1): 29-34.
    [124] Jin L, Feng J, Sun K, et al. Foraging strategies in the greater horseshoe bat (Rhinolophus ferrumequinum) on Lepidoptera in summer[J]. Chinese Science Bulletin, 2005, 50 (14): 1477-1482.
    [125] Fenton M B. Aerial-feeding bats: Getting the most out of echolocation[M]. Chicago: University of Chicago Press 2004. 350–355.
    [126] Alldredge J R, Ratti J T. Further comparison of some statistical techniques for analysis of resource selection[J]. Journal of Wildlife Management, 1992, 56 (1): 1-9.
    [127] Byers C R, Steinhorst R K, Krausman P R. Clarification of a technique for analysis of utilization-availability data[J]. The Journal of wildlife management, 1984, 48 (3): 1050-1053.
    [128] Neuweiler G. Foraging ecology and audition in echolocating bats[J]. Trends in Ecology & Evolution, 1989, 4 (6): 160-166.
    [129] Fullard J H, Jackson M E, Jacobs D S, et al. Surviving cave bats: auditory and behavioural defences in the Australian noctuid moth, Speiredonia spectans[J]. Journal of Experimental Biology, 2008, 211 (24): 3808-3815.
    [130] Lawrence B D, Simmons J A. Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats[J]. The Journal of the Acoustical Society of America, 1982, 71: 585-590.
    [131] Guillén A, Francis C M, Ricklefs R E. Phylogeny and biogeography of the horseshoe bats[M]. Shrewsbury, UK: Alana Books, 2003. xii-xxiv.
    [132] Kunz T H, Whitaker Jr J O. An evaluation of fecal analysis for determining food habits of insectivorous bats[J]. Canadian Journal of Zoology, 1983, 61 (6): 1317-1321.
    [133] Robinson M F, Stebbings R E. Food of the serotine bat, Eptesicus serotinus-is faecal analysis a valid qualitative and quantitative technique?[J]. Journal of Zoology, 2009, 231 (2): 239-248.
    [134] Yoshino H, Armstrong K N, Izawa M, et al. Genetic and acoustic population structuring in the Okinawa least horseshoe bat: are intercolony acoustic differences maintained by vertical maternal transmission?[J]. Molecular Ecology, 2008, 17 (23): 4978-4991.
    [135] Aspetsberger F, Brandsen D, Jacobs D S. Geographic variation in the morphology, echolocation and diet of the little free-tailed bat, Chaerephon pumilus (Molossidae)[J]. African Zoology, 2003, 38 (2): 245-254.
    [136] Gillam E H, McCracken G F. Variability in the echolocation of Tadarida brasiliensis: effects of geography and local acoustic environment[J]. Animal behaviour, 2007, 74 (2): 277-286.
    [137] Armstrong K N, Coles R B. Echolocation call frequency differences between geographic isolates ofRhinonicteris aurantia (Chiroptera: Hipposideridae): implications of nasal chamber size[J]. Journal Mammalogy, 2007, 88 (1): 94-104.
    [138] Jones G, Van Parijs S M. Bimodal echolocation in pipistrelle bats: are cryptic species present?[J]. Proceedings: Biological Sciences, 1993, 251 (1331): 119-125.
    [139] Goudy-Trainor A, Freeman P W. Call parameters and facial features in bats: a surprising failure of form following function[J]. Acta Chiropterologica, 2002, 4 (1): 17-24.
    [140] Pedersen S C. Skull growth and the presence of auxiliary fontanels in rhinolophoid bats (Microchiroptera)[J]. Zoomorphology, 1996, 116 (4): 205-212.
    [141] Pedersen S C. Skull growth and the acoustical axis of the head in bats[A]. In: Ontogeny, functional ecology, and evolution of bats, Adams R A and Pedersen eds, Cambrige: Cambrige University Press. 2000: 174-213.
    [142]赵辉华,张树义,周江,刘自民.中国翼手类新记录——高鞍菊头蝠[J].兽类学报2002, 22 (1): 74-76.
    [143] Wu Y, Motokawa M, Harada M. A new species of horseshoe bat of the genus Rhinolophus from China (Chiroptera: Rhinolophidae)[J]. Zoological science, 2008, 25 (4): 438-443.
    [144] Hartley D J, Suthers R A. The sound emission pattern and the acoustical role of the noseleaf in the echolocating bat, Carollia perspicillata[J]. The Journal of the Acoustical Society of America, 1987, 82: 1892-1900.
    [145] Hartley D J, Suthers R A. The acoustics of the vocal tract in the horseshoe bat, Rhinolophus hildebrandti[J]. The Journal of the Acoustical Society of America, 1988, 84: 1201-1213.
    [146] Hartley D J, Suthers R A. Sonar pulse radiation and filtering in the mustached bat, Pteronotus parnellii rubiginosus[J]. The Journal of the Acoustical Society of America, 1990, 87: 2756-2772.
    [147] Pye J D. Noseleaves and bat pulses [A]. In: Animal sonar systems: processes and performances. Nachtigall, P.A. and Moore P W B eds. New York: Plenum Press. 1988: 791-796.
    [148] Sales G, Pye D. Ultrasonic communication by animals[M]. Halsted Press, 1974.
    [149] Francis C M, Habersetzer J. Interspecific and intraspecific variation in echolocation call frequency and morphology of horseshoe bats, Rhinolophus and Hipposideros[M]. Washington, DC: Smithsonian Institution Press, 1998. 169–179.
    [150] Huihua Z, Shuyi Z, Mingxue Z, et al. Correlations between call frequency and ear length in bats belonging to the families Rhinolophidae and Hipposideridae[J]. Journal of Zoology, 2003, 259 (02): 189-195.
    [151] Obrist M K, Fenton M B, Eger J L, et al. What ears do for bats: a comparative study of pinna sound pressure transformation in Chiroptera[J]. Journal of Experimental Biology, 1993, 180 (1): 119-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700