高速移动条件下宽带无线接入关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来我国高速铁路及轨道交通取得了举世瞩目的建设成就。与此同时,列车与地面之间的无线通信数据量(包括面向用户的宽带数据业务和列车控制信息)也呈迅速上升趋势。现在普通列车和高速列车上的乘客,仅能通过无线蜂窝网络(2G和3G系统)进行通信,但这些通信体制并不支持高速移动下的宽带无线接入。本论文以时速为350km/h-500km/h高速铁路宽带无线接入为研究对象,着重研究了高速铁路宽带无线接入的系统结构设计和物理层信号处理等关键技术,主要内容包括:
     针对高速铁路车地间宽带无线接入的业务特点,总结归纳了现有无线通信系统的优点与不足,提出了一种新型的车地间宽带无线数据传输架构——High Speed and Mobile Cell (Himocell)架构,评估了Himocell的优点与不足。同时研究了高速铁路无线信道的特点——时间频率双选择性衰落,探讨了其信道建模方法。
     针对高速列车车载通信系统对通信收发信机尺寸体积不敏感的特点,研究了空间域方法对抗Doppler频偏技术。在高速列车上架设线性天线阵列,利用天线阵列对接收信号进行空间采样确定虚拟不动点,该虚拟不动点相对地面静止,没有Doppler频偏,消除了时间选择性衰落的影响。本文提出一种时变瑞利信道条件下的最优虚拟点分集接收机方案,该方案在对抗Doppler频偏的同时,接收端可以获得分集增益。
     针对多载波传输的特点,研究了多载波OFDM技术在时变多径信道下的信道估计技术。为了进一步提高信道估计的准确度和改善系统的误码性能,本文提出一种基于梳状导频的变换域频率分集式信道估计算法,该信道估计算法的精度随着分集导频组的增加而提高,在时变信道中性能也有明显改善。然后,研究了多载波OFDM技术在时变多径信道下的子载波间干扰消除技术。在分析经典子载波间干扰消除技术的基础上,本文提出一种联合信道估计的子载波间干扰消除方法,该方法采用“二项导频”,联合前后两个OFDM符号进行子载波间干扰消除。仿真结果表明,新型子载波干扰消除方法在性能和频谱效率上均优于经典方法。
     Doppler频率偏移是高速移动条件下影响宽带无线系统性能的主要原因之一。本文在总结归纳经典Doppler分集的基础上,深入研究了一种定向天线扇区接收实现Doppler分集的方法,该方法在完成Doppler频率补偿的同时,可以获取较好的Doppler分集增益。理论分析和仿真结果表明,在快速时变频率选择性衰落信道下,该方案可以有效提高宽带通信系统的传输性能。
     参照IEEE802.11a标准,开发了基于FPGA软件无线电平台的宽带无线系统原型机。本文优化了OFDM接收机中帧同步、符号定时、信道估计等算法,这些优化使系统运算复杂度下降、处理延迟缩短、硬件资源占用量减少,提高了系统处理效率。
The development of China Railway High Speed attracts the world's attention. There is a technology bottleneck between high mobility scenario and broadband wireless data transmission either the services for the passengers' wireless demands or for railway control system in High-Speed Railway Communication (HRC). While the mobile telecommunications technology evolved from the second generation to what is known today as beyond third generation (B3G), the same occurred with the telecommunication systems used in HRC. In this paper we will focus on the key technologies to enhance the performance of the broadband wireless access under high speed conditions.
     The wireless communication demands for the high speed railway is analyzed, and then the advantages and disadvantages are referred. We propose an architecture called High Speed and Mobile Cell (Himocell) to fulfill the broadband wireless needs for High-Speed Railway. The superiorities and drawbacks are evaluated. Additionally, the wireless channel of HRC is studied that the wireless channel of HRC is a double selective fading channel.
     Doppler spread is particularly detrimental to wireless communication performance especially for transmitting a long packet. In this case, the packet experiences rapidly varying fading compared with transmitting over the static channel. To deal with this problem, the uniform linear antenna (ULA) was proposed to compensate Doppler spread. The ULA consists of a linear antenna array which can be used as space samplers to estimate a virtual point that does not move during packet transmission but without the diversity gain. In this paper, we propose the optimal time diversity position with the ULA compensator over the time-varying Rayleigh fading channel. During transmission, this scheme can not only keep the channel quasi-static but also achieve the optimal time diversity by setting the virtual diversity receiving points at zeros of the time autocorrelation function. When combined with the orthogonal space time block code (STBC), it is proved that this scheme performs even better than that over the static channel with Monte Carlo simulation.
     Orthogonal frequency division multiplexing (OFDM) should estimate and track the wireless channel in the double selective fading channel. Generally, the comb-pilot number is more than the wireless channel order which makes the noise suppression difficult. We will propose a novel frequency diversity channel estimation method via groups of pilots combining which can reduce the noise. Doppler frequency offset due to the high speed movement destroys the orthogonality of the subcarriers resulting in the intercarrier interference (ICI), and degrades the performance of the system at the same time. We will propose a novel OFDM channel estimation algorithm with ICI mitigation based on the ICI self-cancellation scheme. With this method, more accurate channel estimation is obtained by comb-type double pilots and then ICI coefficients can be obtained to mitigate the ICI on each subcarrier under the assumption that the channel impulse response (CIR) varies in a linear fashion. The theoretical analysis and simulation results show that the BER and spectral efficiency performances are improved significantly under high-speed mobility conditions (350km/h-500km/h) in comparison to the classical ICI self-cancellation scheme.
     The sectorized antenna can be employed for Doppler mitigation and obtaining Doppler diversity gain. In this paper we will focus on the performances of this directional antenna. We will present the preferable partition scheme for the omnidirectional antenna and the Doppler compensation frequency. And the uncorrelated property of the signal received from the different sectorised antennas will be demonstrated which is utilized for Doppler diversity gain. Finally, it is proved by the simulation results that this architecture will show superior performance under high-mobility conditions.
     Fast verification of the prototype design upon software radio platform has become one of the most important content in communication assessment. This paper introduces the fundamental method of float-point and fixed-point simulation and rapid prototype design flow. Then some key issues such as OFDM frame synchronization, symbol timing, channel estimation, and so on are optimized, which significantly reduced the usage of hardware resources. The validness is illustrated here with experimental results from the implementation of OFDM burst frame transceiver.
引文
[1]综合交通网中长期发展规划,http://www.china-mor.gov.cn/tllwjs/tlwgh.html.
    [2]中长期铁路网规划(2008年调整),http://www.china-mor.gov.cn/tllwjs/tlwgh_6.html.
    [3]铁路“十一五”规划,http://www.china-mor.gov.cn/tllwjs/tlwgh.html.
    [4]安德鲁将为德国ICE动车组部署无线覆盖通信系统,http://www.industrialcontrols. eet-china.com/ART 88005264442500006 NT 843623c9.htm.
    [5]Wi-fi at 320 km/h, http://www.railwaygazette.com/news/single-view/view/10/wi-fi-at-320-kmh.html.
    [6]新干线“N700系”提供无线LAN服务,http://cn.j-cast.com/2008/07/04023014.html.
    [7]英国铁路出资14亿英镑免费提供Wi-Fi上网服务,http://it.sohu.com/20070815 /n251601521.shtml.
    [8]每年15亿人次的客运列车是无线网络的新舞台,http://www.linkwan.com/GB/news /html/8357.htm.
    [9]中国移动破解京津高铁移动通信覆盖难题,http://www.cww.net.cn/cwwMag /html/2008/10/6/2008106162563221.htm.
    [10]台湾高铁年底测试WiMAX连网,http://www.cnbeta.com/articles/57403.htm.
    [11]W. G Jeon, K. H. Chang, and Y. S. Cho, An equalization technique for orthogonal frequency division multiplexing systems in time-variant multipath channels, IEEE Trans. Commun., vol. 47,no.1, pp.27-32, Jan.1999.
    [12]Jun-hong Ni, Ze-min Liu, A joint ICI estimation and mitigation scheme for OFDM systems over fast fading channels, Global Mobile Congress 2009,12-14 Oct.2009, pp.1-6.
    [13]J. Armstrong, Analysis of new and existing methods of reducing intercarrier interference due to carrier frequency offset in OFDM, IEEE Trans. Commun., vol.47, no.3, Mar.1999, pp. 365-369.
    [14]P. Tan and N.C. Beaulieu, Reduced ICI in OFDM systems using the better than raised-cosine pulse, IEEE Commun. Lett. vol.8, Issue 3, pp.135-137.
    [15]秦文,OFDM系统中子载波间干扰的产生因素及消除研究,博士论文,电子科技大学,2008年9月.
    [16]Renhua Ge,Shanlin Sun, ICI Performance Analysis for All Phase OFDM Systems, Journal of Electromagnetic Analysis and Applications, Jan.2009, pp.118-123.
    [17]Zhang Wen, Sun Shanlin, The Frequency Offset Estimator Based on All-Phase FFT for OFDM Systems, Environmental Science and Information Application Technology,2009. ESIAT 2009. International Conference on Volume 3, July 2009, pp.579-582.
    [18]孙山林,基于全相位的OFDM系统实现,桂林航天工业高等专科学校学报,桂林航天工业高等专科学校学报,2008年13卷4期,pp.1-3.
    [19]孙山林,侯春萍,阎磊,全相位OFDM系统子载波间干扰的性能分析,计算机工程与应用,计算机工程与应用,2009年45卷9期,pp.21-23.
    [20]王兆华,黄翔东,数字信号全相位谱分析与滤波技术,北京:电子工业出版社,2009.
    [21]Y. Zhao and S.-G. Haggman, Intercarrier interference self-cancellation scheme for OFDM mobile communication systems, IEEE Trans. Commun., vol.49, no.7, July 2001, pp. 1185-1191.
    [22]Peng, Y.-H., Y.-C. Kuo, G-R. Lee, and J.-H. Wen, Performance analysis of a new ICI self-cancellation-scheme in OFDM systems, IEEE Trans. Consumer Electronics, Vol.53, pp. 1333-1338, Nov.2007.
    [23]Dwivedi, V. K. and G Singh, An effcient BER analysis of OFDM systems with ICI conjugate cancellation method, PIERS Proceedings, pp.166-171, Cambridge, USA, July,2008.
    [24]Dwivedi, V. K. and G Singh, A Novel Bit Error Rate Analysis and Improved ICI Reduction, Journal of Infrared, Millimeter and Terahertz Waves, vol.30, No.11, pp.1866-6906, Nov. 2009.
    [25]M. Okada and S. Komaki, Random FM noise compensation scheme for OFDM, Electronics Letters, vol.36, issue.19, Sept.2000, pp.1653-1654.
    [26]H. Takayanagi, M. Okada, H. Yamamoto, Novel Fast Fading Compensator for OFDM using Space Diversity with Space-Domain Interpolator, Vehicular Technology Conference 2001 (VTC2001-Fall), vol.1, pp.479-483.
    [27]K. Kitanosono, T. Taniguchi, M. Okada, H. Yamamoto, Performance of OFDM Diversity Receiver with Array Antenna Assisted Doppler Spread Compensator, Dresden,9th International OFDM-Workshop (InOWo'04) Proceedings, pp.119-122.
    [28]A. M. Sayeed, B. Aazhang., Joint multipath-Doppler diversity in mobile wireless communications, IEEE Trans on Commun, Jan 1999,47 (1) 123-132.
    [29]Kim Byung-Chul, Lu I-Tai, Doppler diversity for OFDM wireless mobile communications. part I:frequency domain approaches, IEEE Vehicular Technology Conference, vol.4, April 2003, pp.2677-2681.
    [30]Kim Byung-Chul, Lu I-Tai, Doppler diversity for OFDM wireless mobile communications. part II:time-frequency processing, IEEE Vehicular Technology Conference, vol.4, April 2003, pp.2682-2685.
    [31]Wang Xin, Zhu Gang, Chen Xia, Tan Zhen-hui, Doppler Diversity for OFDM High-Speed Mobile Communications,2006 IEEE International Communication Conference (ICC'06) vol. 10, June 2006, pp.4665-4669.
    [32]P. Klenner, K.-D. Kammeyer, Doppler compensation for OFDM transmission by sectorised antenna reception, European Transactions on Telecommunications, vol.19, no.5, August 2008, pp.571-579.
    [33]Wee Teek Ng, V. K. Dubey, Application of Angular Diversity in OFDM Systems, IEEE International Communication Conference (ICC'03), vol.5, pp.3433-3437.
    [34]Mehmet Kemal Ozdemir and Huseyin Arsslan, Channel Estimation For Wireless OFDM Systems, IEEE Communications Surveys & Tutorials,2nd Quarter 2007, pp.18-48.
    [35]S. G Kang, Y. M. Ha, and E. K. Joo, A Comparative Investigation on Channel Estimation Algorithms for OFDM in Mobile Communications, IEEE Trans. Broadcast., vol.49, no.2, June 2003, pp.142-149.
    [36]H. Yu, M. S. Kim, and S. K. Lee, Channel Estimation and Equalization for High Speed Mobile OFDM Systems, Proc. Asilomar Conf. Signals, Systems and Computers, vol.1, Monterey, CA, Nov.2003, pp.693-97.
    [37]W. G Song and J. T. Lim, Pilot-Symbol Aided Channel Estimation for OFDM with Fast Fading Channels, IEEE Trans. Broadcast., vol.49, no.4, Dec.2003, pp.398-402.
    [38]Edfors, et al., Analysis of DFT-Based Channel Estimators for OFDM, Personal Wireless Commun., Kluwer Academic Publisher, vol.12, no.1, Jan.2000, pp.55-70.
    [39]Y. Zhao and A. Huang, A Novel Channel Estimation Method for OFDM Mobile Communication Systems Based on Pilot Signals and Transform-Domain Processing, Proc. IEEE Vehic. Tech. Conf., vol.3, Phoenix, AZ, May 1997, pp.2089-2093.
    [40]中兴通讯股份有限公司,中兴通讯新型高铁覆盖解决方案,http://www.zte.com. cn/cn/solutions/wireless/gsm/scene/200802/t20080218_136635.html.
    [41]和平,百列国产新一代高速动车组将于2011年驶上京沪高铁,人民铁道,2009年3月18日.
    [42]国际电联收到六个4G技术提案:802.16m决战LTE,中国通信网,http://www.c114.net/news/22/c10076.html.
    [43]M. PAatzold, Mobile Fading Channels Modelling, Analysis and Simulation, John Wiley and Sons Ltd.,2002.
    [44]杨大成等编著,移动传播环境——理论基础·分析方法和建模技术,北京:机械工业出版社,2003.
    [45]于涛,数学物理方程域特殊函数,北京:科学出版社,2008.
    [46]3GPP Technical Report 25.943, V 6.00 Release 6, Generation Partnership Project, Technical Specification Group Radio Access Network,Deployment Aspects 2004.
    [47]ETSI Technical Specification 145005, V9.1.0, ((3GPP TS 45.005 version 9.1.0 Release 9)), Digital cellular telecommunications system (Phase 2+), Radio transmission and reception, 2010.
    [48]袁文浩,"WCDMA"通讯系统在超高速移动环境下的通道估测算法之研究,国立台湾大学电机资讯学院电信工程学研究所,硕士论文,2006.
    [49]莊明道,超高速移动环境下正交多频分工系统之效能评估,国立台湾大学电机资讯学院电信工程学研究所,硕士论文,2007年7月
    [50]3GPP Technical Report 36.104, V9.3.0 Release 9, Generation Partnership Project, Technical Specification Group Radio Access Network, Evolved Universal Terrestrial Radio Access (E-UTRA), Base Station (BS) radio transmission and reception,2010.
    [51]Jeruchim, Michel C, Balaban, P., and Shanmugan, K. Sam, Simulation of Communication Systems, Second edition, New York, Kluwer Academic/Plenum,2000.
    [52]William H Tranter.K Sam Shanmugan.Theodore S Rappaport.Kurt L.Kosbar, Principles of communication systems simulation with wireless applications, New Jersey:Prentice Hall Professional Technical Reference,2004.
    [53]Theodore S. Rappaport, Wireless Communications:Principles and Practice (2nd Edition), Prentice Hall,2002.
    [54]Nikolay KOSTOV, Mobile Radio Channels Modeling in MATLAB, RADIOENGINEERING, vol.12, no.4, Dec.2003.
    [55]罗涛,乐光新,多天线无线通信原理与应用,北京:北京邮电大学出版社,2005.
    [56]A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications. Cambridge University Press,2003.
    [57]A. M. Alamouti, A simple transmit diversity techniques for wireless communications, IEEE J. Sel. Areas Commun., vol.16, no.8, pp.1451-1458, Oct.1998.
    [58]P. Klenner, K.-D. Kammeyer, Space-Time-Coded OFDM-Transmission with Spatial Interpolation in the Presence of Severe Doppler Spread,3rd International Symposium on Communications, Control and Signal Processing (ISCCSP 08), St. Julians, Malta,12.-14. March 2008.
    [59]P. Klenner, K.-D. Kammeyer, Performance of Space-Time-Coded OFDM with Sectorized Antenna Reception, International ITG/IEEE Workshop on Smart Antennas (WSA 08), Darmstatdt, Germany, February 2008.
    [60]P. Klenner, K.-D. Kammeyer,, "Spatially Interpolated OFDM with Channel Estimation for Fast Fading Channels", Vehicular Technology Conference,2007. VTC2007-Spring. IEEE 65th 22-25, April 2007, pp.2455-2459.
    [61]Y. Zhang, H. Chen, Mobile WiMAX:Toward Broadband Wireless Metropolitan Area Networks, London:Auerbach Publications,2008.
    [62]罗仁泽编著,新一代无线移动通信系统关键技术,北京:北京邮电大学出版社,2007.
    [63]尹长川,罗涛,多载波宽带无线通信技术,北京:北京邮电大学出版社,2004.
    [64]张贤达,矩阵分析与应用,北京:清华大学出版社,2008.
    [65]W. G Jeon, K. H. Paik, and Y. S. Cho, An Efficient Channel Estimation Technique for OFDM Systems with Transmitter Diversity, Proc. IEEE Int'l. Symp. Personal, Indoor and Mobile Radio Commun., vol.2, London, UK, Sept.2000, pp.1246-50.
    [66]J. J. Van De Beek etal., On Channel Estimation in OFDM Systems, Proc. IEEE Vehic. Tech. Conf., vol.2, Rosemont, IL, July 1995, pp.815-819.
    [67]Meng-Han Hsieh, Che-Ho Wei, Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels, Consumer Electronics, IEEE Transactions on, vol.44, Issue.1, Feb.1998, pp.217-225.
    [68]O. Edfors et al., OFDM Channel Estimation By Singular Value Decomposition, IEEE Trans. Commun., vol.46, no.7, July 1998, pp.931-39.
    [69]Ozdemir, M.K., Arslan, H., Arvas, E., Toward real-time adaptive low-rank LMMSE channel estimation of MIMO-OFDM systems, Wireless Communications, IEEE Trans., vol.5, Issue 10, Oct.2006, pp.2675-2678.
    [70]苏岚,曹雪虹,郭士伟,一种新的基于判决反馈的OFDM系统信道估计方法, 南京:南京邮电大学学报(自然科学版),2008年28卷3期,pp.38-43.
    [71]J. Rinne, M. Renfors, Pilot Spacing in Orthogonal Frequency Division Multiplexing Systems on Practical Channels, IEEE Trans. Consumer Electronics, vol.42, no.3, Nov.1996, pp. 959-962.
    [72]Athaudage, C.R.N., Jayalath, A.D.S., Low-Complexity Channel Estimation for Wireless OFDM Systems, Personal, Indoor and Mobile Radio Communications,2003. PIMRC 2003. 14th IEEE Proceedings on vol.1, Sept.,2003, pp.521-525.
    [73]X. Wang and K. J. R. Liu, OFDM Channel Estimation Based on Time-Frequency Polynomial Model of Fading Multipath Channel, Proc. IEEE Vehic. Tech. Conf., vol.1, Atlantic City, NJ, Oct.2001, pp.460-464.
    [74]O. Edfors, et al., Analysis of DFT-Based Channel Estimators for OFDM, Personal Wireless Commun., Kluwer Academic Publisher, vol.12, no.1, Jan.2000, pp.55-70.
    [75]S. Coleri et al., Channel Estimation Techniques Based on Pilot Arrangement in OFDM Systems, IEEE Trans. Broadcast., vol.48, no.3, Sept.2002, pp.223-229.
    [76]M. J. F. G Garcia, J. M. Paez-Borrallo, and S. Zazo, DFT-Based Channel Estimation in 2D-Pilot-Symbol-Aided OFDM Wireless Systems, Proc. IEEE Vehic. Tech. Conf., vol.2, Rhodes, Greece, May 2001, pp.810-814.
    [77]C. Hou, S. Song, and D. Cao, Channel Estimation for Adaptive OFDM System and Effects of Estimation Error on System Performance, Proc. IEEE Int. Wksp. Mobile and Wireless Commun. Network, vol.1, Stockholm, Sweden, Sept.2002, pp.200-204.
    [78]Liu LIU, Cheng TAO, Jiahui QIU, Xiaoyu QI. A Novel Comb-Pilot Transform Domain Frequency Diversity Channel Estimation for OFDM System, Radioengineeriing, Dec.2009, vol.18, no.4, Part II, pp.497-502.
    [79]刘留,陶成,邱佳慧,双选择衰落信道下OFDM系统基于梳状导频的变换域频率分集式信道估计,铁道学报,vol.32, No.2,2010年4月,pp.119-124.
    [80]刘留,陶成,邱佳慧,一种OFDM系统基于梳状导频的分集式信道估计方法,中国发明专利,申请号:200910082201.X.
    [81]宋铁成,尤肖虎,沈连丰,宋晓晋,基于变换域处理的OFDM系统信道估计方法的改进,电路与系统学报,2005年第10卷4期,pp.25-30.
    [82]H.M. Mourad, Reducing ICI in OFDM systems using a proposed pulse shape, Wireless Personal Communications, vol.40, no.1, Jan.2007, pp.41-48.
    [83]R. V. Nee, R. Prasad, OFDM for wireless multimedia communications, Boston, Mass: Artech House Pubisher,2000.
    [84]Yasamin Mosto and Donald C. Cox, ICI mitigation for mobile OFDM receivers, Proceedings of IEEE ICC 2003, Anchorage, Alaska, vol.5, pp.3351-3355.
    [85]Keng Xu, Piece-wise Linear Models for ICI Reduction in OFDM Channel Estimation, Advanced Wireless:Modulation and Multiple Access, EE381V Fall 2003, Project Report
    [86]Die Hu, Luxi Yang, Zhenya He, Time-varying channel estimation for MIMO OFDM systems, Intelligent Multimedia, Video and Speech Processing,2004. Proceedings of 2004 International Symposium on 20-22, Oct.2004, pp.93-96.
    [87]Chorng-Ren Sheu; Ming-Chien Tseng; Ching-Yung Chen; Hsin-Piao Lin; A Novel Low-Complexity Self-ICI Cancellation Scheme for High-Mobility OFDM Systems, Personal Indoor and Mobile Radio Communications (PIMRC 2007),2007, pp.1-5.
    [88]Y. Mostofi and D. Cox, ICI Mitigation for Pilot-aided OFDM Mobile Systems, IEEE Transactions on Wireless Communications, vol.4, no.2, March 2005, pp.765-774.
    [89]刘留,陶成,邱佳慧,一种新型OFDM信道估计联合ICI自消除方法,中国发明专利,申请号:201010034346.5.
    [90]Mitsuru Nakamura, Tsutomu Seki, Makoto Itami, A.Hamid Aghvami, New estimation and equalization approach for OFDM under Doppler-spread channel, Personal, Indoor and Mobile Radio Communications (PIMRC 02), vol.2, pp.555-560.
    [91]陈霞,移动宽带OFDM系统载波间干扰的均衡和抑制,北方交通大学博士学位论文,2003年7月.
    [92]王欣,高速移动环境下OFDM系统关键技术的研究,北京交通大学博士论文,2006月.
    [93]解坤,朱刚,高速移动通信中的多普勒分集技术,数据通信,2005年5期,pp.8-11.
    [94]Peter Klenner, Lars Reichardt, Karl-Dirk Kammeyer, Thomas Zwick, MIMO-OFDM with Doppler Compensating Antennas in Rapidly Fading Channels, Multi-Carrier Systems & Solutions 2009, pp.69-78.
    [95]P. Klenner and K. D. Kammeyer, Doppler-Compensation for OFDM Transmission by Sectorized Antenna Reception,6th International Workshop on Multi-Carrier Spread Spectrum (MCSS 07), Herrsching, Germany, May 2007, pp.237-246.
    [96]P. Klenner, S. Vogeler, K.-D. Kammeyer, A Doppler-Compensated Noncoherent OFDM-Transceiver with Sectorized Antenna Reception, International ITG/IEEE Workshop on Smart Antennas (WSA07), Vienna, Austria, Feb.2007.
    [97]Norklit O, Vaughan RG. Angular partitioning to yield equal Doppler contributions, IEEE Transactions on Vehicular Technology, vol.48, Issue 5,1999, pp.1437-1442.
    [98]Y. Li and L. J. Cimini, Bounds in the interchannel interference of OFDM in time-varying impairments, IEEE Trans. Wireless Commun., vol.49, Mar.2001, pp.401-404.
    [99]Wee Teek Ng, Effect of Employing Directional Antennas on Mobile OFDM System with Time-Varying Channel, IEEE Communications Letters, vol.7, April 2003, pp.165-167.
    [100]W. C. Lee, Preliminary Investigation of Mobile Radio Signal Fading using Directional Antennas on the Mobile Unit, IEEE Tran. Veh. Comm., vol.15, Issue 2,1966, pp.8-15.
    [101]William C. Y. Lee. Mobile Communications Engineering:Theory and Applications, McGraw-Hill Professional,1997.
    [102]James K. Cavers, Mobile Channel Characteristics (The Springer International Series in Engineering and Computer Science), Springer,2000.
    [103]ZTE TD-SCDMA radio network solution, http://wwwen.zte.com.cn/en/solutions/wireless/ td/Solution/200709\newline/t20070926_157324.html.
    [104]普天称TD基站通过软件升级即可过渡到LTE, http://tech.163.com/09/1009/ 10/5L65FI7S000915BE.html.
    [105]Altera软件定义无线电SDR参考设计,http://www.zfa.cn/info/20070416/13159.html.
    [106]Tom Hill. MATLAB算法面向FPGA的浮点定点转换.DSP杂志,2006.5.
    [107]John Terry, Juha Heiskala, OFDM wireless LANs:atheoretical and practical guide, Indianapolis, Sams,2002.
    [108]Altera Corporation, Stratix Ⅱ EP2S180 DSP Development Board Reference Manual, http://www.altera.com/literature/ug/ug_dsp_kit_gettingstarted.pdf.
    [109]Altera Corporation, Stratix II Device Handbook, http://www.altera.com/literature/hb/ stx2/stratix2_handbook.pdf.
    [110]IEEE Std 802.11 a-1999, Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, High-speed Physical Layer in the 5GHz Band.1999.
    [111]罗亚男,基于IEEE 802.11a的OFDM系统的研究,北京交通大学硕士学位论文,北京交通大学,2008.
    [112]Altera Corporation, FFT MegaCore Function User Guide (v2.1.3).
    [113]刘留,陶成,戚小玉,邱佳慧,基于FPGA软件无线电平台实现OFDM突发分组传输的研究,北京交通大学学报,第33卷,第5期,2009年10月,pp.1-6.
    [114]Liu Liu, Tao Cheng, Qi Xiaoyu, Qiu Jiahui, Research on Implementation of OFDM Burst Packet Transmission on Software Radio Platform of FPGA, ICACT 2009, IEEE, pp.646-650.
    [115]Altera Corporation, FIR Compiler MegaCore Function User Guide (v3.3.0).
    [116]Altera Corporation, NCO Compiler MegaCore Function User Guide (v 2.3.1).
    [117]Texas Instruments, DAC904, http://focus.ti.com.cn/cn/lit/ds/symlink/dac904.pdf
    [118]Mini-Circuits, RF Transformer ADT1-1WT, http://www.minicircuits.com/pdfs/ADT1-1WT. pdf
    [119]Mini-Circuits, Low Pass Filter SLP-50+, http://www.minicircuits.com/pdfs/BLP-50+.pdf
    [120]T. M. Schmidl, D. C. Cox, Low-Overhead, Low-Complexity [Burst] Synchronization for OFDM, IEEE International Conference on Communications, vol.3.,1996, pp.1301-1306.
    [121]Uwe Meyer-Baesel(著),刘凌,胡永生(译),数字信号处理的FPGA实现,北京:清华大学出版社,2003.
    [122]Zilog, Z87200 Spread-Spectrum Transceiver Product Specification, http://www.zilog.com /docs/wireless/z87200.pdf
    [123]ETSI Normalization Committee, Channel models for HIPERLAN/2 in different indoor scenarios, Norme ETSI, Sophia-Antipolis France,1998.
    [124]Altera Corporation, CORDIC Reference Design, Application Note 263,2005.8, http://www. altera.com
    [125]吴继华,王诚编,Altera FPGA/CPLD设计.北京:人民邮电出版社.2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700