TGC探测器的探测效率测试和宇宙线描迹仪系统的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LHC(Large Hadron Collider)是CERN(European Organization for Nuclear Research,欧洲核子物理研究中心)正在建造的大型强子对撞机,其质子—质子对撞的质心能量达到14TeV,对撞粒子束流亮度高达10~(34)cm~(-2)s~(-1),建成后它将成为世界上能量最高的粒子对撞机。LHC将为粒子物理的研究开辟一个更广阔的领域,带来更多的挑战,其中最重要的是可以在LHC提供的能区内寻找黑格斯粒子,并探索能够驱动弱电标准模型中自发对称性破缺的黑格斯机制。
     LHC环形隧道的四个对撞点上,将进行4个粒子对撞探测实验:ATLAS(A Toroidal LHC ApparatuS)、ALICE(A Large Ion Collider Experiment)、CMS (Compact Muon Solenoid)和LHCb。ATLAS和CMS主要用来在强子对撞中寻找黑格斯(Higgs)玻色子;ALICE主要进行重离子物理的研究;LHCb则是专门用于研究LHC能区的B物理。
     ATLAS是将建在LHC其中一个对撞点上的大型多用途粒子探测器,寻找黑格斯粒子是ATLAS最主要的目的,同时它也将用来寻找较重的类W、Z玻色子、超对称粒子,研究基本费米子的结构以及研究B衰变中的CP破坏。ATLAS探测器主要由内部径迹探测器、电磁量能器、强子量能器、μ子谱仪以及数据获取和触发系统组成。ATLAS的数据获取和触发系统必须从LHC每秒钟10~9次质子-质子碰撞的大量信息中挑选出约100个有用的事例进行存。ATLAS触发系统分为三级。每一级触发判选都将在前一级触发结果的基础之上进行更进一步的判选。第一级触发系统是在线的硬件处理器,它从μ子谱仪和量能器获取原始数据进行分析,确定感兴趣事例在ATLAS探测器上的大体方位,每秒只有10~5个事例通过筛选。然后经过第二级和第三级触发系统的判选,最后约每秒100个事例存入存储系统中供离线数据分析所用。
     山东大学参加了ATLAS国际合作实验,在该合作中,承担了μ子谱仪全部3600台TGC探测器中400台T9型TGC探测器的研制生产任务。我自2001年起参与了TGC探测器在山东大学的研制并在其中承担探测器的性能测试工作。
     TGC(Thin Gap Chamber)探测器,即窄间隙室探测器,是一种工作在高增
The Large Hadron Collider (LHC) is a proton-proton collider under construction at the European Organization for Nuclear Research (CERN). Two 7 TeV proton beams will collide at the highest energy ever reached in a particle accelerator with the design luminosity of 10~(34)cm~(-2)S~(-1). The high energy and luminosity of the LHC will brings more challenges and offers a large range of physics opportunities, such as searching for the physics beyond the Standard Model of fundamental interactions and discovery the Higgs mechanism for electroweak symmetry breaking.
    Four experiments have been approved and are under construction at the colliding points of LHC: ATLAS (A Toroidal LHC Apparatus) , CMS (Compact Muon Solenoid) , ALICE (A Large Ion Collider Experiment) and LHCb. Two experiments, ATLAS and CMS will study proton-proton collisions for searching Higgs particle. The Alice experiment is designed to study heavy ion collisions, when heavy ion beams will be injected into the LHC. The fourth experiment, LHCB, will operate with only one proton beam hitting stationary targets, with the goal of measuring b quark production.
    ATLAS is a huge general-purpose particle detector which composed by a magnetic system, an inner tracker, a calorimetric system, a muon spectrometer, a trigger and data acquisition (DAQ) system. ATLAS detector is a cylindrical shape, totally 44 m long, 22 m high and weighs 7000 tons, will be installed on one colliding point of LHC. It was designed to exploit the full discovery potential of LHC, to search for Higgs particle and heavy W' and Z' objects, for super-symmetric particles, for compositeness of the fundamental fermions, and to investigate the CP violation in B-physics. The ability to cope with a broad variety of possible physics processes is expected to maximize the detector's potential for discovery of new unexpected physics.
    The task of the ATLAS trigger system is to reduce the input beam related rate of 10~9 Hz at the highest luminosity to about 100 Hz for permanent storage. To handle this task the ATLAS trigger and data-acquisition (DAQ) system is based on three
引文
1. Donald. H. Perkins. Introduction to High Energy Physics, ISBN:0-201-12105-0,Addison-Wesley, 1987.
    
    2. F. Halzen, A.D. Martin. Quarks and leptons: An Introductory Course in Modern Particle Physics, John Wiley and Sons, 1984.
    
    3. Y. Baconnier et al. LHC: the Large Hadron Collider Accelerator Project, CERN/AC/93-03 (1993).
    
    4. Proceedings of the Large Hadron Collider Workshop, Aachen, 4-9 October 1990, Vol I,II,III, CERN 90-10.
    
    5. The LHC study group. The Large Hadron Collider, Conceptual design, CERN/AC/95-05 (LHC), 20 October 1995.
    
    6. G. Brianti. The Large Hadron Collider in the LEP runnel, LHC Working group.
    
    7. Letter of intent for a general-purpose pp experiment at the large hadron collider at CERN, CERN/LHCC/92-4,1992.
    
    8. CDF Collaboration. Evidence for top quark production in p-barp collisions at sqrt s =1.8 TeV, Phys. Rev. D 50(1994) p.2966.
    
    9. CDF Collaboration. Kinematic evidence for top quark pair production in W~+ multijet events in pp-bar collisions at sqrt s =1.8 TeV, Phys.Rev. D 51(1995) p.4623.
    
    10. CDF Collaboration. Observation of Top Quark Production in p-barp Collisions with the Collider Detector at Fermilab, Phys. Rev. Lett.74(1995) p. 2626.
    
    11. DO Collaboration. Search for High Mass Top Quark Production in pp-bar Collisions at sqrt[s] = 1.8 TeV, Phys. Rev. Lett. 74(1995) p.2422.
    
    12. S. L. Glashow. Partial-Symmetries of Weak Interactions. Nucl. Phys., A 22(1961)p.579.
    
    13. A. Salam. in Elementary Particle Theory Proc, 8th Nobel Symposium, Ed.N. Svartholm (Almquist and Wiksell, Stockholm, 1968).
    
    14. S. Weinberg. A Model of Leptons, Phys. Rev. lett., 19(1967),p.1264.
    
    15. G. Arnison et al. Experimental Observation of Isolated Large Transverse Energy Electrons with Associated Missing Energy at s~(1/2) = 540Ge V Phys. Lett., B 122(1983), p. 103.
    16. G. Amison et al. Experimental Observation of Lepton Pairs of Invariant Mass Around 95GeV/c2 at the CERN SPS Collider, Phys. Lett., B 126(1983), p. 398.
    17. P. W. Higgs. Broken Symmetries, Massless Particles, and Gauge Fields. Phys. Lett., 12(1964), p. 132.
    18. P. W. Higgs. Broken Symmetries and the Masses of the Gauge Bosons. Phys. Rev. Lett. 13(1964), p. 508
    19. P. W. Higgs. Spontaneous Symmetry Breakdown without Massless Bosons. Phys. Rev. 145(1966), p. 1156
    20. ATLAS Collaboration. Technical Proposal for a General Purpose pp Experiment at the Large Hadron Collider at CERN, CERN/LHCC/94-43, LHCC/P2, 15 December 1994.
    21. Particle Data Group. Review of Particle Physics, European Physical Journal C 3(1998) p. 1.
    22. ATLAS Collaboration. End-Cap Toroids Technical Design Report, CERN/LHCC/97-20, 30 April 1997.
    23. ATLAS Collaboration. Barrel Toroid Technical Design Report, CERN/LHCC/97-19, 30 April 1997.
    24. ATLAS Collaboration. Inner Detector Technical Design Report, Volumel, CERN/LHCC/97-16, 30 April 1997.
    25. ATLAS Collaboration. Pixel Detector Technical Design Report, CERN/LHCC/98-13, 31 May 1998.
    26. ATLAS Collaboration. Inner Detector Technical Design Report, Volume2, CERN/LHCC/97-17, 30 April 1997.
    27. ATLAS Collaboration. Calorimeter Performance Technical Design Report, CERN/LHCC/96-40, 15 December 1996.
    28. ATLAS Collaboration. Liquid Argon Calorimeter Technical Design Report, CERN/LHCC/96-41, 15 December 1996.
    29. ATLAS Collaboration. Tile Calorimeter Technical Design Report, CERN/LHCC/96-42, 15 December 1996.
    30. ATLAS Collaboration. Muon Spectrometer Technical Design Report, CERN/LHCC/97-22, 31 May 1997.
    
    31. ATLAS Collaboration. First-Level Trigger Technical Design Report, CERN/LHCC/98-14, 30 June 1998.
    32. ATLAS Collaboration. DAQ, EF, LVL2 and DCS Technical Progress Report, CERN/LHCC/98-16, 30 June 1998.
    33. ATLAS Collaboration. Trigger Performance Status Report, CERN/LHCC/98-15, 30 June 1998.
    34. S. Majewski et al. A thin multiwire chamber operating in the high multiplication mode, Nucl. Instrum. Methods, 217(1983) p.265.
    35. Majewski, G.Charpak, EP Internal Report 82-02.
    36. S.S.Majewski et al., A thin multiwire chamber operating in the high multiplication mode, Nucl. Instrum. Methods, 217(1983) p.265.
    37. G. Bella et al. Development of calorimeters using thin chambers operating in a high gain mode, Nucl. Instrum. Methods A 252(1986)p.503.
    38. K.Nagai. Thin Gap Chambers in ATLAS, Nucl. Instrum. Methods, A384(1996)p.219.
    39. G.Mikenberg. OPAL pole tip hadron calorimeter. Nucl. Instrum. Methods, A 265(1988)p.223.
    40. O. Sasaki et al. Front-end electronics for the Thin Gap Chambers (TGC) in ATLAS forward muon trigger system, Second Workshop on Electronics for LHC Experiments, Balatonfured, Hungary, Sept. 1996.
    41. Low Voltage Differential Signalling, LVDS, IEEE 1596.3 standard.
    42. ZHU Cheng-Guang et al. Development of Thin Gap Chamber, Journal of Shandong University, 2003, 38(3)p.76(in Chinese)
    43. FENG Cun-Feng et al. Measurement of the Performance of TGC detectors, HEP&NP, 2005, 29(1)p.50(in Chinese)
    44. FENG Cun-Feng et al. An automatic monitoring system of leak current for testing TGC detectors based on LabVIEW, Nuclear Electornics & Detection Technology, 2005,25(3)p.225(in Chinese)
    45. MI Ming-lei, et al. A portable and fast inspection system for TGC, Nuclear Electornics & Detection Technology, 2005,25(1)p.93(in Chinese)
    46. Smakhtin, V P et al. General gamma-radiation test of TGC detectors, IEEE 2003 Nuclear Science Symposium.
    47. E. Etzion et al. THE COSMIC RAY HODOSCOPES FOR TESTING THIN GAP CHAMBERS AT THE TECHNION AND TEL AVIV UNIVERSITY. TAUP-2754-03, IEEE Trans. Nucl. Sci. 51: 2091-2096, 2004
    48. YAN Zhen et al. Development of T9 Type Thin Gap Chamber and Measurement of the Detection Efficiency, HEP & NP, 2006, 30(1)p. 50
    49. J. C Santiard et al., CERN-ECP/94-17, 1994.
    50. V550/V550A Technical Information Manual, CAEN Company.
    51. V551B Technical Information Manual, CAEN Company.
    52. V767 Technical Information Manual, CAEN Company.
    53. V1190A Technical Information Manual, CAEN Company.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700