含裂纹结构加固问题中的哈密顿体系方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程中的设备和结构等的安全问题一直受到人们的关注。特别是含裂纹结构的加固问题是关系到结构安全,延长结构寿命以及充分节约资源等各个方面。然而,加固后的结构常常出现界面的层裂等问题。因此,对其机理的研究,并提供一种具有高科技含量的加固技术等是十分重要的。目前的研究方法多采用有限元方法。该方法在计算应力强度因子时对单元网格密度和极限路径有一定的局限。本文尝试提出一种有效的方法并对含裂纹结构的问题进行分析,揭示其机理,研究含裂纹结构加固过程中的关键科学问题。本博士学位论文以含裂纹结构加固问题作为研究背景,以结构问题的哈密顿体系方法和奇异元数值方法作为研究对象开展比较系统的研究和分析,得到一些重要结果和结论。具体研究成果如下:
     将哈密顿体系推广到空间各向异性弹性基本问题中。以一空间坐标模拟时间,利用弹性势能得到对偶变量,并运用哈密顿原理构造出哈密顿体系下的对偶正则方程组。在哈密顿体系下,基本问题可归结为辛几何空间中的辛本征值和辛本征解的问题。通过再次引入子辛体系,因而建立起一种本征值和本征解直接求解方法。结果表明所有的零本征值本征解即是圣维南问题的解,而非零本征值本征解恰是由圣维南原理所覆盖的解。在完备的本征解空间提出一种新的辛共轭双正交关系,从而完成和完善了求解体系。之后,研究含裂纹或缺陷的材料和结构中的哈密顿体系方法。以含裂纹双材料问题为突破口,提出一种哈密顿控制方程和辛本征解的分区域表示方法,实现本征解和一般解皆能统一表述出来。注意到非零本征值本征解具有局部性特点,特别是本征值为1/2的本征解揭示了应力的奇异性特征。在引入分区域积分的泛函情况下,提出一种独特的本征解之间辛共轭正交关系。借助于此关键技术,得到了问题的解,并且可以直接给出应力强度因子的表达式。基于这些成果,可构造一种含裂纹的单元模型。将辛本征解函数与单元形函数密切结合,得到以及本征解级数系数与单元节点位移等的对应关系,直接给出单元刚度阵等。应力强度因子有明确的表达式。把该辛奇异单元与有限元软件结合形成一种独特的数值方法。该方法可对含裂纹结构分析,并可提高应力强度因子的数值精度。这种方法可应用于含裂纹结构加固问题中。经过对含裂纹结构加固问题的分析,得到了系列研究结果和结论。结果表明,根据结构裂纹的长度,结构材料和加固材料常数,几何尺寸以及粘结强度的特点可合理粘连,可以实现结构裂纹和粘结强度均处于安全范围的合理设计。降低两材料连接处的裂纹应力强度因子以及原结构裂纹应力强度因子,就可达到最佳的加固方案。研究成果为含裂纹结构在加固技术上提供了可靠依据。
The security of equipments and structures has been drawn more attention in engineering. Specially, the reinforcement problem of cracked structures has relation to security of structures, extending of service life of structures and resource saving. However, structures may appear sometimes spallations on the interfaces after they are reinforced. Thus the mechanism of layer crack problem need to be researched and the reinforcement craft is demanded to be improved with technology content. So far, the finite element method is used almost for analyzing the problem. Nevertheless, for computing stress intensity factors, the mesh density of the elements and the path of limit affect directly precision of the factors. For the problem, in this degree thesis, an impactful method is presented to analyze cracked structures, to reveal the cracking mechanism and to study the key scientific problem for the reinforcement of cracked structures. In this dissertation, the reinforcement problem of cracked structures is discussed as a background and application, and the method of Hamiltonian system for structures and the model of symplectic singular element are researched and analyzed systemically. Some main results are obtained and listed below:
     The Hamiltonian system is generalized to spatial fundamental problem of anisotropic elasticity. In the system, one spatial coordinate is simulated to the time and the dual variable is obtained from the elastic potential energy. The dual equations, in Hamiltonian system, are shown with the aid of the Hamiltonian principle. Thus, the fundamental problem is reduced to symplectic eigenvalues and eigensolutions in symplectic space. Since sub-symplectic system is introduced again, a direct method is presented for solving symplectic eigenvalues and eigensolutions. Results show that Zero eigenvalue solutions belong to Saint Venant solutions and non-zero-eigenvalue solutions corresponding to the solutions that are coverd by the Saint Venant principle. In the complete space of eigensolutions, a new symplectic adjoint relationship of biorthogonality is presented among the eigensolutions. Thus, complete and perfect system for solving solutions is founded. In further research, analyzing singularity for cracked bi-materials is discussed as a breach. A method, which shows Hamiltonian governing equations and eigensolutions divided regions, is presented. Therefore, eigensolutions and general solutions can be expressed uniformly. It is taken notice of that non-zero-eigenvalue solutions have local character. Especially,1/2eigenvalue solutions reveals the singularity of stresses. Namely, the stress intensity factors can be identified directly to be the coefficients of the series of certain eigenvalue solutions. After the functional of subregional integration is introduced, a new and idiographic symplectic relationship of adjoint orthogonality is presented. Based on the key technique, the relationship, the coefficients of the series, which is expanded by symplectic eigenvalue solutions, are determined from the boundary conditions. Thus, the stress intensity factors can be given directly an expression. Based on the results, a model of symplectic singular element is presented. Corresponding relationships between the coefficients of the series symplectic eigenvalue solutions and node displacements are obtained aid the close combination of symplectic functions of eigensolutions and shape functions of elements. Farther, the element stiffness matrix is given directly. The stress intensity factors have clear expressions in the system. The method of symplectic singular element combining with finite element software gives a numerical method for analyzing cracked structures and improves the accuracy of stress intensity factors. As an application of symplectic singular element, it combines with finite element software to analyze reinforcement problem of cracked structures. By analyzing and discussing, a series of results and conclusions is obtained. Results show that crack of the structure and bond strength can be in safety range under reasonable bond and design based on the length of crack in structure, material of cracked structure, constants of reinforced material, geometry size and strength of bond. The optimum reinforcement scheme is to reduce stress intensity factors at the tip of the crack on the interface of two-materials, as well as the cracked structure. The research provides reliable basis on reinforcement technology for the cracked structure.
引文
[1]GRIFFITH A A. The Phenomena of Rupture and Flow in Solids [J]. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character,1921, 221(582-593):163-198.
    [2]GRIFFITH A A. Theory of Rupture[C]. proceedings of the Proceedings of the First International Congress for Applied Mechanics, Delft, Holland,1924.
    [3]IRWIN G R. Fracture Dynamics[C]. proceedings of the Proceedings of the ASM Symposium on Fracturing of Metals, Cleveland, America,1948. ASM Publisher.
    [4]OROWAN E. Fracture and strength of solids[C]. proceedings of the Report of Progress in Physics, 1949.
    [5]IRWIN G R. Analysis of stresses and strains near the end of a crack transversing a plate [J]. Journal of Applied Mechanics,1957,24:361-364.
    [6]KARGARNOVIN M H, SHAHANI A R, FARIBORZ S J. Analysis of an isotropic finite wedge under antiplane deformation [J]. International Journal of Solids and Structures,1997,34(1):113-128.
    [7]SHAHANI A R. Mode Ⅲ stress intensity factors for edge-cracked circular shafts, bonded wedges, bonded half planes and DCB's [J]. International Journal of Solids and Structures,2003,40(24): 6567-6576.
    [8]SHAHANI A R. Some problems in the antiplane shear deformation of bi-material wedges [J]. International Journal of Solids and Structures,2005,42(11-12):3093-3113.
    [9]SHAHANI A R. On the antiplane shear deformation of finite wedges [J]. Applied Mathematical Modelling,2007,31(2):141-151.
    [10]SUAT KADIOGLU F. Edge cracks in a transversely isotropic hollow cylinder [J]. Engineering Fracture Mechanics,2005,72(14):2159-2173.
    [11]NODA N A, XU C H. Controlling parameter of the stress intensity factors for a planar interfacial crack in three-dimensional bimaterials [J]. International Journal of Solids and Structures,2008,45(3-4): 1017-1031.
    [12]ROOKE D P, TWEED J. The stress intensity factors of a radial crack in a point loaded disc [J]. International Journal of Engineering Science,1973,11(2):285-290.
    [13]TWEED J, DAS S C, ROOKE D P. The stress intensity factors of a radial crack in a finite elastic disc [J]. International Journal of Engineering Science,1972,10(3):323-335.
    [14]TWEED J, ROOKE D P. The stress intensity factor of an edge crack in a finite elastic disc [J]. International Journal of Engineering Science,1973,11(1):65-73.
    [15]GREGORY R D. A circular disc containing a radial edge crack opened by a constant internal pressure [J]. Mathematical Proceedings of the Cambridge Philosophical Society,1977,81(03):497-521.
    [16]XU Y L, DELALE F. Stress intensity factors for an internal or edge crack in a circular elastic disk subjected to concentrated or distributed loads [J]. Engineering Fracture Mechanics,1992,42(5): 757-787.
    [17]GREGORY R D. The edge-cracked circular disc under symmetric pin-loading [J]. Mathematical Proceedings of the Cambridge Philosophical Society,1979,85(03):523-538.
    [18]SCHNEIDER G A, DANZER R. Calculation of the stress intensity factor of an edge crack in a finite elastic disc using the weight function method [J]. Engineering Fracture Mechanics,1989,34(3): 547-552.
    [19]WU X R, CARLSSON A J. Weight Functions and Stress Intensity Factor Solutions [M]. Oxford: Pergamon Press,1991.
    [20]WU X R. The arbitrarily loaded single-edge cracked circular disc; accurate weight function solutions [J]. International Journal of Fracture,1991,49(4):239-256.
    [21]LI J, WANG X, TAN C L. Weight functions for the determination of stress intensity factor and T-stress for edge-cracked plates with built-in ends [J]. Int J Pres Ves Pip,2004,81(3):285-296.
    [22]FREESE C E, BARATTA F I. Single edge-crack stress intensity factor solutions [J]. Engineering Fracture Mechanics,2006,73(5):616-625.
    [23]LEUNG A Y T. SU R K L. Mode I crack problems by fractal two level finite element methods [J]. Engineering Fracture Mechanics,1994,48(6):847-856.
    [24]LEUNG A Y T. SU R K L. Mixed-mode two-dimensional crack problem by fractal two level finite element method [J]. Engineering Fracture Mechanics,1995,51(6):889-895.
    [25]LEUNG A Y T, SU R K L. Body-force linear elastic stress intensity factor calculation using fractal two level finite element method [J]. Engineering Fracture Mechanics,1995,51(6):879-888.
    [26]LEUNG A Y T, SU R K L. Two-Level Finite Element Study of Axisymmetric Cracks [J]. International Journal of Fracture,1998,89(2):193-203.
    [27]DE MORAIS A B. Calculation of stress intensity factors by the force method [J]. Engineering Fracture Mechanics.2007,74(5):739-750.
    [28]CHANG J, XU J Q. The singular stress field and stress intensity factors of a crack terminating at a bimaterial interface [J]. International Journal of Mechanical Sciences,2007,49(7):888-897.
    [29]TSANG D K L, OYADIJI S O, LEUNG A Y T. Two-dimensional fractal-like finite element method for thermoelastic crack analysis [J]. International Journal of Solids and Structures,2007,44(24): 7862-7876.
    [30]CHANG J H, WU D J. Stress intensity factor computation along a non-planar curved crack in three dimensions [J]. International Journal of Solids and Structures,2007,44(2):371-386.
    [31]ORTIZ J E, MANTIC V, PARIS F. A domain-independent integral for computation of stress intensity factors along three-dimensional crack fronts and edges by BEM [J]. International Journal of Solids and Structures,2006,43(18-19):5593-5612.
    [32]MAVROTHANASIS F I, PAVLOU D G. Mode-1 stress intensity factor derivation by a suitable Green's function [J]. Engineering Analysis with Boundary Elements.2007.31(2):184-190.
    [33]SONG C, VRCELJ Z. Evaluation of dynamic stress intensity factors and T-stress using the scaled boundary finite-element method [J]. Engineering Fracture Mechanics,2008.75(8):1960-1980.
    [34]CHEN C S, CHEN C H, PAN E. Three-dimensional stress intensity factors of a central square crack in a transversely isotropic cuboid with arbitrary material orientations [J]. Engineering Analysis with Boundary Elements,2009,33(2):128-136.
    [35]冷发光,周永祥,王晶,混凝土耐久性及其检验评价方法[M],中国建材工业出版社,北京,2012
    [36]吕西林,建筑结构加固设计[M],科学出版设,北京,2001
    [37]吕克顺,伏文英,混凝土结构加固设计与施工细节详解[M],中国建筑工业出版社,北京,2012
    [38]宋或主,工程结构检测与加固[M],科学出版社,北京,2011
    [39]黄奕辉,杨勇新,结构加固设计及实用计算[M],中国电力出版社,北京,2010
    [40]TENG JG, CHEN JF, Smith ST, et al. FRP:strengthened RC structuresfM], Wiley-VCH, January 2002
    [41]Hamilton H, Dolan C. Durability of FRP reinforcements for concrete[J], Progress in Structural Engineering and Materials,2000,2(2):139-145
    [42]Bonacci J, Maalej M. Externally bonded FRP for service-life extension of RC infrastructure[J]. Journal of Infrastructure Systems,2000,6(1):41-51
    [43]Karbhari VM, Seible F. Fiber reinforced composites-advanced materials for the renewal of civil infrastructure [J]. Applied Composite Materials,2000,7(2):95-124
    [44]Neale K. FRPs for structural rehabilitation:a survey of recent progress[J]. Progress in Structural Engineering and Materials,2000,2(2):133-138
    [45]刘利先,时旭东,过镇海.增大截面法加固高温损伤混凝土柱的试验研究[J],工程力学,2003,20(5):18-23
    [46]刘利先,时旭东,过镇海.增大截面法加固高温损伤钢筋混凝土压弯构件承载力和变形的计算[J],工业建筑,2008,(z1):881-885
    [47]赵川,王起才,王艳艳.增大截面法进行双曲拱桥加固的研究[J],水利与建筑工程学报,2009,7(3):107-109
    [48]周希茂.增大截面法加固钢筋混凝土框支架的非线性有限元分析[D],(硕士学位论文),西安,西安科技大学,2009
    [49]陈尚建,刘海波,欧阳普英等.置换混凝土法在结构加固设计中的应用[J],武汉大学学报(工学版),2008,41(S1):77-79.
    [50]秦绪勇,刘定波,熊茜.连续刚构桥跨中置换混凝土加固技术研究[J],重庆交通大学学报(自然科学版),2009,27(6):1031-1033.
    [51]李九红,惠静薇,简政等.湿式外包钢加固柱极限承载力的研究[J],西安理工大学学报,2001,17(3):261-264
    [52]卢亦焱,陈少雄,赵国藩.外包钢与碳纤维布复合加固钢筋混凝土柱抗震性能试验研究[J],土木工程学报,2005,38(8):10-17
    [53]陆洲导,刘长青,张克纯等.外包钢套法加固钢筋混凝土框架节点试验研究[J],四川大学学报(工程科学版),2010,42(3):56-62.
    [54]ROBERTS T, Hajikazemi H. Theoretical study of the behaviour of reinforced concrete beams streng-thened by externally bonded steel plates[J], Ice Virtual Library,1989,87(1):39-55.
    [55]SWAMY R, JONES R, BLOXHAM J. Structural behaviour of reinforced concrete beams strengthened by epoxy-bonded steel plates[J], Structural Engineer. Part A,1987,65:59-68.
    [56]刘敏,粘钢加固钢筋混凝土结构的有限元分析[D], (硕士学位论文),重庆:重庆大学.2003.
    [57]刘祖华,朱伯龙.粘钢加固混凝土梁的解析分析[J],同济大学学报(自然科学版),1994,22(1):21-26.
    [58]齐云,粘钢加固混凝土梁的粘结应力研究[D], (硕士学位论文),武汉:武汉理工大学,2006.
    [59]Song HW, Lu SM. Repair of a deep-mine permanent access runnel using bolt, mesh and shotcrete[J]. Tunnelling and Underground Space Technology,2001,16(3):235-240.
    [60]Watanabe T, Hosomi M, Yuno K, et al. Quality evaluation of shotcrete by acoustic emission[J], Construction and Building Materials,2010,24(12):2358-2362.
    [61]Wu JH, Lin HM, Lee DH, et al. Integrity assessment of rock mass behind the shotcreted slope using thermography[J], Engineering Geology,2005,80(1):164-173.
    [62]马忠诚,汪澜,马井雨.喷射混凝土技术及其速凝剂的发展[J],混凝土,2011,12:126-128.
    [63]杜旌.预应力法加固混凝土轴心受压构件试验研究[D],(硕士学位论文),武汉:武汉理工大学,2002.
    [64]聂建国,温凌燕.体外预应力加固钢-混凝土连续组合梁的承载力分析[J],工程力学,2006,23(1):81-86.
    [65]武永焱,预应力法加固混凝土受压构件有限元分析[D],(硕士学位论文),武汉:武汉理工大学,2003.
    [66]DARBY J. Role of bonded fibre-reinforced composites in strengthening of structures, Strengthening of Reinforced Concrete Structures[M] (Edited by Hollaway LC and Leeming NB):Using Externally-bonded Frp Composites in Structural and Civil Engineering,1999,1-10.
    [67]HOLLAWAY L, LEEMING M. Review of materials and techniques for plate bonding, Strengthening of Reinforced Concrete Structures[M] (Edited by Hollaway LC and Leeming NB):Using Externally-bonded Frp Composites in Structural and Civil Engineering,1999,11-45.
    [68]BIZINDAVYI L, NEALE K. Transfer lengths and bond strengths for composites bonded to concrete[J]. Journal of composites for construction,3(4) (1999) 153-160.
    [69]CHAJES MJ, FINCH WW, JANUSZKA JTF, et al. Bond and force transfer of composite-material plates bonded to concrete[J], ACI Structural Journal,1996,93 (2):209-217.
    [70]CHAJES MJ, JANUSZKA JTF, MERTZ DR, et al. Shear strengthening of reinforced concrete beams using externally applied composite fabrics[J], ACI Structural Journal,1995,92(3):295-303.
    [71]GEMERT DV. Force transfer in epoxy bonded steel/concrete joints[J], International Journal of Adhesion and Adhesives,1980,1(2):67-72.
    [72]CHEN J, TENG J. Anchorage strength models for FRP and steel plates bonded to concrete[J], Journal of Structural Engineering.2001,127(7):784-791.
    [73]CHAALLAL O, NOLLET MJ, PERRATON D. Strengthening of reinforced concrete beams with externally bonded fiber-reinforced-plastic plates:Design guidelines for shear and flexure[J], Canadian Journal of Civil Engineering,1998.25(4):692-704.
    [74]KHALIFA A, GOLD WJ. NANNI A, et al. Contribution of externally bonded FRP to shear capacity of RC flexural members[J], Journal of Composites for Construction,1998,2(4):195-202.
    [75]YUAN H, WU Z. Interfacial fracture theory in structures strengthened with composite of continuous fiber[C], in Proceedings, Symposium of China and Japan, Science and Technology of 21st Century, Tokyo, Japan; 1999,142-55.
    [76]YUAN H, WU Z, YOSHIZAWA H, Theoretical solutions on interfacial stress transfer of externally bonded steel/composite laminates[J], Structural Engineering Earthquake Engineering,2001,18(1): 27-40.
    [77]YUAN H, TENG JG, SERACINO R, et al. Full-range behavior of FRP-to-concrete bonded joints[J], Engineering Structures,2004,26(5):553-565.
    [78]LU XZ, TENG JG, YE LP, et al. Bond-slip models for FRP sheets/plates bonded to concrete[J], Engineering Structures,2005,27(6):920-937.
    [79]LU XZ, JIANG JJ, TENG JG, et al. Finite element simulation of debonding in FRP-to-concrete bonded joints[J], Construction and Building Materials,2006,20(6):412-424.
    [80]TENG JG, YUAN H, CHEN JF. FRP-to-concrete interfaces between two adjacent cracks:Theoretical model for debonding failure[J], International Journal of Solids and Structures,2006,43(18-19): 5750-5778.
    [81]CHEN JF, YUAN H, TENG JG. Debonding failure along a softening FRP-to-concrete interface between two adjacent cracks in concrete members[J], Engineering Structures,2007,29(2):259-270.
    [82]LU XZ, CHEN JF, YE LP. RC beams shear-strengthened with FRP:Stress distributions in the FRP reinforcement[J], Construction and Building Materials,2009,23(4):1544-1554.
    [83]CHEN GM, CHEN JF, TENG JG. On the finite element modelling of RC beams shear-strengthened with FRP[J], Construction and Building Materials,2012,32:13-26.
    [84]CHEN GM, TENG JG, CHEN JF. Process of debonding in RC beams shear-strengthened with FRP U-strips or side strips[J], International Journal of Solids and Structures,2012,49(10):1266-1282.
    [85]Nguyen DM, Chan TK, Cheong HK. Brittle failure and bond development length of CFRP-concrete beams[J], Journal of Composites for Construction,2001,5(1):12-17.
    [86]ROSS CA, JEROME DM, TEDESCO JW, et al. Strengthening of reinforced concrete beams with externally bonded composite laminates[J], ACI Structural Journal,1999,96(2):212-220.
    [87]SMITH S, TENG J. Shear-bending interaction in debonding failures of FRP-plated RC beams[J], Advances in Structural Engineering,2003,6(3):183-199.
    [88]GARDEN H, MAYS G. Structural strengthening of concrete beams using prestressed plates[M], Woodhead Publishing, Cambridge, UK,1999.
    [89]HAU K. Experiments on concrete beams strengthened by bonding fibre reinforced plastic sheets[D], Master of Science in Civil Engineering Thesis, Hong Kong Polytechnic University,1999.
    [90]KONG F. Reinforced and prestressed concrete[M], Great Britain at the University Press, Cambeidge, 1998.
    [91]HISABE N, SAKAI H, OTAGURO H, et al. Flexural reinforceing effect of reinforced concrete slab strengthened with carbon fiber sheet under oscillation loading[C], in Non-Metallic (FRP) Reinforcement for Concrete Structures, Proceeding of the Third International Symposium. Sapporo Japan,1997,335-342.
    [92]KARBHARI V, SEIBLE F, SEIM W, et al. Post-strengthening of concrete slabs[J], Aci Special Publications,1999,188:1163-1163.
    [93]ERKI M, HEFFEMAN P. Reinforced concrete slabs externally strengthened with fibre-reinforced plastic materials[M]. Non-metallic (FRP) Reinforcement for Concrete Structures. (Edited by L. Taerwe). RILEM, London. U.K.,1995.509-516.
    [94]AROCKIASAMY M, AMER A, SHAHAWY M. Concrete beams and slabs retrofitted with CFRP laminates[C]. Engineering Mechanics (edited by Y. K. Lin and T. C. Su), Proceedings of the 11th Conference, Ft. Lauderdale, Florida,1996,776-779.
    [95]FUKUYAMA H. SUGANO S. Japanese seismic rehabilitation of concrete buildings after the Hyogoken-Nanbu Earthquake[J], Cement and Concrete Composites,2000,22(1):59-79.
    [96]EHSANI M, SAADATMANESH H, VELAZQUEZ-DIMAS J. Behavior of retrofitted URM walls under simulated earthquake loading, Journal of Composites for Construction,1999,3(3):134-142.
    [97]SAADATMANESH H, EHSANI M, JIN L. Repair of earthquake-damaged RC columns with FRP wraps[J], ACI Structural Journal,1997,94:206-215.
    [98]OGATA T, OSADA K. Seismic retrofitting of expressway bridges in Japan[J], Cement and Concrete Composites,2000,22(1):17-27.
    [99]KOBATAKE Y. A seismic retrofitting method for existing reinforced concrete structures using CFRP, Advanced Composite Materials,1998.7(1):1-22.
    [100]钟万勰,钟翔翔.计算结构力学、最优控制及偏微分方程半解析法[J].计算结构力学及其应用,1990,7(1):1-15.
    [101]钟万勰.条形域弹性平面问题与哈密尔顿体系[J].大连理工大学学报,1991,31(4):373-384
    [102]钟万勰.弹性力学求解新体系[M].大连:大连理工大学出版社,1995.
    [103]ZHONG W X. Duality System in Applied Mechanics and Optimal Control [M]. Boston:Kluwer Academic Publishers,2004.
    [104]ZHONG W X. XU X S, ZHANG H W. Hamiltonian system and the Saint Venant problem in elasticity [J]. Applied Mathematics and Mechanics,1996,17(9):827-836.
    [105]XU X S, ZHONG W X, ZHANG H W. The Saint-Venant problem and principle in elasticity [J]. International Journal of Solids and Structures,1997,34(22):2815-2827.
    [106]YAO W A, SU B, ZHONG W X. Hamiltonian system for orthotropic plate bending based on analogy theory [J]. Science in China Series E:Technological Sciences,2001,44(3):258-264.
    [107]YAO W A. ZHONG W X, LIM C W. Symplectic Elasticity [M]. Singapore:World Scientific Pubinshing Co.Pte.Ltd.,2009.
    [108]YAO W, YANG H. Hamiltonian system based Saint Venant solutions for multi-layered composite plane anisotropic plates [J]. International Journal of Solids and Structures.2001,38(32-33):5807-5817.
    [109]YAO W A, SUI Y F. Symplectic solution system for reissner plate bending [J]. Applied Mathematics and Mechanics.2004,25(2):178-185.
    [110]姚伟岸.隋永枫Reissner板弯曲的辛求解体系[J].应用数学和力学,2004,25(2):159-165.
    [111]姚伟岸,孙贞.环扇形薄板弯曲问题的环向辛对偶求解方法[J].力学学报,2008,40(4):557-563.
    [112]钟万勰,姚伟岸.郑长良Reissner板弯曲与平面偶应力模拟[J].大连理工大学学报,2002,42(5):519-521.
    [113]XU XS, MA Y, LIM CW, et al. Dynamic buckling of cylindrical shells subject to an axial impact in a symplectic system [J]. International Journal of Solids and Structures,2006,43(13):3905-3919.
    [114]XU XS, CHU HJ, LIM CW. Hamiltonian system for dynamic buckling of transversely isotropic cylindrical shells subjected to an axial impact[J]. International Journal of Structural Stability and Dynamics,2008,8(3):487-504
    [115]XU XS, MA JQ, LIM CW, et al. Dynamic local and global buckling of cylindrical shells under axial impact[J], Engineering Structures,2009,31:1132-1140
    [116]Xu XS, Chu HJ, Lim CW. A symplecyic Hamiltonian appoach for thermal buckling of cylindrical shells[J]. International Journal of Structural Stability and Dynamics,10(2) (2010) 273-286
    [117]Xu XS, Ma JQ, Lim CW, et al. Dynamic torsional buckling of cylindrical shells[J]. Computers and Structures 88 (2010) 322-330
    [118]Xu XS, Zhang G, Zeng QC, et al. Bamboo node-type local buckling of cylindrical shells under axial impact [J], Advances in Vibration Engineering,2011,10(1):41-52
    [119]SUN JB, XU XS, LIM CW. Dynamic buckling of cylindrical shells under axial impact in Hamiltonian system [J]. Int. J. Nonlinear Sci. Numer. Simul.2012,13:93-97
    [120]Lim CW, Xu XS. Symplectic Elasticity Theory and Applications, Applied Mechanics Reviews.2011, 63:050802,1-10
    [121]徐新生,贾宏志,孙发明.横观各向同性弹性柱体中辛本征解方法[J].大连理工大学学报,2005,45(4):617-624.
    [122]徐新生,张洪武,齐朝晖等.关于弹性回转体问题的直接方法[J].大连理工大学学报,1997,37(5):26-29.
    [123]LIM C W, L C F, XIANG Y, et al. On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates [J]. International Journal of Engineering Science,2009,47(1): 131-140.
    [124]马国军,徐新生,郭杏林.旋转运动中弹性梁耦合振动的辛方法[J].计算力学学报,2004,21(6):671-677.
    [135]徐新生,郭杏林,马国军,et a1.旋转系统中弹性结构振动问题的哈密顿体系方法[J].振动工程学报,2003,16(1):40-44.
    [126]钟万勰,徐新生,张洪武.弹性曲梁问题的直接法[J].工程力学,1996,13(4):1-8.
    [127]HU C, FANG X Q, LONG G, et al. Hamiltonian systems of propagation of elastic waves and localized vibrations in the strip plate [J]. International Journal of Solids and Structures,2006,43(21): 6568-6573.
    [128]LEUNG A Y T, MAO S G. A symplectic Galerkin method for non-linear vibration of beams and plates [J]. Journal of Sound and Vibration,1995,183(3):475-491.
    [129]LIM C W, CUI S, YAO W A. On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported [J]. International Journal of Solids and Structures,2007,44(16):5396-5411.
    [130]LIU Y, LI R. Accurate bending analysis of rectangular plates with two adjacent edges free and the others clamped or simply supported based on new symplectic approach [J]. Applied Mathematical Modelling,2010,34(4):856-865.
    [131]MA C M. Sympletic eigen-solution for clamped Mindlin plate bending problem [J]. Journal of Shanghai University (English Edition),2008,12(5):377-382.
    [132]SUN H C, YAO W A. Virtual boundary element-linear complementary equations for solving the elastic obstacle problems of thin plate [J]. Finite Elements in Analysis and Design,1997,27(2): 153-161.
    [135]ZHONG Y, LI R. Exact bending analysis of fully clamped rectangular thin plates subjected to arbitrary loads by new symplectic approach [J]. Mechanics Research Communications,2009,36(6): 707-714.
    [136]ZHONG Y, LI R, LIU Y, et al. On new symplectic approach for exact bending solutions of moderately thick rectangular plates with two opposite edges simply supported [J]. International Journal of Solids and Structures,2009,46(11-12):2506-2513.
    [137]ZOU G. An exact symplectic geometry solution for the static and dynamic analysis of Reissner plates [J]. Computer Methods in Applied Mechanics and Engineering,1998,156(1-4):171-178.
    [138]ZOU G, TANG L. A semi-analytical solution for thermal stress analysis of laminated composite plates in the Hamiltonian system [J]. Computers & Structures,1995,55(1):113-118.
    [139]ZOU G, TANG L. A semi-analytical solution for laminated composite plates in Hamiltonian system [J]. Computer Methods in Applied Mechanics and Engineering,1995.128(3-4):395-404.
    [140]鲍四元,邓子辰.环扇形板弯曲问题中环向模拟为时间的辛体系[J].西北工业大学学报,2004,22(6):734-738.
    [141]徐新生,邱文彪,付月,et a1.辛方法在弹性圆板屈曲问题中的应用[J].应用力学学报,2009,26(3):530-534+628-629.
    [142]徐新生,邱文彪,周震寰,et a1.哈密顿体系下的弹性圆板热屈曲问题[J].大连理工大学学报.2008,48(1):1-5.
    [143]徐新生,段政,马源,et al.辛方法和弹性圆柱壳在内外压和轴向冲击下的动态屈曲[J].爆炸与冲击,2007,27(6):509-514.
    [144]XU X, ZHANG W, LI X, et al. An application of the symplectic system in two-dimensional viscoelasticity [J]. International Journal of Engineering Science,2006,44(13-14):897-914.
    [145]徐新生,张维祥,李雪.粘弹性厚壁筒问题的辛本征解方法[J].计算力学学报,2007,24(2):153-158.
    [146]张维祥,徐新生.二维热粘弹性问题中的辛方法(英文)[J].中国科学技术大学学报,2008,38(2):200-206.
    [147]GU Q. XU X S, LEUNG ANDREW Y. Application of Hamiltonian system for two-dimensional transversely isotropic piezoelectric media [J]. Journal of Zhejiang University-Science A,2005,6(9): 915-921.
    [148]LEUNG A Y T, XU X S, GU Q, et al. The boundary layer phenomena in two-dimensional transversely isotropic piezoelectric media by exact symplectic expansion [J]. International Journal for Numerical Methods in Engineering,2007,69(11):2381-2408.
    [149]LEUNG A Y T, ZHENG J J, LIM C W, et al. A new symplectic approach for piezoelectric cantilever composite plates [J]. Computers & Structures,2008,86(19-20):1865-1874.
    [150]WANG J S, QIN Q H. Symplectic model for piezoelectric wedges and its application in analysis of electroelastic singularities [J]. Philosophical Magazine,2007,87(2):225-251.
    [151]XU X S, GU Q, LEUNG ANDREW Y, et al. A symplectic eigensolution method in transversely isotropic piezoelectric cylindrical media [J]. Journal of Zhejiang University-Science A,2005,6(9): 922-927.
    [152]XU X S, LEUNG A Y T, GU Q, et al.3D symplectic expansion for piezoelectric media [J]. International Journal for Numerical Methods in Engineering,2008,74(12):1848-1871.
    [153]YAO W A, WANG H. Virtual boundary element integral method for 2-D piezoelectric media [J]. Finite Elements in Analysis and Design,2005,41(9-10):875-891.
    [154]ZHAO L, CHEN W Q. Symplectic analysis of plane problems of functionally graded piezoelectric materials [J]. Mechanics of Materials,2009,41(12):1330-1339.
    [155]代海涛,程伟,李明志.哈密顿体系下功能梯度压电板/管静动力三维解[J].北京航空航天大学学报,2008,34(1):104-107.
    [156]刘艳红,张惠明,卿光辉.基于Hamilton理论的压电材料智能叠层板的固有频率分析[J].船舶力学,2009,13(5):788-794.
    [157]DAI H T, CHENG W, LI M Z. Static/dynamic Analysis of Functionally Graded and Layered Magneto-electro-elastic Plate/pipe under Hamiltonian System [J]. Chinese Journal of Aeronautics,2008, 21(1):35-42.
    [158]LI X C, YAO W A. Virtual boundary element-integral collocation method for the plane magnetoelectroelastic solids [J]. Engineering Analysis with Boundary Elements,2006,30(8):709-717.
    [159]YAO W A, LI X C. Symplectic duality system on plane magnetoelectroelastic solids [J]. Applied Mathematics and Mechanics,2006,27(2):195-205.
    [160]ZHAO L, CHEN W Q. Plane analysis for functionally graded magneto-electro-elastic materials via the symplectic framework [J]. Composite Structures,2010,92(7):1753-1761.
    [161]李晓川,姚伟岸.电磁弹性固体三维问题的虚边界元-等额配点法[J].固体力学学报,2007,28(4):380-384.
    [162]姚伟岸.电磁弹性固体三维问题的广义变分原理[J].计算力学学报,2003,20(4):487-489.
    [163]姚伟岸.电磁弹性固体反平面问题辛求解体系及圣维南原理[J].大连理工大学学报,2004,44(5):630-633.
    [164]Zhang WX, Xu XS, Yuan F. The symplectic system method in the stress analysis of 2D elasto-viscoelastic fiber reinforced composites[J]. Arch Appl Mech (2010) 80:829-841
    [165]Zhang WX, Xu XS, Hamiltonian system and 2D problem of thermo-visco elasticity[J]. Journal of University of Science and Technology of China,2008,38(2):200-206
    [166]Xu XS, Wang GP, et al. Analytical and numerical methods of symplectic system for Stokes flow in two-dimensional rectangular domain[J], Applied Mathematics and Mechanics (English Edition).2008, 29(1):1-10
    [167]Wang G P, Xu XS, Zhang YX. Influence of inlet radius on Stokes flow in a circular tube via the Hamiltonian systematic method[J]. PHYSICS OF FLUIDS.200921,103602,1-9
    [168]ZHONG W X. Plane elasticity in sectorial domain and the Hamiltonian system [J]. Applied Mathematics and Mechanics,1994,15(12):1113-1123.
    [169]徐新生,郑新广,张洪武,et al.哈密顿体系与弹性楔体问题[J].应用力学学报,1999,16(2):143-147+164.
    [170]YANG C, ZHOU ZH, XU XS. A numerical analytical method for singularity problem[J], Advanced Materials Research,2012,446-449:3561-3564
    [171]YAO W A, XU C. A Restudy of the Paradox on an Elastic Wedge Based on the Hamiltonian System [J]. Journal of Applied Mechanics,2001,68(4):678-681.
    [172]YAO W A, ZHANG B R. Paradox solution on elastic wedge dissimilar materials [J]. Applied Mathematics and Mechanics,2003,24(8):961-969.
    [173]姚伟岸.极坐标哈密顿体系约当型与弹性楔的佯谬解[J].力学学报,2001,33(1):79-86.
    [174]姚伟岸,张兵茹.圆柱型正交各向异性弹性楔的佯谬解[J].固体力学学报,2004,25(2):155-158.
    [175]钟万勰,张洪武.平面断裂解析元的列式[J].机械强度,1995,17(3):105+1-6.
    [176]ZHANG H W, ZHONG W X. Hamiltonian principle based stress singularity analysis near crack corners of multi-material junctions [J]. International Journal of Solids and Structures,2003,40(2): 493-510.
    [177]张洪武,徐新生,李云鹏,et al.多种材料楔形结合点的奇性分析[J].大连理工大学学报,1996,36(4):23-27.
    [178]张洪武,钟万勰,李云鹏.基于哈密顿原理的两种材料界面裂纹奇性研究[J].固体力学学报,1996,1(1):19-30.
    [179]王承强,姚伟岸.哈密顿体系在断裂力学Dugdale模型中的应用[J].应用力学学报,2003,20(3):151-154+168.
    [180]江铁强,何雪浤.哈密顿体系在Ⅲ型裂纹端部场求解中的应用[J].机械强度,2004,26(S1):213-215.
    [181]XU X S, ZHOU Z H and LEUNG A Y T. Analytical stress intensity factors for edge-cracked cylinder[J]. International Journal of Mechanical Sciences,2010,52(7):892-903.
    [182]ZHOU Z H, XU X S and LEUNG A Y T. The mode III stress/electric intensity factors and singularities analysis for edge-cracked circular piezoelectric shafts[J]. International Journal of Solids and Structures,2009,46(20):3577-3586.
    [183]ZHOU Z H, XU X S and LEUNG A Y T. Mode III edge-crack in magneto-electro -elastic media by symplectic expansion[J]. Engineering Fracture Mechanics,2010,77(16):3157-3173.
    [184]ZHOU Z H, XU X S and LEUNG A Y T. Analytical Mode III electromagnetic permeable cracks in magnetoelectroelastic materials[J]. Computers & Structures,2011,89:631-645.
    [185]ZHOU Z H, Wong K W, XU X S and LEUNG A Y T. Natural vibration of circular and annular thin plates by Hamiltonian approach[J]. Journal of Sound and Vibration,2010,330(5):1005-1017.
    [186]ZHOU ZH, XU XS, LEUNG AYT, et al. Transient thermal stress intensity factors for Mode I edge-cracks[J]. Nuclear Engineering and Design,2011,241:3613-3623
    [187]LEUNG A Y T, XU X S. ZHOU Z H et al. Analytic stress intensity factors for finite elastic disc using symplectic expansion[J]. Engineering Fracture Mechanics,2009,76(12):1866-1882.
    [188]LEUNG A Y T, XU X S and ZHOU Z H. Hamiltonian Approach to Analytical Thermal Stress Intensity Factors-Part 1:Thermal Intensity Factor[J]. Journal of Thermal Stresses,2010,33(3): 262-278.
    [189]LEUNG A Y T, XU X S and ZHOU Z H. Hamiltonian Approach to Analytical Thermal Stress Intensity Factors-Part 2 Thermal Stress Intensity Factor[J]. Journal of Thermal Stresses,2010,33(3): 279-301.
    [190]TARN J Q, TSENG W D, CHANG H H. A circular elastic cylinder under its own weight[J]. International Jounal of Solids and Structures,2009,46:2886-2896.
    [191]TARN J Q, CHANG H H, TSENG W D. Axisymmetric deformation of a transversely isotropic cylindrical body: a Hamilton state space approach[J]. Journal of Elasticity,2009,97:131-154.
    [192]TARN J Q, CHANG H H, TSENG W D. A Hamilton state space approach for 3D analysis of circular cantilevers[J]. Journal of Elasticity,2010,101:207-237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700