扇贝多肽对单次UVA氧化损伤人HaCaT角质形成细胞和无毛小鼠皮肤的保护作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的 探讨在单次长波紫外线(UVA)辐射下,扇贝多肽(PCF)对人HaCaT角质形成细胞和昆明种无毛小鼠皮肤氧化损伤的保护作用机制。
     方法 采用海洋生物工程技术,从栉孔扇贝中提取PCF,Mr=879。建立UVA氧化损伤细胞和无毛小鼠的病理模型,辐射强度分别为:细胞5J/cm~2;无毛小鼠4.13J/cm~2。细胞实验设计分为7组:对照组,UVA模型组,UVA+0.125%PCF组,UVA+0.25%PCF组,UVA+0.5%PCF组,UVA+1%PCF组,和UVA+0.1%VitC组。MTT法检测细胞活性;酶生化法测定胞浆超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-px)、活性氧(ROS)、丙二醛(MDA)含量以及细胞抗超氧阴离子能力(A-SAC)、总抗氧化能力(T-AOC);流式细胞仪PI染色法测定细胞的凋亡率;Fluo-3-AM为荧光染料测定细胞内游离[Ca~(2+)]_i;Rhodamine 123为荧光染料测定线粒体膜电位(△ψM);透射电镜观察细胞超微结构的改变;彗星电泳法检测DNA的损伤程度;原位杂交技术检测细胞内p21mRNA的变化。动物实验设计分为5组:对照组,UVA模型组,UVA+5%PCF组,UVA+20%PCF组,UVA+10%Vit C组。免疫组化法测定皮肤p53基因蛋白表达、表皮生长因子受体(EGFR)表达、P物质、Ⅰ型胶原及Ⅳ型胶原的含量。
     结果 在5J/cm~2UVA辐射下,在0.125%~1%的浓度范围内PCF能剂量依赖性的提高角质形成细胞活性;减轻对细胞DNA的损伤;降低胞浆中ROS、MDA含量;提高SOD,GSH-px的活力;提高A-SAC及T-AOC的含量;降低细胞凋亡率;稳定线粒体的膜电位;减少细胞内游离Ca~(2+)(以上各指标加药组与模型组比较,P<0.05,差别均有显著性意义);电镜下可见UVA模型组角质形成细胞绒毛消失,细胞核固缩,胞质内空泡形成,线粒体受损,嵴断裂,空泡化变性,大量髓样小体产生;而PCF组细胞受损情况较模型组明显减轻;p21mRNA原位杂交发现PCF可明显抑制其表达,并呈量效关系。免疫组化结果表明PCF可以抑制无毛小鼠表皮细胞突变型p53基因蛋白和EGFR蛋白的表达(P<0.05);降低胞浆内P物质含量(P<0.05);Ⅰ型胶原含量减少(P<0.05);但对Ⅳ型胶原没有影响(P>0.05)。
    
     中文摘要
     结论扇贝多肤对单次UVA(SJ/cm,)诱导的人HaCaT角质形成细胞氧
    化损伤有保护作用。其机制与清除氧自由基、提高抗氧化酶如SOD,GSH一px等
    活性、提高A一SAC及T一AOC的含量、降低细胞内游离「CaZ+〕;、保护线粒体膜结
    构、减少DNA链断裂、抑制p21 mRNA表达及细胞凋亡有关。对单次UVA
    (4 .13)/cmZ)氧化损伤无毛小鼠皮肤的保护作用机制与其抑制p53基因突变、
    EGFR的表达、降低P物质含量、及减少I型胶原的表达作用有关。
Objective To investigate the protective effect of PCF on the oxidative damages in HaCaT keratinocytes and the skin of hairless mice induced by single UVA.
    Methods Polypeptide from Chlamys farreri (PCF,Mr=879) was isolated from Chla-mys farreri using enzymetically engineering technique. The cells were randomly divided into seven groups: control group, UVA model group, UVA+0. 125%PCF group, UVA+ 0. 25%PCF group, UVA + 0. 5%PCF group, UVA + 1%PCF group and UVB + 0. 1 % VitC group. MTT method was used to detect the viability of the cells. The intracellular SOD, GSH-px, MDA, ROS, T-AOC, and A-ASC were measured by biochemical methods. The effects of PCF on UVA-induced apoptosis, intracellur calcium, and mitochondrial membrane potential were investigated by flow cytometer. UVA-induced DNA damage was detected by comet assay. The ultrastructures of HaCaT keratinocytes were observed under transmission electron microscope. In situ hybridization was used to examine the changes of p21 mRNA expression. The mice were randomly divided into five groups: control group, UVA model group, UVA+ 5% PCF group, UVA+ 20 % PCF group, and UVA+10 % Vit C group. The expression of mutant p5
    3 protein, EGFR, substance P, collegen type I and type IV were examined by immunohistochemical methods.
    Results PCF greatly enhanced the viability of HaCaT keratinocytes and markedly increased the activities of SOD and GSH-px, the contents of T-AOC and A-ASC, while decreased the amounts of MDA and ROS (all P<0.05 compared PCF groups with model group). UVA-induced apoptosis and DNA damage in HaCaT keratinocytes were inhibited by PCF. The concentration of cellular free calcium decreased and the mitochondrial membrane potential were increased by PCF (P<0. 05). In ultrastructure, PCF greatly decreased UVA-induced damage, especially membrane injuries. p21mRNA expression was inhibited in PCF groups. All results were in a dose-dependent manner. Immunohistochem-istry showed that PCF also inhibited the expression of p53 protein, EGFR, substance P and collegen type I (P<0. 05), but there was no statistical significance in the expression of collegen type W(P>0. 05).
    
    
    Conclusion PCF can inhibit UVA-induced oxidative damage on HaCaT keratino-cytes. The mechanism were due to its abilities to scavenge oxygen free radical, inhibit lipid peroxidation, increase anti-oxidarvt enzymes, decrease intracellular calcium, protect the membrane structure, and block the expression of p21mRNA. The protective effect of PCF on the hairless mice skin against UVA-induced damage is associated with its ability of decreasing the overexpression of p53 protein, EGFR, substance P and collegen type I.
引文
1 Coldiron BM. Ozone depletion update. Dermatol Surg, 1996, 22(3):296~299
    2 The Sun,UV, and You. United States Environmental Pretection Agency 1999,6
    3 丁振华,等.紫外辐射生物学与医学.人民军医出版社,1999,6
    4 王春波,贺孟泉,秦守哲,等。海洋肽的体外抗氧化作用.中国海洋药物,1998,17(3):15~17
    5 Yao RY, Wang CB. Protective effect of polypeptide from Chlamys farreri on HeLa ceils damaged by ultraviolet A. Acta Pharmacol Sin, 2002, 23:1018~1022
    6 Wang CB, Yao RY, Liu ZT, et al. Protective effects of polypeptide from Chlamys farreri on hairless mice damaged by ultraviolet A. Acta Pharmacol Sin, 2002, 23:813~818
    7 Ding BX, Wang CB. Inhibitory effect of polypeptide from Chlamys farreri on UVB-induced apoptosis and DNA damage in normal human dermal fibroblasts in vitro. Acta Pharmacol Sin, 2003, 24:1006~1010
    8 Wang CB, Ding BX, Guo SB, et al. Protective effect of polypeptide from Chlamys farreri on mitoehondria in human dermal fibroblasts irradiated by ultraviolet B. Acta Pharmocal Sin, 2003, 24:692~696
    9 王春波,贺孟泉,秦守哲,等.海洋肽抗皮肤老化作用的实验研究.中华医学美容杂志,1998,4(4):195~197
    10 司徒镇强,吴军正.细胞培养.西安,世界图书出版公司,1996,41
    11 鄂征.组织培养和分子细胞学技术.北京,北京出版社,1994,12
    12 龚守良.实用基础医学实验技术.吉林,吉林科技出版社,1992,28
    13 刘传书,刘祖洞.医学遗传学.北京,人民卫生出版社,1992
    14 鄂征.组织培养技术.北京,人民卫生出版社,1998
    15 Kripke ML, Cox PA, Bucana C, et al. Role of DNA damage in local suppression of contact hypersensitivity in mice by UV radistion. Exp Dermatol, 1996, 5(3): 173~180
    16 Zhou LJ, Song W, Zhu XZ, et al. Protective effects of bilobalid on amyloid beta-peptide 25-35-induced PC12 cell cytotoxicity. Acta Pharmacol Sin, 2000, 21(1): 75~79
    17 Shang YZ, Ye JW, Tang XC. Improving effects of huperzine A on abnormal lipid peroxidation and superoxide dismutase in aged rats. Acta Pharmocol Sin, 1999, 20(9): 824~828
    18 Bradford MM. A rapid and sensitive method for the quantitation of microgram quanti-
    
    ties of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72:148~154
    19 Wong YC, Wang XP, Lu YC, et al. Microdetermination of lipid peroxidation in cells and cell membrane. J Cytobiol, 1985, 7:142~143
    20 Zweier JL, Kuppusamy P, Williams R, et al. Measurement and characterization of postischemic free radical generation in the isolated perfused heart. J Biol Chem, 1989, 264:18890~18895
    21 Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem, 1979, 95:351~358
    22 Jing TY, Zhao XY. The improved pyrogallol method by using terminating agent for superoxide dismutate measurement. Prog Biochem Biophys, 1995, 22:84~86
    23 Schimke. Biologic mechanisms in aging. Am Geriat Soc, 1983. 31(1):40
    24 Shapiro HM. Membrane potential estimation by flow cytometry. Methods, 2000, 21:271~279
    25 Li LW, Lorenzo SP, Bogi K, et al. Protein Kinase CδTargets Mitoehondria, Alters Mitochondrial Membrane Potential, and Induces Apoptosis in Normal and Neoplastic Keratinoeytes When Overexpressed by an Adenoviral Vector. Mol Cell Biol, 1999, 19:8547~8558
    26 Scoltock AB, Bortner CD, St J Bird G,et al. A selective requirement for elevated calcium in DNA degradation, but not early events in anti-Fas-induced apoptosis. J Biol Chem, 2000, 275: 30586~30596
    27 Denning MF, Wang YH, Nickoloff BJ, et al. Protein Kinase Cδ Is Activated by Caspase-dependent Proteolysis during Ultraviolet Radiation-induced Apoptosis of Human Keratinocytes. J Biol Chem, 1998, 273:29995~30002
    28 Yeh CJ, Hsi BL, Faulk WP. Propidium iodide as a nuclear marker in immunofluorescence. Ⅱ. Use with cellular identification and viability studies. J Immunol Methods, 1981, 43:269~275
    29 Meek GA. Practical electron microscopy for biologists. 2nded. London. John Wiley & Sons, 1976
    30 朱宜,张存圭.电子显微镜的原理和使用.北京,北京大学出版社。1983
    31 Klaude M, Eriksson S, Nygren J, et al. The comet assay: mechanisms and technical considerations. Mut Res, 1996, 363:89~96
    32 Singh NP, Stephens RE. Microgel electrophoresis: sensitivity, mechanisms, and DNA electrostretching. Mut Res, 1997, 383:167~175
    33 Visvardis EE, Tassiou AM, Piperakis SM. Study of DNA damage induction and re-
    
    pair capacity of fresh and cryopreserved lymphocytes exposed to H_2 O_2 and γ-irradiation with the alkaline comet assay. Mut Res, 1997, 383:71~80
    34 于红.PSP对HSV-1糖蛋白gG mRNA表达的抑制作用.青岛大学医学院学报,2002,38(3):239
    35 Sun B H, Zhang J, Wang B J, et al. Analysis of in vivo patterns of caspase 3 gene expression in primary hepatocellular carcinoma and its relationship to p21WAF1 expression and hepatic apoptosis. World J Gastroenterol, 2000, 6:356~360
    36 徐叔云.卞如濂,陈修.药理学实验方法.北京,人民卫生出版社,1994,135~221
    37 孙瑞元.定量药理学.北京,北京人民卫生出版社,1987
    38 刘彦芳.免疫组织化学.北京,人民卫生出版社,1990
    39 蔡文琴,王伯沄.实用免疫细胞化学与核酸分子杂交技术.成都,四川科学技术出版社,1994
    40 Sim CS, Slater S, Mckee PH. Mutant P53 expression in solar keratosis: an immunohistochemocal study. J Cutan Pathol, 1992, 302~308
    41 Masahiro S, Mitsunori I, Akane M, et al. Increased synthesis of calcitonin gene-related peptide stimulates keratinocyte proliferation in murine UVB-irradiated skin. J Dermatol Sci, 2002,28:135~43
    42 Toyokuni S, Tanaka T, Hattori Y, et al. Quantitative immunohistochemical determination of 8-hydroxy-2′-deoxyguanosine by a monoclonal antibody N45. 1: its application to ferric nitrilotriacetate-induced renal carcinogenesis model. Lab Invest, 1997, 76:365~74
    43 Luger TA, Lotti T. Neuropeptides: role in inflammatory skin diseases. J Eur Acad Dermatol Venereol, 1998, 10(3): 207~211
    44 Urashima R, Mihara M. Cutaneous nerves in atopic dermatitis. A histological immunohistochemical and electron microscopic study. Virchows Arch, 1998, 432(4):363~370
    45 胥红,刘蜀凡,沈子华,等。口腔粘膜下纤维性变组织中Ⅰ型和Ⅲ型胶原免疫组化及定量分析.实用口腔医学杂志,2000,16(1):52~54
    46 夏先明,张陪明,刘广益,等.胆石致胆管狭窄伴肝纤维化胶原蛋白的免疫组化观察.中国普外与基础临床杂志,1998,5(32):75~77
    47 Tyrrell R. Activation of mammalian gene expression by the UV component of sunlight-from models to reality. BioEssays, 1996, 18:139~148
    48 Bender K, Blattner C, Knebel A, et al. UV-induced signal transduction. J Photochem Photobiol B, 1997, 37:1~17
    49 Grether-Beck S, Buettner R, Krutmann J. Ultraviolet A radiation-induced expression of human genes: Molecular and photobiological mechanisms. Biol Chem, 1997, 378:
    
    1231~1236
    50 Setlow RB, Grist E, Thompson K, et al. Wavelengths effective in induction of malignant melanoma. Proc Natl Acad Sci USA, 1993, 90:6666~6670
    51 Drobetsky EA, Turcotte J, Chateauneuf A. A role of ultraviolet A in solar mutagenesis. Proc Natl Acad Sci USA, 1995, 92:2350~2354
    52 Gruijl FR, Forbes PD. UV-induced skin cancer in a hairless mouse model. BioEssays, 1995,17:651~660
    53 Wang H, Shang L, Hao W. The induction of apoptosis and reactive oxygen species in human skin fibroblast by ultraviolet A. Beijing Da Xue Xue Bao, 2003, 35(1): 69~73
    54 Lopez-Torres M, Thiele JJ, Han D, et al. Topical application of α-tocopherol modulates the antioxidant network and diminishes ultraviolet-induced oxidative damage in murine skin. Br J Dermatol Sci, 1998, 138:207~215
    55 Tebbe B, Wu S, Geilen CC, et al. L-ascorbic acid inhibits UVA-induced lipid peroxidation and secretion of IL-lalpha and IL-6 in cultured human keratinocytes in vitro. J Invest Dermatol, 1997, 108:302~306
    56 Savini I, D'Angelo I, Ranalli M, et al. Ascorbic acid maintenance in HaCaT cells prevents radical formation and apoptosis by UV-B. Free Radic Biol Med, 1999, 26: 1172~1180
    57 O'Connor I, O'Brien N. Modulation of UVA light-induced oxidative stress by?-carotene, lutein and astaxanthin in cultured fibroblasts. J Dermatol Sci, 1998, 16:226~230
    58 Katiyar SK, Afaq F, Azizuddin K, et al. Inhibition of UVB-induced oxidative stressmediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol (-)-epigallocatechin-3-gallate. Toxicol Appl Pharmacol, 2001, 176:110~117
    59 Phillipson RP, Tobi SE, Morris JA, et al. UVA induces persistent genomic instability in human keratinocytes through an oxidative stress mechanism. Free Radic Biol Med, 2002, 32:474~480
    60 Takao J, Ariizumi K, Dougherty Ⅱ, et al. Genomic scale analysis of the human keratinocyte response to broad-band ultraviolet-B irradiation. Photodermatol Photoimmunol Photomed, 2002, 18:5~13
    61 Lehmann J, Poller D, Peker D, et al. Kinetics of DNA strand breaks and protection by antioxidante in UVA-or UVB-irradiated HaCaT keratinocytes using the single cell gel electrophoresis assay. Murat Res, 1998, 407:97~108
    62 Diavaheri-Mergny M, Marsac C, Maziere C, et al. UV-A irradiation induces a de-
    
    crease in the mitochondrial respiratory activity of human NCTC 2544 keratinocytes. Free Radic Res, 2001, 34:583~594
    63 Chang MC, Ho YS, Lee PH, et al. Areca nut extract and arecoline induced the cell cycle arrest but not apoptosis of cultured oral KB epithelial cells: association of glutathione, reactive oxygen species and mitochondrial membrane potential. Carcinogenesis, 2001, 22:1527~1535
    64 Petersen AB, Gniadecki R, Vicanova J, et al. Hydrogen peroxide is responsible for UVA-induced DNA damage measured by alkaline comet assay in HaCaT keratinocytes. J Photochem Photobiol B, 2000, 59:123~131
    65 Hwang CJ, Fwu ML. Degree of protein deficiency affects the extent of the depression of the antioxidative enzyme activities and the enhancement of tissue lipid peroxidation in rats. J Nutr, 1993, 123:803~810
    66 L'Abbe MR, Trick KD, Beare-Rogers JL. Dietary (n-3) fatty acids affect rat heart, liver, and aorta protective enzyme activities and lipid peroxidation. J Nutr, 1991, 121:1331~1340
    67 Beani JC. Enhancement of endogenous antioxidant defenses: a promising strategy for prevention of skin cancers. Bull Acad Natl Med, 2001, 185:1507~1525
    68 Black HS. Potential involvement of free radical reactions in ultraviolet light-mediated cutaneous damage. Photochem Photobiol, 1987; 46:213
    69 Hiroko Sasaki, Hirohiko Akamatsu, Takeshi Horio. Protective Role of Copper, Zinc Superoxide Dismutase Against UVB-Induced Injury of the Human Keratinocyte Cell Line HaCaT. J Invest Dermatol, 114, 502~507 (2000)
    70 Hidetoshi Takahashi, Yoshio Hashimoto, Naoko Aoki, et al. Copper, zinc-superoxide dismutase protects from ultraviolet B-induced apoptosis of SV40-transformed human keratinocytes: the protection is associated with the increased levels of antioxidant enzymes. J Dermatol Sci, 2000, 23(1):12~21
    71 P. Filipe, I. Emerit, J. Vassy, J. Rigaut, E. Martin, J. Freitas and A. Fernandes, Epidermal localization and protective effects of topically applied superoxide dismutase. Exp Dermatol, 1997,6:116~121
    72 Yasui H, Sakurai H. Chemiluminescent detection and imaging of reactive oxygen species in live mouse skin exposed to UVA. Biochem Biophys Res Commun, 2000, 269(1): 131~136
    73 Iizawa O, Kato T, Tagami H, et al. Long-term follow-up study of changes in lipid peroxide levels and the activity of superoxide dismutase, catalase and glutathione peroxidase in mouse skin after acute and chronic UV irradiation. Arch Dermatol Res, 1994,286:47~52
    
    
    74 Leccia MT, Yaar M, Allen N, et al. Solar simulated irradiation modulates gene expression and activity of antioxidant enzymes in cultured human dermal fibroblasts. Exp Dermatol, 2001,10(4):272~279
    75 Fu YC, Jin XP, Wei SM, et al. Ultraviolet radiation and reactive oxygen generation as inducers of keratinocyte apoptosis: protective role of tea polyphenols. J Toxicol Environ Health A, 2000, 61(3): 177~188
    76 Yao RY, Wang CB. Protective effects of polypeptide from Chlamys farreri on Hela cells damaged by ultraviolet A. Acta Pharmacol Sin, 2002, 23(11):1018~22
    77 Branghler JM, Duncan LA, Chase RL. The involvement of iron in lipid peroxidation. J Biol Chem, 1986, 261:356~360
    78 El-Deity WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell, 1993, 75(4): 817~825
    79 Harper JW, Adami GR, Wei N, et al. The p21 CDK interacting protein CIP1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell, 1993, 75 (4): 805~816
    80 Dulic V, Kaufmann WK, Wilson SJ, et al. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell, 1994, 76(6): 1013~1023
    81 Liu M, Pelling JC. UVB/A irradiation of mouse keratinocytes results in p53-mediated WAF1/CIP1 expression, Oncogene, 1995, 10:1955~1960
    82 Waga S, Hannon GJ, Beach D, et al. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature, 1994, 369:574~78
    83 Flores-Rozas H, Kelman Z, Dean FB, et al. Cdk-interacting protein 1 directly binds with proliferating cell nuclear antigen and inhibits DNA replication catalyzed by the DNA polymerase delta holoenzyme. Proc Natl Acad Sci USA, 1994, 91:8655~8659
    84 Kaiser N, Edelman IS. Calcium dependence of glucocorticoid-induced lymphocytolysis. Proc Natl Acad Sci USA, 1977, 74:638~642
    85 McConkey DJ, Hartzell P, Nicotera P, et al. Calcium-activated DNA fragmentation kills immature thymocytes. FASEB J, 1989, 3:1843~1849
    86 Richter C. Pro-oxidants and mitochondrial Ca~(2+):their relationship to apoptosis and oncogenesis. FEBS Lett, 1993, 325:104~107
    87 Scorrano L, Nicolli A, Basso E. Two modes of activation of the permeability transition pore: the role of mitochondria cyclophilin. Mol Cell Biochem, 1997, 174: 181~184
    88 Emaus RK, grunwald R, Lemasters JJ. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta, 1986, 85:436~441
    
    
    89 Denning MF, Wang YH, Nickoloff BJ, et al. Protein Kinase Cδ Is Activated by Caspase-dependent Proteolysis during Ultraviolet Radiation-induced Apoptosis of Human Keratinocytes. J Biol Chem, 1998, 273:29995~30002
    90 Sun SY, Yue P, Wu GS, et al. Implication of p53 in growth arrest and apoptosis induced by the sythetic retinoid CD437 in human lung cancer cells. Cancer Res, 1999, 59:2829~2833
    91 Wan YS, Wang ZQ, Voorhees J, et al. EGF receptor crosstalks with cytokine receptors leading to the activation of c-Jun kinase in response to UV irradiation in human keratinocytes. Cell Signal, 2001 Feb; 13(2):139~144
    92 DeFea KA, Vaughn ZD, O'Bryan EM, et al. The proliferative and antiapoptotic effects of substance P are facilitated by formation of a β-arrestin-dependent scaffolding complex. Proc Natl Acad Sci USA, 2000, 97(20):11086~11091

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700