冷却猪肉腐败的细菌群体感应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是猪肉的生产消费大国,其最主要的消费形式是生鲜肉。冷却猪肉以其营养、安全、卫生等特点,已成为我国乃至世界生肉销售的主要发展方向。虽然冷却猪肉从生产到销售始终处于0-4℃的低温环境,但仍旧不能完全抑制嗜冷微生物的繁殖,从而导致其货架期不长,这严重制约了我国冷却猪肉生产和国内外销售市场的发展。
     冷却猪肉腐败是特定腐败微生物共同作用的结果。假单胞菌是一种革兰氏阴性菌,其是导致高蛋白食品腐败的嗜冷性微生物,它在冷却猪肉腐败中起到至关重要的作用。近几年对食品腐败的研究发现,引起食品腐败的微生物主要是革兰氏阴性菌,且在腐败食品中都检测到了酰基高丝氨酸内酯(AHLs),因此,本研究利用根瘤农杆菌(Agrobacterium tumefaciens)A136(pCF218/pCF372)报告平板筛选的方法,从腐败的冷却猪肉中筛选出产AHLs信号分子的假单胞菌,并提取其产生的AHLs,模拟导致冷却肉腐败的不同微生物群系,探讨肉源假单胞菌及其群体感应干预猪肉蛋白降解的情况,为进一步明确群体感应在肉制品腐败中的作用,以及基于干扰腐败细菌群体感应为靶点的冷却肉防腐保鲜策略提供研究基础。试验得到主要结论如下:
     1、首先采用选择性培养基对托盘包装冷却猪肉的初始菌相进行了分析,并研究了在4℃储藏温度下托盘包装冷却猪肉微生物的相互作用和消长变化规律。结果表明:假单胞菌和乳酸菌是构成有氧条件下冷却猪肉初始菌相的主要微生物。在4℃储藏温度下,细菌总数都在增长;随着贮藏时间的延长,假单胞菌增长速度最快,菌数增长最多,肠杆菌和葡萄球菌也有不同程度的增长,在试验末期也达到了较高的对数值,而乳酸菌增长速度最慢,其比例不断下降,在试验末期,已失去优势菌的地位。假单胞菌与乳酸菌呈负相关关系而与肠杆菌和葡萄球菌呈正相关关系。
     2、采用假单胞菌分离培养基,丛低温贮藏冷却猪肉和腐败的冷却猪肉肉样中分离到约66株肉源假单胞菌,再采用根瘤农杆菌(Agrobacterium tumefaciens)A136(pCF218/pCF372)的报告平板对其进行复筛得到15株产AHLs的假单胞菌,并采用16S rRNA分子生物学鉴定结合细菌的常规形态学和生理生化方法对其中产量最高的1株菌株C2-7-2进行鉴定,鉴定其为铜绿假单胞菌(Pseudomonas aeruginosa),并命名为铜绿假单胞菌C272。从GenBank数据库中选取代表性假单胞菌的16SrRNA序列,利用DNAMAN软件构建系统发育树,同时对该菌的蛋白水解活性和生物膜形成能力等与食品腐败相关特性进行检测,发现其具有很强的蛋白水解能力和生物被膜形成能力。
     3、提取铜绿假单胞菌C272合成的AHLs,与冷却猪肉主要的几种致腐微生物共同添加到猪肉蛋白提取物中,采用SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)方法,研究了AHLs介导冷却肉主要致腐微生物降解猪肉蛋白提取物的情况。结果发现,铜绿假单胞菌C272释放的AHLs信号分子可以促进其本身、金黄色葡萄球菌、大肠杆菌、植物乳杆菌对肌浆蛋白的降解,尤其对于金黄色葡萄球菌的促进作用最强,其次是其本身和植物乳杆菌,而对于大肠杆菌降解肌浆蛋白促进作用不显著。由图谱观察可知,该信号分子主要促进分子量约40kDa肌浆蛋白的降解。然而铜绿假单胞菌C272释放的AHLs调控各菌降解肌原纤维蛋白的情况有所不同。铜绿假单胞菌C272释放的AHLs可促进其本身降解肌原纤维蛋白,也可促进大肠杆菌降解分子量约为105和35kDa的蛋白,而对于金黄色葡萄球菌和植物乳杆菌,AHLs却抑制它们对肌原纤维蛋白的降解。
     4、模拟导致冷却猪肉腐败的不同微生物群系,采用SDS-PAGE方法,研究了不同微生物群系对猪肉蛋白降解的影响,结果发现,铜绿假单胞菌C272与其他主要腐败微生物组合的不同微生物群系,都可降解肌浆蛋白和肌原纤维蛋白。但不同微生物群系对猪肉肌浆蛋白的降解作用与单独微生物降解情况基本相同,不同微生物群系间降解肌浆蛋白情况也无明显差异。各微生物群系降解肌原纤维蛋白情况较为复杂,但从图谱可以看出,有铜绿假单胞菌C272参与的微生物群系,肌原纤维蛋白降解都受到不同程度的抑制,且四株菌共存的微生物群系,肌原纤维蛋白降解程度最小,可能原因是四种菌的竞争拮抗作用,抑制彼此降解蛋白酶的活力。
China is a big country of pig breeding and pork consumption in which the main consumption pattern is fresh meat. Due to the characteristics of nutritious, safe and healthful, chilled pork has become the leading developing direction of fresh meat.Though the temperature environment remains 0-4℃through production to marketing, it cannot inhibit the propagation of psychrophilic microorganisms which leads to a short shelf life of chilled pork. Based on that, China has been severely restricted in the development of production and domestic sales market of chilled pork.
     The corruption of chilled pork results from the interaction of specific spoilage microorganisms.Pseudomonas aeruginosa is a kind of Gram-negative bacterium,a psychrophilic microorganism which causes the corruption of high-protein food,and it plays an important role in spoilage of chilled pork. It is the Gram-negative bacterium that give rise to food spoilage based on the research of recent years. And N-3-acyl-homoserine lactones (AHLs) have been detected in corruption food. Therefore this assay is aimed to select P.aeruginosa which produce signal molecules of AHLs in putrid chilled pork, and extract the AHLs using an Agrobacterium tumefaciens A136(pCF218/pCF372) plate screening model. Then the researcher simulated the microenvironment of putrid chilled pork, investigated the intervention of Pseudomonas and its quorum sensing(QS)in degradation of pork protein extracts in chilled pork. It provides research basis of the role that QS plays in meat corruption and antisepsis and preservation tactics which base on the interference with corruption bacterial quorum sensing as a target of chilled meat. Main conclusions of the tests are as follows:
     1、Selective medium were used to study the initial microflora of pallet packaging chilled pork, then the interaction and changes of growth and decline of microorganisms in pallet packaging chilled pork were investigated under the storage temperature of 4℃. The results showed:the initial microflora of main microorganisms in chilled pork was Pseudomonas and lactobacillus under aerobic condition. Total bacterial count increased under the storage temperature of 4℃; as the storage time extended, the growing speed of Pseudomonas was the highest, and the bacterial count was the most. The number of Escherichia Coli and Staphylococcus grew at different degrees, reached a higher logarithm value at the end of the experiment. During the experiment, growing speed of lactobacillus was the slowest; its proportion kept falling during the period and it lost the status of dominant bacteria at the end of the experiment. Pseudomonas had a negative correlation with lactobacillus while Escherichia Coli had a positive correlation with Staphylococcus.
     2、66 strains Pseudomonas were gained from chilled pork under low temperature storage and corrupted chilled pork sample using Pseudomonas isolation medium 15 strains Pseudomonas that produce AHLs were gained using A.tumefaciens A136 (pCF218/pCF372) reported plates for secondary screening. Then one Pseudomonas strain that gained the highest yield of AHLs was identified by combining 16S rRNA molecular biology identification with conventional bacterial morphological and biochemical methods. Finally the one was identified as Pseudomonas aeruginosa.The representative 16S rRNA sequence of Pseudomonas was selected from GeeBank. DNAMAN software was used to structure Phylogenetic tree. Properties that related to food spoliage, such as proteolytic activity and biofilm formation ability of the P. aeruginosa, were analyzed at the same time.And study shows that it can generate biofilm and has a strong capacity of protein forming.
     3、AHLs that were synthesis by P.aeruginosa C272, together with microorganisms that caused spoilage of chilled pork,were added to the extracts from pork protein.Using SDS-polyacrylamide gel electrophoresis (SDS-PAGE),AHLs were found to mediate the biodegradation process of chilled pork protein extracts that were caused spoilage by microorganisms. The results showed that AHLs extracted from P.aeruginosa C272 has a promote effect on sarcoplasmic protein degradation of itself,Staphylococcus aureus, Escherichia coli,Lactobacillus plantarum.Especially AHLs had a most promote effect on S. aureus and a secondary effect on P.aeruginosa C272 itself and L.plantarum while the effect on E.coli was not so significant. According to the atlas, AHLs were found to help degradation of protein whose molecular weight is about30-40kDa. However, AHLs from P.aeruginosa. C272 had different regulations of myofibrillar protein degradation.They stimulated myofibrillar protein degradation of P.aeruginosa C272, and had a certain promotion of E.coli on degradation of myofibrillar protein whose molecular weight is about 105kDa and 34kDa, while they helped S.aureus and L.plantarum restrict degradation of myofibrillar protein.
     4、A research about the effects of different microbiota on the degradation of pork protein was carried out by mimicking various pork spoilage microbiota with SDS-PAGE. The results indicated that both sarcoplasmic protein and myofibrillar protein would be degraded under various microbiota containing P.aeruginosa C272 and other main spoilage organism. The degradation extent of swine sarcoplasmic protein under different microbiota and single species of microbiota were almost without differences, and the situation was the same between different microbiota.The degradation conditions were complex under various microbiota,but the atlas indicated that myofibrillar protein degradation was suppressed to different extent under the microbiota with Pseudomonas and with four strains the degradation was minimum.Antagonism of the four strains to suppress each other's degradation activity may contribute to the situation.
引文
[1]中国物流采购联合会编《中国物流年鉴》[M].中围物资出版社,2005,270.
    [2]中国物流采购联合会编《中国物流年鉴》[M].中围物资出版社,2007,369-370.
    [3]王小刚.21世纪的健康首选—冷却肉[J].肉类研究,2005,6:1-4.
    [4]沈月新,宋立华.冷却肉与热鲜肉、冻肉食用质量的比较研究[J].制冷技术,2000(03):43-45.
    [5]孔凡珍.冷却肉将成为我国未来生肉消费主流[J].肉类工业,2005(5):46.
    [6]胡红燕,要萍,张慧芸等.冷却肉的研究近况与展望[J].肉类研究,2009(3):70-73.
    [7]臧靖巍.我国肉品发展的趋势——冷却肉[J].肉类工业2003(11):37-38.
    [9]蒲海燕,李影球,陈字前.我国冷却肉发展现状、存在的问题及对策[J].肉类工业,2006(10):39.
    [10]熊洁.我国冷却肉供应链研究[D].对外经济贸易大学硕士论文,2007:1.
    [11]彭勇.冷却猪肉常见腐败微生物致腐能力的研究[J].中国农业大学硕士学位论文,2005:1.
    [12]Fournaud J,Graffion G,Rossel R.Contamination microbienne des carcasses a labattoir[J]. Industries Agricoles at Alimentaires.1995,4:273-282.
    [13]Buchanan R. L. and Palumbo S. A.Aeromonas hydrophila and Aeromonas sobria as potential food poisoning species:a review[J].Food Safety.1985,7:15-29.
    [14]Ingram M. and Dainty R.H. Changes caused by microbes in spoilage of meat[J].Appl. Bacterial.1971,34:21-39.
    [15]Dalgaard P.Qualitative mad quantitative characterization of spoilage bacteria from packed fish[J].Food Microbiol.1995,26:319-333.
    [16]罗欣,朱燕.乳酸钠在牛肉冷却肉保鲜中的应用研究[J].食品与发酵工业.2000,26(3):1-5.
    [17]马俪珍,南庆贤,戴瑞彤.冷却猪肉中腐败菌的分离、初步鉴定与初始菌相分析[J].天津农学院学报.2005,12(3):39-43.
    [18]傅鹏,李平兰.冷却猪肉中初始菌相分析与冷藏过程中的菌相变化规律研究[J].食品科学.2006,27(11):119-123.
    [19]于见亮,李开雄,蒲菊霜等.冷却羊肉中腐败菌的分离、初步鉴定与初始菌相分析[J].肉 类工业.2007,11:27-29.
    [20]Notingham P.M.Microbiology of carcass meat[M].Meat Microbiology.Eds.Brown London M.H.Applied Science Publishers.1982.
    [21]杜海全,任发政,郑立红等.冷却猪肉生产中菌落总数的变化规律[J].肉类研究.2005,11:34-36.
    [22]Gill C O, McGinnis J C, Bryant J. Microbial contamination of meat during the skinning of beef carcass hindquarters at three slaughtering plants[J].International Journal of Food Microbiology.1998,42(3):175-184.
    [23]John S.Selective effect of the product type and the packaging conditions on the species of lactic bacteria dominating the spoilage microbial association of cooked meats at 4℃ [J].Food Microbiology.2000,17:329-340.
    [24]Korkeala H,Bjrkroth J.Microbiological spoilage and contamination of vacuum-packaged cooked sausages[J].Journal of Food Protection.1997,60:724-731.
    [25]Broda, D.M., DeLacey, K.M., Bell, R.G., Penney, N. Association of psychrotrophic Clostridium spp with deep tissue spoilage of chilled vacuum-packed lamb[J].Food Microbiol.1996,29:371-378.
    [26]张德权,王宁,王清章等.真空条件下冷却羊肉的菌相消长规律[J].食品科学.2006,27(4):47-50.
    [27]马丽珍,南庆贤,戴瑞彤.不同气调包装方式的冷却猪肉在冷藏过程中的微生物变化[J].农业工程学报.2004,20(4):160-164.
    [28]杨兴章,曹振辉,乔金玲.冷却肉生产过程中微生物污染及控制措施[J].肉类研究.2007,7:26-28.
    [29]Edwards,R.A.,Dainty,R.H.,Hibbard,C.M.,Putrescine and cadaverine formation in vacuum packed beef[J].Appl.Bacteriol.1985,58:13-19.
    [30]Chai,T.,Chen,C.,Rosen,A.,Levin,R.E.Detection and incidence of specific spoilage bacteria on fish II.Relative incidence of Pseudomonas putrefaciens and fluorescent pseudomonads on haddock fillets[J].Appl.Microbiol.1968,16:1738-1741.
    [31]Herbert,R.A.,Shewan,J.M..Roles played by bacterial and autolytic enzymes in the production of volatile sulphides in spoiling North sea cod (Gadus morhus)[J].Sci.Food Agric.1976,27:89-94.
    [32]Dainty,R.H.,Mackey,B.M.The relationship between the phenotypic properties of bacteria from chill-stored meat and spoilage processes[J].Appl Bacteriol Symp Suppl.1992,73:103S-144S.
    [33]Lee,B.H.,Simard,R.E.Evaluation of methods for detecting the production of H2S,volatile sulphides and greening by lactobacilli[J].Food Sci.1984,49:981-983.
    [34]Segal, W.,Starkey,R.L.Microbial decomposition of methionine and identity of the resulting sulfur products[J].Bacteriol.1969,98:908-913.
    [35]Herbert,R.A.,Shewan,J.M.Precursors of the volatile sulphides in spoiling North Sea cod (Gadus morhua)[J].Sci Food Agric.1975,26:1195-1202.
    [36]Nassos,P.S.,King Jr.,A.D.,Stafford,A.E.Relationship between lactic acid concentration and bacterial spoilage in ground beef[J].Appl Environ Microbiol.1983,46:894-900.
    [37]Miller,M.B.,Bassler,B.L.Quorum sensing in bacteria[J].Annual Review of Microbiology.2001,55:165-199.
    [38]March,J.C.,Bentley,W.E.Quorum sensing and bacterial cross-talk in biotechnology[J]. Current Opinion in Biotechnology.2004,15:495-502.
    [39]Gebrecht,J.,Silverman,.M.Identification of genes and gene products necessary for bacterial bioluminescence[J].Proc Natl Acad Sci.USA.1984,81:4154-4158.
    [40]Schauder,S.,Bassler,B.L.The languages of bacteria[J].Genes Dev.15(12):1468-1480.
    [41]de Kievit,T.R.,Iglewski,B.H.Bacterial quorum sensing in pathogenic elationships[J]. Infection and Immunity.2000,68(9):4839-4849.
    [42]Ahmer,B.M.M.Cell-to-cell signalling in Escherichia coli and Salmonella enteric[J].Molecular Microbiology.2004.52:933-945.
    [43]Michiels,J.,Dirix,G.,Vanderleyden,J.,Xi,C.Processing and export of peptide pheromones and bacteriocins in Gram-negative bacteria[J].Trends in Microbiology.2001,9:164-168.
    [44]Holden,M.T.,Ram Chhabra,S.,de Nys,R.et.al.Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria[J].Molecular Microbiology.1999,33:1254-1266.
    [45]Ren,D.,Bedzyk,L.A.,Ye, R.W.,Thomas,S.M.,Wood,T.K.Stationaryphase quorum-sensing signals affect autoinducer-2 and gene expression in Escherichia coli[J].Applied and Environmental Microbiology.2004,70:2038-2043.
    [46]Gamard,P.,Sauriol,F.,Benhamou,N.,Belanger,R.R.,Paulitz,T.C.Novel butyrolactones with antifungal activity produced by Pseudomonas aureofaciens strain 63-28[J].The Journal of Antibiotics.1997,50:742-749.
    [47]Fuqua,C.,Parsek,M.R.,Greenberg,E.P.Regulation of gene expression by cell-to-cell communication:acyl-homoserine lactone quorum sensing[J].Annual Review of Genetics.2001,35:439-468.
    [48]More,M.I.,Finger,L.D.,Stryker, J.L.,Fuqua,C.,Eberhard, A., Winans,S.C.Enzymatic synthesis of a quorum sensing autoinducer through use of defined substrates[J].Science. 1996,272:1655-1658.
    [49]Zavilgelsky,G.B.,Manukhov,I.V.Quorum sensing or how bacteria "talk"to each other[J].Molecular Biology.2001,35(2):224-232.
    [50]张素琴.微生物分子生态学[M].科学出版社.2005:104-105.
    [51]Engebrecht, J.,Nealson,K.,Silverman,M.Bacterial bioluminescence:isolation and genetic analysis of function from Vibrio fischeri[J].Cell.1983,32:773-781.
    [52]Lewenza,S.,Conway,B.,Greenberg,E.P.,Sokol,P.A.Quorum sensing in Burkholderia cepacia:identification of the luxRI homologs CepRI.Journal of Bacteriology.1999,181:748-756.
    [53]Swift,S.,Winson,M.K.,Chan,P.F.,et.al.A novel strategy for the isolation of luxI homologues:evidence for the widespread distribution of a luxR:luxI superfamily in enteric bacteria[J].Molecular Microbiology.1993,10:511-520.
    [54]Pirhonen,M.,Flego,D.,Heikinheimo,R.,Palva,T.E.A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora[J].EMBO Journal.1993,12:2467-2476.
    [55]Jones,S.,Yu,B.,Bainton,N.J.,et.al.The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa[J].EMBO Journal.1993,12:2477-2482.
    [56]Bainton,N.J.,Bycroft,B.W.,Chhabra,S.R.,et.al.A general role for the lux autoinducer in bacterial cell signalling:control of antibiotic biosynthesis in Erwinia[J].Gene.1992,116:87-91.
    [57]Withers,H.L.,Nordstrom,K.Quorum-sensing acts at initiation of chromosomal replication in Escherichia coli[J].Proceedings of the National Academy of Sciences of the United States of America.1998,95:15694-15699.
    [58]Wood,D.W.,Gong,F.,Daykin,M.N.,Williams,P.,Pierson Ⅲ,L.S.Nacyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere[J].Journal of Bacteriology.1997,179:7663-7670.
    [59]Pearson,J.P.,Passador,L.,Iglewski,B.H.,Greenberg,E.P.A second Nacylhomoserine lactone signal produced by Pseudomonas aeruginosa[J].Proceedings of the National Academy of Sciences of the United States of America.1995,92:1490-1494.
    [60]Flavier,A.B.,Clough,S.J.,Schell,M.A.,Denny,T.P.Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum.[J]. Molecular Microbiology.1997,26:251-259.
    [61]Ahmer,B.M.M,Van Reeuwijk,J.,Timmers,C.D.,Valentine,P.J.,Heffron,F.Salmonella typhimurium encodes an sdiA homologue,a putative quorum sensor of the luxR family,that regulates genes on the virulence plasmid[J].Journal of Bacteriology.1998,180:1185-1193.
    [62]Eberl,L.,Winson,M.K.,Sternberg,C.,et al.Involvement of N-acyl-1-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens[J].Molecular Microbiology.1996,20:127-136.
    [63]Givskov, M.,Eberl,L.,Molin,S.Control of exoenzyme production,motility and cell differentiation in Serratia liquefaciens[J].FEMS Microbiology Letters.1997.148:115-122.
    [64]Throup,J.P.,Camara,M.,Briggs,GS.,et al.Characterization of the yenI/yenR locus from Yersinia enterocolitica mediating the synthesis of two Nacylhomoserine lactone signal molecules[J].Molecular Microbiology.1995,17:345-356.
    [65]Williams,P.,Stewart,G.S.A.B.,Camara,M.,et al.Signal transduction through quorum sensing in Pseudomonas aeruginosa [A].In:Silvet S,Haas D,Nakazawa T.(Eds.),Pseudomonas,Molecular Biology and Biotechnology.American Society for Microbiology,Washington DC.1996:195-206.
    [66]Gray,K.M.,Pearson,J.P., Downie,J.A.,et al.Cell-to-cell signaling in the symbiotic nitrogen fixing bacterium Rhizobium leguminosarum:autoinduction of a stationary phase and rhizosphere expressed genes[J].Bacteriol.1996,178:372-376.
    [67]Cha,C.,Gao,P.,Chen,Y.C.,et al.Production of acyl-homoserine lactone quorum-sensing signals by Gram-negative plant-associated bacteria[J].Mol.Plant Microbe Interact. 1998,11:1119-1129.
    [68]Camara,M.,Daykin,M.,Chhabra,S.R.Detection,purification and synthesis of N-acylhomoserine lactone quorum sensing signal molecules[J].Methods in Microbiology.1998, 27:319-330.
    [69]McLean.R.J.C,Pierson III.R.S.Fuqua.C.A simple screening protocol for the identification of quorum signal antagonists[J].Journal of Microbiological Methods.2004,58:351-360.
    [70]Shaw.P.D,Gao.P,Daly S,et al.Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography[J].Proc. Natl. Acad. Sci. USA.1997, 94:6036-6041.
    [71]Medina-Martinez M.S.,Uyttendaele M.,Demolder V,Debevere J.Influence of food system conditions on N-acyl-L-homoserine lactones production by Aeromonas spp[J].International Journal of Food Microbiology.2006,112:244-252.
    [72]Pearson, J.P.,Gray,K.M.,Passador,L.,et al.The structure of the autoinducer molecule required for expression of Pseudomonas aeruginosa virulence genes[J].Proc.Natl.Acad.Sci. USA.1994,91:197-201.
    [73]Ravn L.,Christensen A.B.,Molin S.,et al.Methods for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics[J].Journal of Microbiological Methods.2001,44:239-251.
    [74]Winson,M.K.,Swift, S.,Fish,L.,et al.Construction and analysis of luxCDABEbased plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing[J]. FEMS Microbiol.Lett.1998,163:185-192.
    [75]Brelles-Marin G,Bedmar E.J.Detection, purification and characterisation of quorum-sensing signal molecules in plant-associated bacteria[J].Journal of Biotechnology.2001,91:197-209.
    [76]Blosser R.S.,Gray K.M.Extraction of violacein from Chromobacterium violaceum provides a new quantitative bioassay for N-acyl homoserine lactone autoinducers[J].Journal of Microbiological Methods.2000,40:47-55.
    [77]Bainton N.J.,Stead P.,Chhabra S.R.et al.N-(3-oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora[J].Biochem J.1992 December 15;288(Pt 3):997-1004.
    [78]McClean K.H.,Winson M.K.,Fish L.Quorum sensing and Chrornobacteriurn violaceurn: exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones[J].Microbiology.1997,143:3703-3711.
    [79]Kuo A.,Blough N.V.,Dunlap P.V.Multiple N-Acyl-L-Homoserine Lactone Autoinducers of Luminescence in the Marine Symbiotic Bacterium Vibrio fischerit[J].Journal of Bacteriol.1994(176):7558-7565.
    [80]Lithgow,J.K.,Wilkinson,A.,Hardman,A.,et al.The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci[J].Mol Microbiol.2000,37:81-97.
    [81]Morin D.L.,Grasland B.A.,Rehel K.V.et al.On-line high-performance liquid chromatography-mass spectrometric detection and quantification of N-acylhomoserine lactones, quorum sensing signal molecules, in the presence of biological matrices[J].Journal of Chromatography A.2003,1002:79-92.
    [82]Cataldi T.R.I.,Bianco G.,Abate S.Accurate mass analysis of N-acyl-homoserine-lactones and cognate lactone-opened compounds in bacterial isolates of Pseudomonas aeruginosa PAO1 by LC-ESI-LTQ-FTICR-MS[J].Juornal of Mass. Spectrometry.2009,44:182-192.
    [83]Zhang,L.,Murphy,P.J.,Kerr, A.,Tate,M.EAgrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones[J].Nature.1993,362:446-448.
    [84]Gobbetti M.,Angelis M.D,Cagno R.D,Minervini F.,Limitone A.Cell-cell communication in food related bacteria[J].International Journal of Food Microbiology.2007,120:34-45.
    [85]Pearson J P, Pesci E C, Iglewski B H.Roles of Pseudomonas aeruginosa las and rhl quorum- sensing systems in control of elastase and rhamnolipid biosynthesis genes[J]. Bacteriol,1997,179:5756-5767.
    [86]Latifi A,Foglino M,Tanaka K.,et al.A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS[J].Mol Microbiol.1996,21:1137-1146.
    [87]Seed P C,Passador L,Iglewski B H.Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI:an autoinduction regulatory hierarchy[J]. Bacteriol,1995,177:654-659.
    [88]Pesc,E.C.,Iglewski,B.H.The chain of command in Pseudomonas quorum sensing[J]. Trends in Microbiology.1997,2:132-134.
    [89]Deziel,E.,Lepine,F.,Milot,S.,et al.Analysis of pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines(HAQs)reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication[J].Proc Natl Acad Sci USA.2004,101:1339-1344.
    [90]Von Boehmer,H.Mechanisms of suppression by suppressor T cell[J].Nat Immunol.2005, 6:338-344.
    [91]Lambropoulou,K.A.,Drosinos,E.H.,Nychas,GJ.E.The effect of glucose supplementation on the spoilage microflora and chemical composition of minced beef stored aerobically or under a modified atmosphere at 4℃[J].International Journal of Food Microbiology.1996, 30:281-291.
    [92]Borch,E.,Kant-Muerman,M.L.and Blixt,Y.Bacterial spoilage of meat and cured meat products[J].International Journal of Food Microbiology.1996,33(1):103-120.
    [93]Gram,L.,A.B.Christensen,L.Ravn,S.Molin,and M.Givskov.Production of acylated homoserine lactones by psychrotrophic members of the Enterobacteriaceae isolated from foods[J]. Appl.Environ Microbiol.1999,65:3458-3463.
    [94]Jay,J.M.,Vilai,J.P.,Hughes,M.E.Profile and activity of the bacterial biota of ground beef held from freshness to spoilage at 5-7℃[J].International Journal of Food Microbiology.2003, 81:105-111.
    [95]Medina-Martinez,Uyttendaele,M.,Meireman,S.,Debevere,J.Relevance of N-acyl-L-homoserine lactone production by Yersinia enterocolitica in fresh foods[J].Journal of Applied Microbiology.2006,100:1-9.
    [96]Christensen,A.B.,Riedel,K.,Eberl,L.,et al.Quorum-sensingdirected protein expression in Serratiaproteamaculans B5a[J].Microbiology.2003,149:471-483.
    [97]Bainton,N.J.,Stead,P.,Chhabra,S.R.,et al..N-(3-oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora[J].Biochem.J.1992, 288:997-1004.
    [98]Atkinson,S.,J.P.Throup,G.S.A.B.Stewart and P.Williams.A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping[J]. Mol Microbiol.1999,33:1267-1277.
    [99]Bruhn,J.B.,Christensen,A.B.,Flodgaard,L.R.,Nielsen,K.F.,Larsen,T.O.,Givskov,M.,Gram,L .Presence of Acylated Homoserine Lactones (AHLs) and AHL-Producing Bacteria in Meat and Potential Role of AHL in Spoilage of Meat[J].Applied and Environmental Microbology.2004, 70(7):4293-4302.
    [100]Riddel,J.,Korkeala,H.Minimum growth temperature of Hafnia alvei and other Enterobacteriacease isolated from refrigerated meat determined with a temperature gradient incubator[J].International Journal of Food Microbiology.1997,35:287-292.
    [101]Givskov,M.,DeNys,R.,Manefield,M.,et al..Eukaryotic interference with homoserine lactone-mediated prokaryotic signaling[J] Journal of Bacteriology.1996,178:6618-6622.
    [102]Hentzer,M.,Wu,H.,Andersen,J.B.,etal.Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors[J].EMBO Journal.2003,22:3803-3815.
    [103]BreidensteinB.B. Economic Impact of Meat Spoilage Organisms.Recip[J].Meat Conf.Proc.1986,39:1-4.
    [104]GB4789.2-2008,食品卫生微生物学检验菌落总数测定[S].北京:中国标准出版社,2009-3-1.
    [105]Gill C.O.Extending the storage life of meats[J].Meat science.1996,43:99-109.
    [106]Gill C.O.and NewtonK.G.The development of aerobic spoilage flora on meat stored at chill temperatures[J].Appl.Bacteriol.1977,43:189-195.
    [107]李正堂,李柏林,欧杰,赵勇.市售冷却牛肉中主要细菌的常规分离与鉴定[J].微生物学通报.2009,36(2):198-204.
    [108]王宁.冷却羊肉腐败菌菌相变化及其控制技术研究[D].华中农业大学硕士毕业论文.2006,27-28.
    [109]李苗云,周光宏,徐幸莲.应用PCR-DGGE研究冷却猪肉贮藏过程中的优势菌[J].西北农林科技大学学报(自然科学版).2008,36(9):185-189.
    [110]Lambropoulou K A,Drosinos E.H.,Nychas G.J.E.The effect of glucose supplementation on the spoilage micriflora and chemical composition of minced beef stored aerobically or under a modified atmosphere at 4℃[J].Food Microbiol.1996,30:281-291.
    [111]Fonald M.Atlas.Handbook of Micorbiological Media 3rd ed[M].CRC出版.2004,746.
    [112]F.奥斯伯,R.布伦特,R.E.金斯顿等.精编分子生物学实验指南[M].科学出版社.2001,39-45、740.
    [113]Fuqua W C,Winans S C,Greenberg E P.Quorum sensing in bacteria:the LuxR-LuxI family of cell density-responsive transcriptional regulators [J].Journal of bacteriology.1994, 176:269-275.
    [114]Fuqua C,Burbea M,Stephen C W. Activity of the Agrobacterium Ti plasmid conjugal transfer regulator TraR is inhibited by the product of the traM gene[J].Journal of bacteriology, 1994,176:269-275.
    [115]McClean,K.H,Winson,M.K.Fish,L.et al.Quorum sensing and Chromobacterium violaceum:Exploitation of violacein production and inhibition for the detection of Nacylhomoserine lactones[J].Microbiology.1994,143:3703-3711.
    [116]Brown,M.H.Meat Microbiology[J].Applied Science Publishers LTD.1982,474-475.
    [117]孙承锋,南庆贤,牛天贵.酱牛肉中腐败细菌的分离与鉴定[J].中国食品报.2001,1(1):56-60.
    [118]细菌筛选和鉴定系统.http://db.foodmate.net/basis/
    [119]中国科学院微生物研究所细菌分类组.一般细菌常用鉴定方法[M].135-139.
    [120]李怡,何珊,曹海鹏,杨先乐.孔雀石绿脱色菌恶臭假单胞菌菌株M6的分离、鉴定及其生长特性研究[J].微生物学通报.2009,36(1):57-63.
    [121]Stepanovic S.,Vukovic D.,Dakic I.,Savic B.,Vlahovic M.S.V.A modified microtiter-plate test for quantification of staphylococcal biofilm formation[J].Journal of Microbiological Methods.40 (2000) 175-179.
    [122]Houdt R.V.,Aertsen A.,Jansen A.,Quintana A.L.,Michiels C.W.Biofilm formation and cell-to-cell signalling in Gram-negative bacteria isolated from a food processing environment [J].Journal of Applied Microbiology.2004,96,177-184.
    [123]郭兴华.益生乳酸细菌—分子生物学及生物技术[M].北京科学出版社.2008:376-378.
    [124]Fuqua,C.,Winans,S.C.Conserved cis-acting promoter elements are required for density-dependent transcription of Agrobacterium tumefaciens conjugal transfer genes[J].Bacteriol.1996,178:435-440.
    [125]Pinto U.M.,Viana E.D.S.,Martins M.L.,Vanetti M.C.D.Detection of acylated homoserine lactones in gram-negative proteolytic psychrotrophic bacteria isolated from cooled raw milk[J].Food Control.2007,18:1322-1327.
    [126]Woese C.R.Bacterial evolution[J].Microbiol Rev.1987,51:221-227.
    [127]李琳,李瑾年,余为一.细菌分类鉴定方法的研究概况[J].安徽农业科学,2004,32(3):549-551.
    [128]别小妹,陆兆新,房耀维等.利用16SrDNA序列分析鉴定一株产抗菌物质的微生物菌株[J].食品科学.2006,27(11):466-470.
    [129]于长青,张丽娜,姚笛.利用PCR鉴定发酵肉制品中分离的植物乳杆菌[J].黑龙江八一农垦大学学报.2008,20(2):68-71.
    [130]Lambropoulou K.A.,Drosinos E.H.,Nychas G.J.E.The effect of glucose supplementation on the spoilage microflora and chemical composion of minced beef stored aerobically or under a modified atmosphere at 4℃[J].Int J Food Microbiol.1996,30:281-291.
    [131]Whitfield, F.B., Jensen, N., Shaw, K.J.,.Role of Yersinia intermedia and Pseudomonas putida in the development of a fruity off-flavour in pasteurised milk[J].Dairy Res.2000,67: 561-569.
    [132]Warriss P.D.Meat science[M].Wallingford,UK:CABI Publishing.2000.
    [133]管斌.食品蛋白质化学[M].北京:化学工业出版社.2005
    [134]王振宇,刘欢,马俪珍,马长伟.热处理下的猪肉蛋白质特性[J].食品科学.2008,29(5):73-79.
    [135]郭世良.肌原纤维蛋白和猪肉的热诱导凝胶影响因素及特性研究[D].河南农业大学硕士论文.2008.
    [136]Whan,L.,Dunstall, G.,Rowe, M.T.A study of the growth kinetics of two pseudomonads from pasteurized milk and the possible role of quorum sensing[J].Milchwissenschaft.2000,55: 371-373.
    [137]Parsek M.R.,Greenberg E.P.Sociomicrobiology:the connections between quorum sensing and biofilms[J].Trends in Microbiology.2005,13:27-33.
    [138]Fadda. S., Sanz. Y,et al.Hydrolysis of Poek Muscle Sarcoplasmatic Proteins by Lactobacillus Cunatus and Lactoacillus sake[J].Applial and Environmental Microbiology. 1999,65:578-584.
    [139]Mauriello G.,Casaburi A.,Villani F.Proteolytic activity of Staphylococcus xylosus strains on pork myofibrillar and sarcoplasmic proteins and use of selected strains in the production of "Naples type'salami[J].Journal of Applied Microbiology.2002,92:482-490.
    [140]Sanz. Y. FaddaS.et al.Hydrolysis of muscle myofibrillar proteins by Lactobacilluscurvatus and Lactobacillus sake[J].International Journal of Food Microbiology. 1999,53:115-125.
    [141]汪家政,范明.蛋白质技术手册[M].高等教育出版社.2000.
    [142]魏群.分子生物学实验指导[M].科学出版社,2000.
    [143]Rasch M.,Andersen J.B.,Nielsen K.F. Involvement of Bacterial Quorum-Sensing Signals in spoilage of Bean Sprouts[J].Applied and Environmental Microbiology.2005,71(6):3321-3330.
    [144]Passador L.,Cook J.M.,Gambello M.J.,et al.Expression of Pseudomonas aeruginose virulence genes requires cell-to-cell communication[J].Science.1999,260:1127-1130.
    [145]Eberl L.,Winson M.K.,Sternberg C.,et al.Involvement of N-acyl-L-homoserine lactone autoinducers in controlling the multicellular behavior of Serratia liquefaciens[J].Mol. Microbiol.1996,20:127-136.
    [146]Swift S.,Lynch M.J.,Fish L.,et al.Quorum sensing-depent regulation and blockade of exoprotease production in Aeromonas hydrophila[J].Infect.Immun.1999,67:5192-5199.
    [147]Pinto U.M., Costa E.D.,Mantovani H.C.,Vanetti M.C.D. The proteolytic activity of Pseudomonas fluorescens 07A isolated from milk is not regulated by Quorum-Sensing Signals[J].Brazilian Journal of Microbiology.2010,41:91-96.
    [148]Boddy,L.,Wimpenny,J.W.T.Ecological concepts in food microbiology[J].Appl. Bacteriol. Symp. Suppl.1992,73:23S-38S.
    [149]Gram,L.Inhibitory effect against pathogenic and spoilage bacteria of Pseudmonas strains isolated from spoiled and fresh fish[J].Appl Environ Microbiol.1993,59:2197-2203.
    [150]Champomier-Verge's,M.-C.,Richard,J.Antibacterial activity among Pseudomonas strains of meat origin[J].Lett. Appl. Microbiol.1994,18:18-20.
    [151]Cheng,C.-M.,Doyle,M.P.,Luchansky,J.B.Identification of Pseudomonas fluorescens strains isolated from raw pork and chicken that produce siderophores antagonistic towards foodborne pathogens[J].Food Prot.1995,58:1340-1344.
    [152]Laine M.H.,Karwoski M.T.,Raaska L.B.,Mattila-Sandholm T.-M.Antimicrobial activity of Pseudomonas spp.against food poisoning bacteria and moulds[J].Lett. Appl. Microbiol.1996, 22:214-218.
    [153]Ellis R.J.,Timms-Wilson T.M.,Bailey M.J.Identification of conserved traits in fluorescent pseudomonads with antifungal activity[J].Env Microbiol.2000,2:274-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700