激光焊接NiTi合金的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NiTi形状记忆合金集形状记忆效应、超弹性、良好的生物相容性于一体,使它成为理想的医用材料,成功地应用于介入医疗领域中各种支架的制作。目前对于直径较小、厚度较薄的血管支架的需求量日益增加。但是,现有的加工技术,激光雕刻或手工编织,成本高且难以加工此类支架。另外,手工编织的大尺寸外周管腔支架,接头部分目前往往用套管来连接,寻求更好的连接方法也是所面临的难题之一。激光微焊接被认为是解决这些难题适合的、有希望的方法之一。
     本论文系统地研究了超弹性Ti-50.6at.%Ni合金丝脉冲激光焊接接头的组织和性能,目的在于揭示用激光焊接方法加工微小医疗器械的可行性。主要结论如下:
     NiTi合金细丝激光点焊时需选择小电流、大脉宽、负离焦量,同时采用Ar气保护;激光点焊接头的熔化区由树枝晶组成,热影响区靠近熔池的部分为粗大等轴晶,靠近母材的部分为细小等轴晶;激光焊接会影响到NiTi合金丝的相变行为,使NiTi合金丝的相变过程由B2-R-B19′转变为B2-B19′且相变温度发生变化;接头中碳化物的数量明显少于母材;接头的抗拉强度和延伸率低于母材。在37℃时,接头的抗拉强度可达母材的60%,加载到应变为7%后卸载,接头和母材的残余应变为分别为1.06%和0.45%,接头性能降低的原因是由于激光焊接所形成的树枝晶。
     NiTi合金激光焊接组织的耐蚀性和血液相容性比母材好。由于激光焊接组织中夹杂物的数量较少,表面易形成均匀、连续的钝化膜,从而提高了NiTi合金的耐蚀性和血液相容性。在相同条件下,NiTi合金激光焊接组织的钝化电位区间比母材的大,击穿电位比母材的高,凝血时间较长,血小板粘附量较少,变形小。
     热循环和退火会对NiTi合金激光点焊接头的相变行为产生影响。热循环后接头中出现R相变,随着热循环次数的增加,R相变向高温方向移动,M相变向低温方向移动,R相存在的温度区间变宽,其主要原因是热循环在基体中引入位错。激光焊接NiTi合金经退火后,也出现R相变,随着退火温度的升高,R相变峰向低温方向移动,M相变峰也向低温方向移动,但移动的非常小,R相变和M相变之间的距离缩小,其主要原因是退火过程中产生了Ti_3Ni_4析出相。
     NiTi合金激光点焊接头具有较好的超弹性疲劳性能。在加载卸载循环时,尽管开始时接头的残余应变比母材的大,但随着循环次数的增加,残余应变趋向稳定。在旋转弯曲疲劳中,当应变量大于0.4%时,在相同的应变下,接头的旋转弯曲疲劳寿命低于母材;当应变量小于0.4%,接头和母材的疲劳寿命都超过100万次。溶液中Cl~-浓度和溶液的pH值对NiTi合金丝的旋转弯曲疲劳性能没有显著的影响。
     退火温度对激光点焊接头的性能有影响。焊接状态的NiTi合金在退火的过程中会析出Ti_3Ni_4相。400℃退火时,析出的Ti_3Ni_4相呈细小的圆形颗粒状,平均直径为10nm,弥散分布,对基体强化作用很大,能提高NiTi合金激光点焊接头的性能;而退火温度较高时,析出的Ti_3Ni_4相粗化,弥散度大幅度下降,对基体的强化作用很弱,接头的性能降低。
A combination of shape memory effect, superelasticity and good biocompatibility makes NiTi alloy a desirable candidate material for certain biomedical device applications, successfully used in the field of interventional therapy to fabricate different stents. There is a growing demand for smaller and thinner endocascular stents. However, present technique, laser cutting or hand made technique, usually takes high costs and it is difficult to fabricate these stents. In addition, it is one of the difficulties to find better joining method for hand made peripheral endoluminal stent, which is confined to mechanical fastening by tube at the present time. Micro laser welding is considered to be one of the available and promising methods for resolving these difficulties.
     Process, microstructures and properties of pulse laser spot-welded NiTi shape memory alloy have been studied in this paper in order to reveal the applicability of laser welding to the fabrication of medical devices. Superelastic Ti-50.6at %Ni wires were welded using pulsed YAG laser. The primary conclusions are listed as follows:
     Theoretic analysis and experimental results show that welding parameters possessing lower current, higher pulse duration, defocusing distance and Ar protecting atmosphere are advantageous to getting better joint. The fusion zone features dendrite structure, the microstructures of heat-afected zone can be divided into two parts: coarse equiaxial crystals near the fusion zone and fine equiaxial crystals near the base metal. Laser welding affects the transformation behavior of NiTi alloy wire, which varies from B2→R→B19' to B2→B19'. Carbide in laser spot-welded joint is lower than that in base metal. The ultimate tensile strength and elongation of the joint are lower than that of the base metal. When unloading at the 7% strain, the residual strain is 1.06% for laser spot-welded joint and 0.45% for base metal, respectively. This is mainly caused by coarse-grained and dendritic microstructure in the welded joints.
     The corrosion resistance and hemocompatibility of laser-welded NiTi are better than that of base metal. The improvement of the corrosion resistance and hemocompatibility of laser-welded NiTi is due to the sharp decrease of surface defects. At the same condition, laser-welded NiTi exhibits a higher breakdown potentials、wider passive range、longer cruor time.
     The transformation behavior of joint changes with thermal cycling and annealing, varying from B2→B19' to B2→R→B19'. With increasing thermal cycles, the R phase transformation start temperature increases and the temperature region of the R phase is broadened. But the martensitic transformation start temperature decreases with increasing thermal cycles. It is thought that dislocations play important role in the transfer from one-step to the two-step transformation and in the shifts of transformation temperature. R phase can also appear in the laser-welded NiTi after annealing. R phase and martensite transformation temperature move to the low temperature side with increasing annealing temperature. The variations in transformation behavior are attributable to the presence of Ti_3Ni_4 precipitates after annealing.
     The laser spot-welded NiTi has good superelastic fatigue property. Although it has a larger residual strain than base metal at the first cycling, the residual strain decreases with the increase of the cycle number. The rotation-bending fatigue test results show significantly reduced numbers of cycles to failure when strain amplitude remains above 0.4%. This is mainly caused by coarse-grained and dendritic microstructure in the welded joints. Both the welded microstructure and the unwelded one is able to be loaded up to 10~6 cycles without failure if the strain amplitude remains below 0.4%. The fatigue life of laser spot-welded joint and base metal has no significant changes with increasing of Cl concentration and pH value.
     The properties of laser-welded NiTi are affected by annealing temperature because of the presence of Ti_3Ni_4 precipitates during annealing. Smaller cohe, rent Ti_3Ni_4 precipitates (10nm) produced at 400℃annealing have a dispersive distribution and can strongly strengthen the joint. Therefore, it can improve the properties of the joint; When annealing at 500℃, the Ti_3Ni_4 precipitates become coarse, so the properties of joint decreases.
引文
[1] 杨大智,吴明雄.Ni-Ti形状记忆合金在生物医学领域的应用.北京:冶金工业出版社.
    [2] 晨爱民,万涛.生物医学材料研究与展望.武汉理工大学学报.2005,27(8):116-118.
    [3] Miyazaki S, Otsuka K. Development of shape memory alloys. ISIJ International. 1989, 29(5): 353-357.
    [4] Miyazaki S, Otsuka K. The shape memory mechanism associated with the martensitic transformation in Ti-Ni alloys-I. Self-accommodation. Acta metall. 1989, 37(7): 1873-1884.
    [5] Brandes E A, Brook G B. Smithells Metals Reference Book. London: Butterworth-Heineman Ltd, 1992.
    [6] Otsuka K, Shimizu K. Pesudoelasticity and shape memory effect in NiTi. International Metals Reviews. 1986, 33: 93-97.
    [7] Wu S K, Wayman C M. On the reciprocal lattice of the "premartensitic" R-phase in TiNi shape memory alloys. Acta metall. 1989. 37(10): 2805-2813.
    [8] Massalski T B, Okamoto H, Subramanian P R et al. Binary alloy phase diagrams. Ohio: ASM Internation, 1990.
    [9] Xie C Y, Zhao L C, Lei T C. Effect of Ti_3Ni_4 precipitates on the phase transitions in an aged Ti-51. 8at.%Ni shape memory alloy. Scripta Metallurgical and Materialia. 1990, 24: 1753-1758.
    [10] Rondelli G. Corrosion resistance tests on NiTi shape memory alloy. Biomaterials. 1996, 17(20): 2003-2008.
    [11] Rondelli G, Vicentini B. Localized corrosion behavior in simulated human body fluids of commercial Ni-Ti orthodontic wires. Biomaterials. 1990, 20: 785-792.
    [12] Durra R, Madangopal K, Gadiyar et al. Biocompatibility of Ni-Ti shape memory alloy. Brit. Corr. J. 1993, 28: 217-221.
    [13] 刘建生,李宁,文玉华.形状记忆合金的应用.机械.2001,28(3):56-58.
    [14] 徐祖耀.形状记忆材料.上海:上海交通大学出版社.
    [15] 郑玉峰,赵连城.生物医用镍钛合金.北京:科学出版社.
    [16] 石萍.NiTi形状记忆合金的腐蚀与气蚀:(博士后研究工作报告).大连:大连理工大学,2002.
    [17] Shabalovskaya S A. Physicochemical and biological aspects of Nitinol as a biomaterial. International Materials Review. 2001, 46(4): 1-18.
    [18] Trepanier C, Tabrizian M, Yahia L et al. Effect of modification of oxide layer on NiTi stent corrosion resistance. J Biomed Mater Res. 1998, 43: 433-440.
    [19] Buddy D R. Ophthalomologic biocompatibility: Anachronism or oxymoron. J Cataract Refractive Surgery. 1998, 24(3): 3-10.
    [20] Cutrigh D E, Bhasker S N, Perez Bet al. Cowan Gsm Tissue reaktion to Nitinol wire alloy. Oral. Surg. 1973, 35(4): 578-584.
    [21] Castleman L S, Mofzkin S M, Alicandri F P et al. Biocompatibility of nitinol alloy as an implant material. J Biomed Mater Res. 1976, 10: 695-731.
    [22] 王继芳,卢世壁,郭锦芳.钛镍合金动物组织埋藏实验报告.北京生物医学工程.1992,11(2):84-85.
    [23] 马根山,黄峻,王敬良等.钛镍形状记忆合金血管内支架组织相容性研究.中国生物医学工程学报.1995,14(3):198-201.
    [24] Ryhanen J, Kallioinen M, Tuukkanen J et al. Bone modeling and cell- material interface responses induced by nickel-titanium shape memory alloy after periosteal implantation. Biomaterials. 1999, 20: 1309-1317.
    [25] Kapanen A, Ryhanen J, J. Effect of nickel-titanium shape memory metal alloy on bone formation. Biomaterials. 2001, 22: 2475-2480.
    [26] Kapanen A, Ilvesaro J, Danilov A et al. Behaviour of Nitinol in osteoblast-like ROS-17 cell cultures. Biomaterials. 2002, 23: 645-650.
    [27] 赵连城,蔡伟,郑玉峰.合金的形状记忆效应与超弹性.北京:国防工业出版社.
    [28] Melton K N, Mercier O. Fatigue of NiTi thermoelastic martensites. Acta Metallurgica. 1979, 27: 137-144.
    [29] Tobushi H, Hachisuka T, Yamada S et al. Rotating-bending fatigue of a TiNi shape memory alloy wire. Mechanics of Materials, 1997, 26: 35-42.
    [30] Miyazaki S, Mizukoshi K, Ueki T et al. Fatigue life of Ti-50at.%Ni and Ti-40Ni-10Cu(at.%) shape memory alloy wires. Materials Science and Engineering A. 1999, 273-275: 658-663.
    [31] Eggeler G, Hornbogen E, Yawny A. Structural and functional fatigue of NiTi shape memory alloys. Materials Science and Engineering A. 2004, 378: 24-33.
    [32] Wagner M, Sawaguchi T, Kaustrater G et al. Structural fatigue of pseudoelastic NiTi shape memory wires. Materials Science and Engineering A. 2004, 378: 105-109.
    [33] Wagner M, Richter J, Frenzel J et al. Design of a medical non-linear drilling device: The influence of twist and wear on the fatigue behavior of NiTi wires subjected to bending rotation. Materials Science and Engineering Technology. 2004, 35(5): 320-325.
    [34] Hornbogen E. Review thermo-mechanical fatigue of shape memory alloys. Journal of Materials Science. 2004, 39: 385-399.
    [35] 梁文科,朱建国.浅析NiTi形状记忆合金的疲劳机理.四川有色金属.2005,3:33-35.
    [36] McKelvey A L, Ritchie R O. Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material. J Biomed Mater Res. 1999, 47: 301-308.
    [37] McKelvey A L, Ritchie R O. Fatigue-crack growth behavior in the superelastic and shape-memory alloy nitinol. Metallurgical and Materials Transactions A. 2001, 32: 731-743.
    [38] Vilechaise P, Mendez J, Delafond J. Application of dynamical ion mixing techniques to the improvement of the fatigue resistance of a 316L stainless steel. Journal De Physique. 1993, 3(7): 135-138.
    [39] Gupta V, Johnson A D, Martynov V et al. Nitinol thin-film three-dimensional devices: fabrication and applications. In: Pelton A R, Duerig T. Proceedings of the International Conference on shape memory and superelastic technologies. California: SMST Society, lnc. 2003: 639-650.
    [40] Sato, Yoshihiro. Effect of oxygen on shape memory recovery and tensile properties of Ti-Ni alloy weldments-GTA welding of Ti-Ni shape memory alloy (Report i). Quarterly Journal of the Japan. WeldingSociety. 2000, 18(2): 311-317.
    [41] Sato, Yoshihiro. Effect of oxygen on shape memory recovery and tensile properties of Ti-Ni alloy weldments-GTAwelding of Ti-Ni shape memory alloy (Report 2). Quarterly Journal of the Japan Welding Society. 2000, 18(2): 318-323.
    [42] Gomez J M. Transient liquid phase (TLP) diffusion bonding of a copper based shape memory alloy using silver as interlayer. Scripta Materialia. 1997, 37(6): 861-867.
    [43] 牛济泰,王蔚青,王儒润等.NiTi形状记忆合金丝焊接工艺的研究.宇航材料工艺.1994,5:12—16.
    [44] 任家烈,吴爱萍.先进材料的连接.北京:机械工业出版社,2000.
    [45] 西川,雅弘.形状记忆合金的溶接技术.日本金属学会会报.1985,27(1):56-60.
    [46] Tuissi A, Besseghini S, Ranucci T et al. Effect of Nd-YAG laser welding on the functional properties of the Ni-49. 6at. %Ti. Materials Science and Engineering A. 1999, 273-275: 813-817.
    [47] Hsu Y T, Wang Y R, Wu S K et al. Effect of Co_2 laser welding on the shape memory and corrosion characteristics of TiNi alloys. Metallurgical and Materials Transactions A. 2001, 32(3): 569-576.
    [48] 杨大智,张连生,王凤庭.形状记忆合金.大连:大连工学院出版社,1988.
    [49] 王家金.激光加工技术.北京:中国计量出版社,1992.
    [50] 陈涛,王智勇,丁岳等.脉冲激光(固体YAG)焊接中参数制约的分析.应用激光.1998,18(4):145-147.
    [51] Tzeng Y F. Processing characterization of pulsed Nd: YAG laser seam welding. The international journal of advanced manufacturing technology. 2000, 16: 10-18.
    [52] 周振丰,张文钺.焊接冶金与金属焊接性.北京:机械工业出版社,1988.
    [53] Tjong S C, Zhu S M, Ho N Jet al. Microstructural characteristics and creep rupture behavior of electron beam and laser welded AISI 316L stainless steel. Journal of Nuclear Materials. 1995, 227(1-2): 24-31.
    [54] Carroll M C, Somsen C H, Eggeler G. Multiple-step martensitic transformations in Ni-rich NiTi shape memory alloys. Scripta Materialia. 2004, 50: 187-192.
    [55] Takahiro S, Gregor K, Alejandro Yet al. Crack initiation and propagation in 50.9 at. pct NiTi pseudoelastic shape-memory wires in bending-rotation fatigue. Metallurgical and Materials Transactions A. 2003, 34: 2847-2860.
    [56] Shabalovskaya S, Anderegg J, Rondelli Get al. The effect of surface particulartes on the corrosion resistance of nitinol wire. In: Pelton A R, Duerig r. Proceedings of the International Conference on shape memory and superelastic technologies. California: SMST Society, lnc. 2003: 399-408.
    [57] Miyazaki S, Igo Y, Otsuka K Effect of thermal cycling on the transformation temperatures of Ti-Ni alloys. Acta Metall. 1986, 34(10): 2045-2051.
    [58] Huang X, Liu Y. Effect of annealing on the transformation behavior and superelasticity of NiTi shape memory alloy. Scripta Materialia. 2001, 45: 153-160.
    [59] 尹光福,王昌祥,郑昌琼等.新型人工关节替换材料血液相容性评价.功能材料.1998,10:925-927.
    [60] 冷永祥,黄楠.氧化钽薄膜的制备及其血液相容性研究.功能材料.1998,29(6):639-641.
    [61] Feng B, Weng J, Yang B C et al. Surface characterization of titanium and adsorption of bovine serum albumin. Materials Characterization. 2003, 49(1): 129-137.
    [62] Vanderkerckhove R, Chandrasekaran M, Vermaut Pet al. Corrosion behavior of a superelastic Ni-Ti alloy. Materials Science and Engineering A. 2004, 378: 532-536.
    [63] 梁成浩,隋洪艳.在人工模拟体液中TiNi形状记忆合金的耐蚀性.中国生物医学工程学报.2001,20(5):463-466.
    [64] 郭海霞,梁成浩,穆琦.TiNi及Co合金生物医用材料的腐蚀行为及血液相容性.中国有色金属学报.2001,11(2):272-276.
    [65] 赵兴科,王中,蔡伟等.一种NiTi合金耐蚀性能的正交试验研究.腐蚀科学与防护技术.2001,13(1):21-23.
    [66] Thierry B, Tabrizian M, Trepanier C et al. Effect of surface treatment and sterilization processes on the corrosion behavior of NiTi shape memory alloy. J Biomed Mater Res. 1999, 6: 685-693.
    [67] Rondelli G, Vicentini B. Effect of copper on the localized corrosion resistance of NiTi shape memory alloy. Biomaterials. 2002, 23: 639-644.
    [68] Li Y H, Rao G B, Rong L Jet al. The influence of porosity on corrosion characteristics of porous Niri alloy in simulated body fluid. Materials Letters. 2002, 57: 448-451.
    [69] Mohammed E S, Martha E S, Helge F B. On the properties of two binary NiTi shape memory alloys. Effects of surface finish on the corrosion behavior and in vitro biocompatibility. Biomaterials. 2002, 23: 2887-2894.
    [70] Cheng Y, Cai W, Zhao L C. Effects of Cl ion concentration and pH on the corrosion properties of NiTi alloy in NaC1 solution. Journal of Materials Science Letters. 2003, 22: 239-240.
    [71] Rondelli G, Vicentini B. Evaluation by electrochemical tests of the passive film stability o equiatomic NiTi alloy also in presence of stress-induced martensite. J Biomed Mater Res. 2000, 51(1):47-54.
    
    [72] Schff N, Grosgogeat B, Lissac M et al. Influence of fluoridated mouthwashes on corrosion resistance of orthodontics wires. Biomaterials. 2004,25:4535-4542.
    
    [73] Dhawan A, Roychowdhury S, De P K et al. Corrosion behavior of amorphous Ti_(48)Cu_(52), Ti_(50)Cu_(50) and Ti_(60)Ni_(40) alloys investigated by potentiodynamic polarization method. Bull Mater Sci.2003, 26(6): 609-612.
    
    [74] Cui Z D, Man H C, Yang X J. The corrosion and nickel release behavior of laser surface-melted NiTi shape memory alloy in Hank' s solution. Surface & Coatings Technology.2005,192:347-353.
    
    [75] Darabara M, Borithis L, Zinelis S et al. Susceptibility to localized corrosion of stainless steel and NiTi endodontic instruments in irrigatin solutions. International Endodontic Journal. 2004,37:705-710.
    
    [76] Shabalovskaya S A. Surface, corrosion and biocompatibility aspects of Nitinol as an implant material. Bio-Medical Materials and Engineering. 2002, 12: 69-109.
    
    [77] Cisse O, Savadoga O, Wu M, Yahia H. Effect of surface treatment of NiTi alloy on its corrosion behavior in Hanks' solution. J Biomed Mater Res, 2002, 61(3):339-345.
    
    [78] Nakayama Y. In vivo measurement of anodic polarization of orthopaedic implant alloys:Comparative study of in vivo and in vitro experiments. Biomaterials, 1989, 10:420-424.
    
    [79] Huang H H. Corrosion resistance of stressed NiTi and stainless steel orthodontic wires in acid artificial saliva. J Biomed Mater Res. 2003, 66(4): 829-839.
    
    [80] Venugopalan R, Trepanier C. Assessing the corrosion behaviour of Nitinol for minimally invasive device design. Min Invas Ther & Allied Technol. 2000, 9(2):67-74.
    
    [81] Villermaux F, Tabrizian M, Yahia L H et al. Excimer laser treatment of NiTi shape memory alloy biomaterials. Applied Surface Science. 1997,109/110:62-66.
    
    [82] Veldhuizen A G, Wever D J, De V J et al. Electrochemical and surface characterization of a nickel-titanium alloy. Biomaterials. 1998, 19: 761-769.
    
    [83] Man H C, Cui Z D, Yue T M. Corrosion properties of laser surface melted NiTi shape memory alloy. Scripta Materialia. 2001,45:1447-1453.
    
    [84] Morgan N B. Medical shape memory alloy applications—the market and its products.Materials Science and Engineering A.2004, 378:16-23.
    
    [85] Kim Y. Fatigue properties of the Ti-Ni base shape memory alloy wire. Materials Transactions. 2002,43 (7):1703-1706.
    
    [86] Holtz R L, Sadananda K, Imam M A. Fatigue thresholds of Ni-Ti alloy near the shape memory transition temperature. International Journal of Fatigue. 1999, 21:s137~sl45.
    [87] Tobushi H, Nakahara T, Shimeno Yet al. Low-cycle fatigue of TiNi shape memory alloy and formulation of fatigue life. Transactions of the ASME. 2000, 122: 186-191.
    [88] Lopez-Cuellar E, Guenin G, Morin M. Study of fatigue behavior of Ti-Ni-Cu5% wires for different heat treatments. J Phys IV France. 2003, 112: 835-838.
    [89] Wurzel D. Effects of different thermomechanical treatments on fatigue of NiTi shape memory alloys. J Phys IV France. 2001, 11: 535-540.
    [90] Hornbogen E, Heckmann A. Improved fatigue resistance of pseudo-elastic Niri alloys by thermo-mechanical treatment. Mat. -wiss. u. Werkstofftech. 2003, 34: 464-468.
    [91] Hornbogen E, Heckmann A. On the interrelation of Microstructure, localization of transformation strain, and strain rate in pseudo-elastic fatigue of NiTi. In: Pelton AR, Duerig T. Proceedings of the International Conference on shape memory and superelastic technologies. California: SMST Society, Inc. 2003: 277-283.
    [92] Hornbogen E, Eggeler G. Surface aspects in fatigue of shape memory alloys(SMA). Mat. -wiss. u. Werkstofftech. 2004, 35(5): 255-259.
    [93] Morgan N B, Painter J, Moffat A. Mean strain effects and microstructural observations during in vitro fatigue testing of NiTi. In: Pelton A R, Duerig T. Proceedings of the International Conference on shape memory and superelastic technologies. California: SMST Society, lnc. 2003: 303-310.
    [94] Hitoshi M. Enhancement of an intermediate phase in NiTi. Solid State Communications. 1993, 86(11): 755-758.
    [95] Hitoshi M. Transformation behavior of NiTi in relation to thermal cycling and deformation. Physica B. 1993, 190: 115-120.
    [96] Pelosin V, Riviere. Effect of thermal cycling on the R-phase and martensitic transformations in a Ti-rich NiTi alloy. Metallurgical and Materials Transactions A. 1998, 29: 1175-1180.
    [97] 崔立山,杨大智.热循环对预应变NiTi记忆合金丝/铝基复合材料马氏体逆相变的影响.材料工程.2002,1:3-5.
    [98] Uchil J, Ganesh Kumara K, Mahesh K K. Effect of thermal cycling on R-phase stability in a NiTi shape memory alloy. Materials Science and Engineering A. 2002, 332: 25-28.
    [99] Sitepu H, Schmahl W W, Allafi J K et al. Neutron diffraction phase analysis during thermal cycling of a Ni-rich NiTi shape memory alloy using the Rietveld method. Scripta Materialia. 2002, 46: 543-548.
    [100] Hitoshi M. Transformation behavior with thermal cycling in NiTi alloys. Journal of Alloys and Compounds. 2003, 350: 213-217.
    [101] Uchil J, Mahesh K K, Ganesh Kumara K. Electrical resistivitiy and strain recovery studies on the effect of thermal cycling under constant stress on R-phase in NiTi shape memory alloy. Physica B. 2002, 324: 419-428.
    [102] Favier D, Liu Y N. Restoration By Rapid Overheating of Thermally Stabilished Martensite of NiTi Shape Memory Alloys. Journal of Alloys and Compounds. 2000, 297:114-121.
    
    [103] Liu Y N, McCormick P G. Thermodynamic Analysis of the Martensitic Transformations in NiTi - I: Effect of Heat Treatment on Transformation behaviour, Acta Metall. Mater. 1994,42(7): 2401-2406.
    
    [104] Tanaka K, Nishimura F, Hayashi T. Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and /or thermal loads. Mechanics of Materials. 1995, 19:281-292.
    
    [105] Young J M, Van Vliet K J. Predicting in vivo failure of pseudoelastic NiTi devices under low cycle, high amplitude fatigue. J Bio Mater Res. 2005, 72B(1):17-26.
    
    [106] Schloβmacher P, Hass T, Schuβler A. Laser welding of Ni-Ti shape memory alloys. In: Alan R P, Darel H, Tom D. Proceedings of the International Conference on shape memory and superelastic technologies. California: Asilomar Conference Center, 1994:85-90.
    
    [107] Hornbogen E. Some effects of martensitic transformation on fatigue resistance.Fatigue Fract Eng Mater Struct. 2002,25:785-90.
    
    [108] Li D Y, Wu X F, Ko T. The effect of stresss on soft modes for phase transformations in a Ti-Ni alloy II. Effects of ageing and thermal cycling on the phase transformations.Phil. Mag.A. 1991, 63:603-616.
    
    [109] Gallardo Fuentes J M, GUmpel P, Strittmatter J. Phase change behavior of Nitinol shape memory alloys-influence of heat and thermomechanical treatments. Advanced Engineering Materials. 2002, 4(7):437-451.
    
    [110] Liu Y, Xie Z L, HumbeeckJV. Cycling deformation of NiTi shape memory alloys. Materials Science and Engineering A. 1999,273-275:673-678.
    
    [111] Lim T J, McDowell. Cyclic thermomechanical behavior of a polycrystalline pseudoelastic shape memory alloy. Journal of the Mechanics and Physics of Solids.2002,50:651-676.
    
    [112] Filip P, Mazanek K. Influence of work hardening and heat treatment on the substructure and deformation behavior of NiTi shape memory alloys. Scr Metall Mater. 1995, 32:1375-1380.
    
    [113] Chang S H, Wu S K. Textures in cold-rolled and annealed Ti_(59)Ni_(50) shape memory alloy.Scripta Materialia. 2004,50:937-941.
    
    [114] Sergueeva A V, Song C, Valiev R Z et al. Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing. Materials Science and Engineering A. 2003,339:159-165.
    
    [115] Zheng Y F, Huang B M, Zhang J X et al. The microstructure and linear superelasticity of cold-drawn TiNi alloy. Materials Science and Engineering A. 2000,279:25-35.
    
    [116] Li Z C, Zhao X K, Zhang H et al. Microstructure and superelasticity of severely deformed TiNi alloy. Materials Letters. 2003,57:1086-1090.
    [117] Huang X, Liu Y. Effect of annealing on the transformation behavior and superelasticity of NiTi shape memory alloy. Scripta Materialia. 2001, 45: 153-160.
    [118] Miller D A, Lagoudas D C. Influence of cold work and heat treatment on the shade memory effect and plastic strain development of NiTi. Materials Science and Engineering A. 2001, 308: 161-175.
    [119] Xie C Y, Zhao L C, Lei T C. Effect of precipitates on the electrical resistivity-temperature curves in an aged Ti-50. 8at. %Ni shape memory alloy. Scripta Metallugical. 1989, 24: 2132-2136.
    [120] Nishida M, Wayman C. M. Electron microscopy studies of the "premartensitic transformations in an aged Ti-Slat. %Ni shape memory alloy. Metallography. 1988, 21: 255-273.
    [121] Cai W, Murakami Y, OtSuka K. Study of R-phase transformation in a Ti-50. Tat. %Ni alloy by in-situ transmission electron microscopyobservations. Materials Science and Engineering A. 1999, 273-275: 186-189.
    [122] Miyazaki S, Way C M. The R-phase transition and associated shape memory mechanism in Ti-Ni single crystals. Acta Metal. 1988, 36: 181-192.
    [123] Str6z D. TEM studies of the R-phase transformation in a NiTi shape memory alloy after thermo-mechanical treatment. Materials Chemistry and Physics. 2003, 81: 460-462.
    [124] Tan L, Crone W C. In situ TEM observation of two-step martensitic transformation in aged Niri shape memory alloy. Scripta Materialia. 2004, 50: 819-823.
    [125] Kim J I, Liu Y N, Miyazaka S. Ageing- induced two-stage R-phase transformation inTi-50. gat. %Ni. Acta Materialia. 2004, 52: 487-499.
    [126] Filip P, Mazanec K On precipitation kinetics in TiNi shape memory alloys. Scripta Mater. 2001, 45: 701-707.
    [127] Tirry W, Schryvers D. Quantitative determination of strain fields around Ni_4Ti_3 precipitates in NiTi. Acta Materialia. 2005, 53: 1041-1049.
    [128] Tirry W, Schryvers D. High resolution TEM study of Ni_4Ti_3 precipitates in austenitic Ni_(51)Ti_(49). Materials Science and Engineering A. 2004, 378: 157-160.
    [129] Khalil Allafi J, Ren X, Eggeler G. The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys. Acta Materialia. 2002, 50: 793-803.
    [130] 谢超英.时效Ti-Ni形状记忆合金的相变与力学行为:(博士学位论文).哈尔滨:哈尔滨工业大学,1990.
    [131] Gall K, Yang N, Sehitoglu Het al. Fracture of precipitated NiTi shape memory alloys. International Journal of Fractur. 2001, 109: 189-207.
    [132] Gall K, Maier H J. Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Materialia. 2002, 50: 4643-4657.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700