手性介孔材料的形成机理及其光学活性的诱导性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性,构成了自然界的基本生命现象和定律,与整个宇宙的活动息息相关。设计和制备光学活性的手性功能材料,已经成为化学、生命和材料科学等领域重要的发展方向。2004年,本课题组报道了一种高度有序的手性介孔二氧化硅材料,因这种新型的无机材料在手性吸附分离、不对称催化、光学传感等方面具有巨大的应用前景,引起了广泛关注。本课题组在手性介孔材料的合成及应用等方面,进行了详细而深入的研究。但是,对于手性介孔材料的形成机理和性能,还有很多问题有待进一步的解决。本文对手性介孔材料在形成过程中手性转变与传递进行了系统的研究,并探索了手性介孔材料诱导非手性金属纳米颗粒和纳米丝产生光学活性的性能。
     第二章,手性介孔材料形成机理的研究。反应条件影响手性介孔材料的形貌和结构。本章考察了温度和溶剂对两种手性介孔材料合成体系的影响。首先,以手性阴离子表面活性剂N-肉豆蔻酰-L/D-丙氨酸钠(C14-L/D-Ala)为模板,通过共结构导向法,在0oC和20oC分别得到手性相反的飘带状和六方棒状手性介孔材料。通过扫描电镜,X射线衍射和圆二色的表征研究发现:(i)在0oC时,飘带状手性介孔材料中表面活性剂分子排列的手性是由表面活性剂之间氢键诱导决定的;(ii)在20oC时,由于温度的升高,表面活性剂间的氢键被破坏,六方棒状介孔材料的手性由表面活性剂氨基酸取代基甲基的位阻效应而发生反转。其次,以手性表面活性剂D-12-羟基硬脂酸钠(D-HS-Na)为模板,在纯水溶液和乙醇水溶液中分别形成了手性相反的层状有机聚集体,通过共结构导向法制得了相应的介孔二氧化硅材料,对其形成过程跟踪研究发现,D-HS-Na层状结构转变为棒状胶束过程中,保持原来层状结构中D-HS-Na的手性排列方式。
     第三章,手性介孔材料中金属纳米颗粒的手性。不同的手性坏境能够诱导金属纳米颗粒产生光学活性,在光学成像,手性识别和手性传感等方面具有潜在的应用价值。本章系统研究了手性介孔材料诱导非手性银纳米颗粒产生的光学活性,手性介孔材料中存在着三种手性:(i)六方螺旋的外形;(ii)手性的介孔孔道;(iii)氨基基团在介孔孔道中螺旋排列,将这三种不同类型的手性分别赋予银纳米颗粒产生光学活性。本文发现,在手性介孔材料的三种手性中,手性孔道对银纳米颗粒产生的等离子圆二色信号起到了最主要的作用。然后,通过高温焙烧的方法,去除氨基官能团之后,烧结成大银纳米颗粒依然保持光学活性,可能是由未完全破坏的手性孔道也有诱导作用。此外,本文还发现手性介孔孔道诱导银纳米颗粒产生的圆二色信号,与银纳米颗粒在纵向方向上的数量成正比。
     第四章,多重螺旋金属纳米丝阵列的手性。多重螺旋结构的各向异性金属纳米丝阵列产生新奇的光学活性。以手性介孔二氧化硅材料为模板,制备了多重螺旋银纳米丝阵列,这种手性银纳米丝阵列在横向和纵向等离子共振吸收区域,都显示出较强的圆二色信号。基于圆二色激子偶合理论和等离子偶合理论,发现这种新奇的等离子圆二色信号,是由各向异性的银纳米丝沿着手性孔道排列的方向和孔道本身的延伸方向,同时偶合作用产生的。本章还发现银纳米丝阵列在不同螺距的手性介孔材料中的圆二色信号,随着手性介孔材料螺距的增加,在纵向吸收区域发生红移,并且强度减弱,是由于手性介孔材料螺距增大,减弱了在纵向方向上的不对称偶合作用。
Chirality is found universally in nature and performs as an inherent feature of themolecular and macromolecular components in biological life-forms. Fabrication of chiralchemicals, chiral materials, and understanding the rules that govern their formation, aremajor topics in scientific research and contribute greatly to the fields of pharmacy,biochemistry, optical devices, etc. Highly ordered chiral mesoporous silica (CMS), whichexhibits a novel helical mesostructure with hierarchical chirality, represents a new fashionfor the design and application of chiral materials. Since the first discovery of CMS in2004, many efforts have been made on the synthesis and formation mechanism of CMSby our group. However, the formation mechanism and properties of CMS are not fullyunderstood. Herein, on the basis of CMS, the formation mechanism of CMS has beeninvestigated in details and induced optical activity of CMS by introducing achiral metalnanoparticles has been exploited for the first time.
     Chapter2. Formation mechanism of chiral mesoporous silica. It is known that themorphology and chirality of CMS are affected by different reaction conditions. In thischapter, the influence of temperature and solvent on the formation of CMS wereinvestigated. Firstly, in the N-myristoyl-L/D-alanine sodium salt (C14-L/D-Ala) templatingsystem, helical ribbon and CMS with opposite handedness were synthesized at0oC and20oC, respectively. By scanning electron microscopy (SEM) images, X-ray diffraction(XRD) patterns and diffuse-reflectance circular dichroism (DRCD) of the products, it wasfounded that (i) chiral arrangement of surfactants was induced by their hydrogen bondingin ribbon-like CMS at0oC;(ii) the hydrogen bonding was destroyed at20oC, which ledto the formation of CMS with rod-like micelle arrangement, the handedness of which wasdetermined by the chiral steric effect of the substituent methyl group of C14-L/D-Ala.Secondly, in the sodium D-12-hydroxystearate (D-HS-Na) templating system, the left-andright-handed organic helical ribbons were obtained by cooling the pure and alcoholicaqueous solutions, respectively. The rigid corresponding mesoporous silica have beenprepared through co-structure-directing agent method. The left-and right-handed mesoporous silica ribbons replicated the antipodal helical D-HS-Na lipid assemblies,while the initial lamellar bilayers were transformed into rod-like micelles with the helicalprofile and its handedness well preserved.
     Chapter3. Chirality of metal nanoparticles in chiral mesoporous silica. Isotropicmetal nanoparticles (NPs) arranged in a chiral geometry is capable of inducing chiropticalactivity. Chiroptical properties of pure inorganic material have been achieved bydispersing small amounts of achiral Ag NPs into highly ordered CMS. There are threetypes of chirality in CMS:(i) the helical hexagonal surface,(ii) the helical poreorientation, and (iii) the helical arrangement of aminopropyl groups on the surface of themesopore, all of which impart plasmonic circular dichroism (PCD) and have beeninvestigated by introducing Ag NPs into the as-made, calcined and extracted CMS,respectively. The three types of PCD signals originate from asymmetric plasmon-plasmoninteractions of achiral Ag NPs in three types of chiral environments. Of the three sourcesof chirality, the helical pore orientation was considered to be predominantly responsiblefor the PCD response owing to the high efficiency of nanoscale chirality. Interestingly,large Ag NP aggregation in CMS as a result of calcination still resulted in a strong PCDresponse, even the chiral mesostructure was destroyed and the helically oriented organicmolecules were removed completely, probably because the pore chirality of chiral porousfragments remained intact. Rather than the pitch length, the length of helical channel wasmore effective for increasing the PCD intensity due to longitudinal propagation of NPsalong helical channel.
     Chapter4. Chirality of metal nanowires with a distinct multi-helix. Assemblinganisotropic nanowires into a distinct multi-helix may induce novel optical activity, whichcould create bio-inspired materials and be applied for chiral sensing and photonicmaterials. Ag nanowires (AgNWs) arrays were fabricated inside of CMS based onnano-cast method, producing a multi-helix with a helical channel orientation and helicalarrays of opposite handedness. The AgNWs@CMS complex exhibited strong and tunablePCD signals in the visible and near-infrared (IR) regions due to collective dipole couplingbetween the anisotropic AgNWs along transverse and longitudinal direction of CMS,simultaneously. This behavior differs from the single helix-induced CD response. Basedon the coupled dipole and exciton coupling theory, the optical activity of theAgNWs@CMS were not only dependent on the helical arrays along the direction perpendicular to the rod axis, but also the inherent winding orientation of the helicalchannels. The DRCD signals of AgNWs@CMS were dramatically changed with theincrease of helical pitch, due to weakening coupling along longitudinal direction.
引文
[1]林国强,陈耀全,李月明,手性合成:不对称反应及其应用[M],科学出版社,2007。
    [2] Johnson, W., Berova, N., Nakanishi, K., etc. Circular dichroism: principles andapplications[M]. In Wiley-VCH, New York, NY, USA:2000.
    [3] Harada, N.,Nakanishi, K. Circular dichroic spectroscopy: exciton coupling in organicstereochemistry[M]. University Science Books Mill Valley, CA,1983.
    [4]邢其毅,瑞秋,周政,基础有机化学[M],人民教育出版社,北京,1980。
    [5] Berova, N., Bari, L. D., Pescitelli, G. Application of electronic circular dichroism inconfigurational and conformational analysis of organic compounds[J]. Chem. Soc. Rev.,2007,36(6):914-931.
    [6] Harada, N., Nakanishi, K. Exciton chirality method and its application toconfigurational and conformational studies of natural products[J]. Acc. Chem. Res.,1972,5(8):257-263.
    [7] Matile, S., Berova, N., Nakanishi, K., etc. Structural studies by exciton coupledcircular dichroism over a large distance: porphyrin derivatives of steroids, dimericsteroids, and brevetoxin B⊥[J]. J. Am. Chem. Soc.,1996,118(22):5198-5206.
    [8]应百平,秦国伟,徐任生,圆二色谱中的激子手性法在有机化学中的应用[J],有机化学,1987,3165-165.
    [9] Barron, L. D. Molecular light scattering and optical activity[M]. Cambridge Univ Pr,2004.
    [10]于德泉,激子偶合手性法及其在有机立体化学中的应用[J],化学通报,1989,4,5-12.
    [11]沈兴海,超分子化学-概念和展望(Supramolecular Chemistry: Concepts andPerspectives). In北京:北京大学出版社(Beijing: Peking University Press):2002.
    [12]张希,沈家骢.超分子科学:认识物质世界的新层面[J].科学通报,2003,48(14):1477-1478.
    [13] Mateos-Timoneda, M. A., Crego-Calama, M., Reinhoudt, D. N. Supramolecularchirality of self-assembled systems in solution[J]. Chem. Soc. Rev.,2004,33(6):363-372.
    [14] Ribó, J. M., Crusats, J., Sagués, F., etc. Chiral sign induction by vortices during theformation of mesophases in stirred solutions[J]. Science,2001,292(5524):2063-2066.
    [15] Smulders, M. M. J., Schenning, A. P. H. J., Meijer, E. W. Insight into themechanisms of cooperative self-assembly: the “Sergeants-and-Soldiers” principle ofchiral and achiral C3-symmetrical discotic triamides[J]. J. Am. Chem. Soc.,2007,130(2):606-611.
    [16]van Gestel, J., Palmans, A. R. A., Titulaer, B., etc.“Majority-Rules” operative inchiral columnar stacks of C3-symmetrical molecules[J]. J. Am. Chem. Soc.,2005,127(15):5490-5494.
    [17]王良御,液晶化学,液晶化学[M].科学出版社,1988。
    [18] Kitzerow, H. S.,Bahr, C. Chirality in liquid crystals[M]. Springer Verlag,2001.
    [19] Goodby, J. W. Chirality in liquid crystals[J]. J. Mater. Chem.,1991,1(3):307-318.
    [20]袁菁,张莉,黄昕, etc,手性超分子组装研究进展[J].化学进展,2005,17(5).
    [21] Aida, T., Meijer, E. W., Stupp, S. I. Functional supramolecular polymers[J]. Science,2012,2012,335(6070):813-817.
    [22] Chung, W.-J., Oh, J.-W., Kwak, K., etc. Biomimetic self-templating supramolecularstructures[J]. Nature,2011,478(7369):364-368.
    [23] Stupp, S. I., LeBonheur, V., Walker, K., etc. Supramolecular materials:self-organized nanostructures[J]. Science,1997,276(5311):384-389.
    [24] Shimizu, T., Masuda, M., Minamikawa, H. Supramolecular nanotube architecturesbased on amphiphilic molecules[J]. Chem. Rev.,2005,105(4):1401-1444.
    [25] Van Bommel, K. J. C., Friggeri, A., Shinkai, S. Organic templates for the generationof inorganic materials[J]. Angew. Chem. Int. Ed.,2003,42(9):980-999.
    [26] Pashuck, E. T., Stupp, S. I. Direct observation of morphological tranformation fromtwisted ribbons into helical ribbons[J]. J. Am. Chem. Soc.,2010,132(26):8819-8821.
    [27] Oda, R., Huc, I., Schmutz, M., etc. Tuning bilayer twist using chiral counterions[J].Nature,1999,399(6736):566-569.
    [28] Jin, W., Fukushima, T., Niki, M., etc. Self-assembled graphitic nanotubes withone-handed helical arrays of a chiral amphiphilic molecular graphene[J]. PNAS,2005,102(31):10801.
    [29] Jung, J. H., Park, M., Shinkai, S. Fabrication of silica nanotubes by usingself-assembled gels and their applications in environmental and biological fields[J].Chem. Soc. Rev.,2010,39(11):4286-302.
    [30] Suzuki, M., Hanabusa, K. L-lysine-based low-molecular-weight gelators[J]. Chem.Soc. Rev.,2009,38(4):967-75.
    [31] Jung, J. H., Shinkai, S., Shimizu, T. Nanometer-Level Sol-Gel Transcription ofCholesterol Assemblies into Monodisperse Inner Helical Hollows of the Silica[J]. Chem.Mater.,2003,15(11):2141-2145.
    [32] Hench, L. L., West, J. K. The sol-gel process[J]. Chem. Rev.,1990,90(1):33-72.
    [33] Suzuki, M., Hanabusa, K. Polymer organogelators that make supramolecularorganogels through physical cross-linking and self-assembly[J]. Chem. Soc. Rev.,2010,39(2):455-63.
    [34] Numata, M., Sugiyasu, K., Hasegawa, T., etc. Sol-gel reaction using DNA as atemplate: An attempt toward transcription of DNA into inorganic materials[J]. Angew.Chem. Int. Ed.,2004,116(25):3341-3345.
    [35] Jung, J. H., Kobayashi, H., Masuda, M., etc. Helical ribbon aggregate composed of acrown-appended cholesterol derivative which acts as an amphiphilic gelator of organicsolvents and as a template for chiral silica transcription[J]. J. Am. Chem. Soc.,2001,123(36):8785-8789.
    [36] Jung, J. H., John, G., Yoshida, K., etc. Self-assembling structures of long-chainphenyl glucoside influenced by the introduction of double bonds[J]. J. Am. Chem. Soc.,2002,124(36):10674-10675.
    [37] Yang, Y., Suzuki, M., Shirai, H., etc. Nanofiberization of inner helical mesoporoussilica using chiral gelator as template under a shear flow[J]. Chem. Commun.,2005,(15):2032-2034.
    [38] Seddon, A. M., Patel, H. M., Burkett, S. L., etc. Chiral templating of eilica-lipidlamellar mesophase with helical tubular architecture[J]. Angew. Chem. Int. Ed.,2002,41(16):2988-2991.
    [39] Jin, Q., Zhang, L., Zhu, X., etc. Amphiphilic schiff base organogels: metal‐ion‐mediated chiral twists and chiral recognition[J]. Chem. Eur. J.,2012,18(16):4916-4922.
    [40] Wang, J., Wang, W., Sun, P., etc. Hierarchically helical mesostructured silicananofibers templated by achiral cationic surfactant[J]. J. Mater. Chem.,2006,16(42):4117.
    [41] Yang, Y., Suzuki, M., Owa, S., etc. Control of helical silica nanostructures using achiral surfactant[J]. J. Mater. Chem.,2006,16(17):1644.
    [42] Jung, J. H., Yoshida, K., Shimizu, T. Creation of novel double-helical silicananotubes using binary gel system[J]. Langmuir,2002,18(23):8724-8727.
    [43] Yang, Y., Suzuki, M., Fukui, H., etc. Preparation of helical mesoporous silica andhybrid silica nanofibers using hydrogelator[J]. Chem. Mater.,2006,18(5):1324-1329.
    [44] Everett, D. IUPAC manual of symbols and terminology[J]. J Pure Appl Chem,1972,31578.
    [45] Beck, J., Vartuli, J., Roth, W., etc. A new family of mesoporous molecular sievesprepared with liquid crystal templates[J]. J. Am. Chem. Soc.,1992,114(27):10834-10843.
    [46] Wan, Y., Zhao. D. On the Controllable soft-templating approach to mesoporoussilicates[J]. Chem. Rev.,2007,107(7):2821-2860.
    [47] Lin, V. S. A Porous Silicon-based optical interferometric biosensor[J]. Science,1997,278(5339):840-843.
    [48] Solin, N., Han, L., Che, S., etc. An amphoteric mesoporous silica catalyzed aldolreaction[J]. Catal. Commun.,2009,10(10):1386-1389.
    [49] Wan, Y., Wang, H., Zhao, D., etc. Ordered mesoporous Pd/Silica-carbon as a highlyactive heterogeneous catalyst for coupling reaction of chlorobenzene in aqueous Media[J].J. Am. Chem. Soc.,2009,131(12):4541-4550.
    [50] Vallet‐Regí, M., Balas, F., Arcos, D. Mesoporous materials for drug delivery[J].Angew. Chem. Int. Ed.,2007,46(40):7548-7558.
    [51] Huo, Q., Margolese, D. I., Ciesla, U., etc. Organization of organic molecules withinorganic molecular species into nanocomposite biphase arrays[J]. Chem. Mater.,1994,6(8):1176-1191.
    [52] Che, S., Garcia-Bennett, A. E., Yokoi, T., etc. A novel anionic surfactant templatingroute for synthesizing mesoporous silica with unique structure[J]. Nat. Mater.,2003,2(12):801-805.
    [53] Gao, C., Che, S. Organically functionalized mesoporous silica byco-structure-directing route[J]. Adv. Funct. Mater.,2010,20(17):2750-2768.
    [54] Han, L., Sakamoto, Y., Terasaki, O., etc. Synthesis of carboxylic groupfunctionalized mesoporous silicas (CFMSs) with various structures[J]. J. Mater. Chem.,2007,17(12):1216.
    [55] Han, L., Terasaki, O., Che, S. Carboxylic group functionalized ordered mesoporoussilicas[J]. J. Mater. Chem.,2011,21(30):11033-11039.
    [56] Israelachvili, J. N., Mitchell, D. J., Ninham, B. W. Theory of self-assembly ofhydrocarbon amphiphiles into micelles and bilayers[J]. J. Chem. Soc., Faraday Trans.,1976,721525-1568.
    [57] Huo, Q., Margolese, D. I., Stucky, G. D. Surfactant control of phases in the synthesisof mesoporous silica-based materials[J]. Chem. Mater.,1996,8(5):1147-1160.
    [58] Che, S., Lim, S., Kaneda, M., etc. The effect of the counteranion on the formation ofmesoporous materials under the acidic synthesis process[J]. J. Am. Chem. Soc.,2002,124(47):13962-13963.
    [59] Man Kim, J., Ryoo, R. Synthesis of MCM-48single crystals[J]. Chem. Commun.,1998,(2):259-260.
    [60] Che, S., Sakamoto, Y., Terasaki, O., etc. Control of crystal morphology of SBA-1mesoporous silica[J]. Chem. Mater.,2001,13(7):2237-2239.
    [61] Chao, M. C., Wang, D. S., Lin, H. P., etc. Control of single crystal morphology ofSBA-1mesoporous silica[J]. J. Mater. Chem.,2003,13(12):2853-2854.
    [62] Fan, J., Yu, C., Gao, F., etc. Cubic mesoporous silica with large controllable entrancesizes and advanced adsorption properties[J]. Angew. Chem. Int. Ed.,2003,115(27):3254-3258.
    [63] Yang, H., Coombs, N., Ozin, G. A. Morphogenesis of shapes and surface patterns inmesoporous silica[J]. Nature,1997,386(6626):692-695.
    [64] Jin, H., Wu, Q., Chen, C., etc. Facile synthesis of crystal like shape mesoporoussilica SBA-16[J]. Microporous Mesoporous Mater.,2006,97(1-3):141-144.
    [65] Qiu, H., Sakamoto, Y., Terasaki, O., etc. A2D-Rectangular p2gg Silica MesoporousCrystal with Elliptical Mesopores: An Intermediate Phase of Chiral and LamellarMesostructures[J]. Adv. Mater.,2008,20(3):425-429.
    [66] Jin, H., Qiu, H., Sakamoto, Y., etc. Mesoporous silicas by self-assembly of lipidMolecules: Ribbon, Hollow Sphere, and Chiral Materials[J]. Chem. Eur. J.,2008,14(21):6413-6420.
    [67] Han, L., Xiong, P., Bai, J., etc. Spontaneous formation and characterization of silicamesoporous crystal spheres with reverse multiply twinned polyhedral hollows[J]. J. Am.Chem. Soc.,2011,133(16):6106-6109.
    [68] Fryxell, G. E., Liu, J., Hauser, T. A., etc. Design and synthesis of selectivemesoporous anion traps[J]. Chem. Mater.,1999,11(8):2148-2154.
    [69] Huh, S., Chen, H.-T., Wiench, J. W., etc. Controlling the selectivity of competitivenitroaldol condensation by using a bifunctionalized mesoporous silica nanosphere-basedcatalytic system[J]. J. Am. Chem. Soc.,2004,126(4):1010-1011.
    [70] Inagaki, S., Guan, S., Ohsuna, T., etc. An ordered mesoporous organosilica hybridmaterial with a crystal-like wall structure[J]. Nature,2002,416(6878):304-307.
    [71] Mann, S. Molecular tectonics in biomineralization and biomimetic materialschemistry[J]. Nature,1993,365(6446):499-505.
    [72] Kim, W.-J., Yang, S.-M. Preparation of Mesoporous materials from the flow-inducedmicrostructure in aqueous surfactant solutions[J]. Chem. Mater.,2000,12(10):3227-3235.
    [73] Ohsuna, T., Liu, Z., Che, S., etc. Characterization of chiral mesoporous materials bytransmission electron microscopy[J]. Small,2005,1(2):233-237.
    [74] Che, S., Liu, Z., Ohsuna, T., etc. Synthesis and characterization of chiral mesoporoussilica[J]. Nature,2004,429281-284.
    [75] Trewyn, B. G., Whitman, C. M., Victor, S. Y. L. Morphological control ofroom-temperature ionic liquid templated mesoporous silica nanoparticles for controlledrelease of antibacterial agents[J]. Nano Lett.,2004,4(11):2139-2143.
    [76] Wu, Y., Cheng, G., Katsov, K., etc. Composite mesostructures bynano-confinement[J]. Nat Mater,2004,3(11):816-822.
    [77] Wu, Y., Livneh, T., Zhang, Y. X., etc. Templated synthesis of highly orderedmesostructured nanowires and nanowire arrays[J]. Nano Lett.,2004,4(12):2337-2342.
    [78] Yang, S., Zhao, L., Yu, C., etc. On the origin of helical mesostructures[J]. J. Am.Chem. Soc.,2006,128(32):10460-10466.
    [79] Han, Y., Zhao, L., Ying, J. Y. Entropy-driven helical mesostructure formation withachiral cationic surfactant templates[J]. Adv. Mater.,2007,19(18):2454-2459.
    [80] Wang, B., Chi, C., Shan, W., etc. Chiral mesostructured silica nanofibers ofMCM-41[J]. Angew. Chem. Int. Ed.,2006,118(13):2142-2144.
    [81]Zhang, Q., Lü, F., Li, C., etc. An efficient synthesis of helical mesoporous silicananorods[J]. Chem. Lett.,2006,35(2):190-191.
    [82] Wang, J., Wang, W., Sun, P., etc. Hierarchically helical mesostructured silicananofibers templated by achiral cationic surfactant[J]. J. Mater. Chem.,2006,16(42):4117-4122.
    [83] Qiu, H., Wang, S., Zhang, W., etc. Steric and temperature control of enantiopurity ofchiral mesoporous silica[J]. J. Phys. Chem. C,2008,112(6):1871-1877.
    [84] Qiu, H., Xie, J., Che, S. Formation of chiral mesostructured porphyrin-silicahybrids[J]. Chem. Commun.,2011,47(9):2607-9.
    [85] Wu, X., Ruan, J., Ohsuna, T., etc. A novel route for synthesizing silica nanotubeswith chiral mesoporous wall structures[J]. Chem. Mater.,2007,19(7):1577-1583.
    [86] Qiu, H., Che, S. Formation mechanism of achiral amphiphile-templated helicalmesoporous silicas[J]. J. Phys. Chem. B,2008,112(34):10466-10474.
    [87] Wu, X., Jin, H., Liu, Z., etc. Racemic helical mesoporous silica formation by achiralanionic surfactant[J]. Chem. Mater.,2006,18(2):241-243.
    [88] Wu, X., Qiu, H., Che, S. Controlling the pitch length of helical mesoporous silica(HMS)[J]. Microporous Mesoporous Mater.,2009,120(3):294-303.
    [89] Qiu, H.,Che, S. Tighter packing leads to higher enantiopurity: effect of basicity onthe enantiopurity of N-vcylamino acid-templated chiral mesoporous silica[J]. Chem. Lett.,2010,39(1):70-71.
    [90] Jin, H., Liu, Z., Ohsuna, T., etc. Control of morphology and helicity of chiralmesoporous silica[J]. Adv. Mater.,2006,18(5):593-596.
    [91] Jin, H., Qiu, H., Gao, C., etc. Synthetic design towards targeted chiral anionicsurfactant templated chiral mesoporous silica[J]. Microporous Mesoporous Mater.,2008,116(1-3):171-179.
    [92] Yu, Y., Qiu, H., Wu, X., etc. Synthesis and characterization of silica nanotubes withradially oriented mesopores[J]. Adv. Funct. Mater.,2008,18(4):541-550.
    [93] Qiu, H., Che, S. Chiral mesoporous silica: chiral construction and imprinting viacooperative self-assembly of amphiphiles and silica precursors[J]. Chem. Soc. Rev.,2011,40(3):1259-1268.
    [94] Qiu, H., Inoue, Y., Che, S. Supramolecular chiral transcription and recognition bymesoporous silica prepared by chiral imprinting of a helical micelle[J]. Angew. Chem. Int.Ed.,2009,48(17):3069-3072.
    [95] Kwon, Y.-K., Tománek, D. Electronic and structural properties of multiwall carbonnanotubes[J]. Physical Review B,1998,58(24): R16001-R16004.
    [96] Yan, Y., Deng, K., Yu, Z., etc. Tuning the supramolecular chirality of polyaniline bymethyl substitution[J]. Angew. Chem. Int. Ed.,2009,48(11):2003-6.
    [97] Yan, Y., Fang, J., Liang, J., etc. Helical heterojunctions originated from helicalinversion of conducting polymers nanofibers[J]. Chem. Commun.,2011.
    [98] Fan, C., Qiu, H., Ruan, J., etc. Formation of chiral mesopores in conductingpolymers by chiral-lipid-ribbon templating and “Seeding” route[J]. Adv. Funct. Mater.,2008,18(18):2699-2707.
    [99] Xu, Z., Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres[J].Nat. Commun.,2011,2571-579.
    [100] Shopsowitz, K. E., Qi, H., Hamad, W. Y., etc. Free-standing mesoporous silicafilms with tunable chiral nematic structures[J]. Nature,2010,468(7322):422-425.
    [101] Shopsowitz, K. E., Hamad, W. Y.,MacLachlan, M. J. Chiral nematicmesoporous carbon derived from nanocrystalline cellulose[J]. Angew. Chem. Int. Ed.,2011,50(46):10991-10995.
    [102] Dujardin, E., Blaseby, M., Mann, S. Synthesis of mesoporous silica by sol-gelmineralisation of cellulose nanorod nematic suspensions[J]. J. Mater. Chem.,2003,13(4):696-699.
    [103] Shopsowitz, K. E., Hamad, W. Y., MacLachlan, M. J. Flexible and iridescentchiral nematic mesoporous organosilica films[J]. J. Am. Chem. Soc.,2011,134(2):867-870.
    [104] Guerrero-Martínez, A., Alonso-Gómez, J. L., Auguié, B., etc. From individual tocollective chirality in metal nanoparticles[J]. Nano Today,2011,6(4):381-400.
    [105] Xia, Y., Zhou, Y., Tang, Z. Chiral inorganic nanoparticles: origin, optical propertiesand bioapplications[J]. Nanoscale,2011,3(4):1374-1382.
    [106] Govorov, A. O., Gun'ko, Y. K., Slocik, J. M., etc. Chiral nanoparticle assemblies:circular dichroism, plasmonic interactions, and exciton effects[J]. J. Mater. Chem.,2011,21(42):16806-16818.
    [107] Gautier, C., Burgi, T. Chiral gold nanoparticles[J]. Chemphyschem,2009,10(3):483-492.
    [108] Noguez, C., Garzon, I. L. Optically active metal nanoparticles[J]. Chem. Soc. Rev.,2009,38(3):757-771.
    [109] Kitaev, V. Chiral nanoscale building blocks-from understanding to applications[J]. J.Mater. Chem.,2008,18(40):4745-4749.
    [110] Liu, S., Tang, Z. Nanoparticle assemblies for biological and chemical sensing[J]. J.Mater. Chem.,2009,20(1):24-35.
    [111] Rycenga, M., Cobley, C. M., Zeng, J., etc. Controlling the synthesis and assemblyof silver nanostructures for plasmonic applications[J]. Chem. Rev.,2011,111(6):3669-3712.
    [112] Huang, X., Neretina, S., El-Sayed, M. A. Gold Nanorods: From synthesis andproperties to biological and biomedical applications[J]. Adv. Mater.,2009,21(48):4880-4910.
    [113] Li, Z., Zhu, Z., Liu, W., etc. Reversible plasmonic circular dichroism of Au nanorodand DNA assemblies[J]. J. Am. Chem. Soc.,2012,134(7):3322-3325.
    [114] Hu, M., Chen, J., Li, Z.-Y., etc. Gold nanostructures: engineering their plasmonicproperties for biomedical applications[J]. Chem. Soc. Rev.,2006,35(11):1084-1094.
    [115] Rosi, N. L., Mirkin, C. A. Nanostructures in Biodiagnostics[J]. Chem. Rev.,2005,105(4):1547-1562.
    [116] Shukla, N., Bartel, M. A., Gellman, A. J. Enantioselective separation on chiral Aunanoparticles[J]. J. Am. Chem. Soc.,2010,132(25):8575-8580.
    [117] Law, W.-C., Yong, K.-T., Baev, A., etc. Sensitivity improved surface plasmonresonance biosensor for cancer biomarker detection based on plasmonic enhancement[J].ACS Nano,2011,5(6):4858-4864.
    [118] Schaaff, T. G., Whetten, R. L. Giant gold-glutathione cluster compounds: intenseoptical activity in metal-based transitions[J]. J. Phys. Chem. B,2000,104(12):2630-2641.
    [119] Nishida, N., Yao, H., Ueda, T., etc. Synthesis and chiroptical study ofD/L-penicillamine-capped silver nanoclusters[J]. Chem. Mater.,2007,19(11):2831-2841.
    [120] Gautier, C., Bu rgi, T. Chiral inversion of gold nanoparticles[J]. J. Am. Chem. Soc.,2008,130(22):7077-7084.
    [121] Slocik, J. M., Govorov, A. O., Naik, R. R. plasmonic circular dichroism ofpeptide-functionalized gold nanoparticles[J]. Nano Lett.,2011,11(2):701-705.
    [122] Shemer, G., Krichevski, O., Markovich, G., etc. Chirality of silver nanoparticlessynthesized on DNA[J]. J. Am. Chem. Soc.,2006,128(34):11006-11007.
    [123] Hendler, N., Fadeev, L., Mentovich, E. D., etc. Bio-inspired synthesis of chiralsilver nanoparticles in mucin glycoprotein--the natural choice[J]. Chem. Commun.,2011,47(26):7419-7421.
    [124] Mantion, A., Graf, P., Florea, I., etc. Biomimetic synthesis of chiral erbium-dopedsilver/peptide/silica core-shell nanoparticles (ESPN)[J]. Nanoscale,2011,3(12):5168-5179.
    [125] Sa nchez-Castillo, A., Noguez, C., Garzo n, I. L. On the origin of the optical activitydisplayed by chiral-ligand-protected metallic nanoclusters[J]. J. Am. Chem. Soc.,2010,132(5):1504-1505.
    [126] Gerard, V. A., Gun'ko, Y. K., Defrancq, E., etc. Plasmon-induced CD response ofoligonucleotide-conjugated metal nanoparticles[J]. Chem. Commun.,2011,47(26):7383-7385.
    [127] Li, T., Park, H. G., Lee, H.-S., etc. Circular dichroism study of chiral biomoleculesconjugated with silver nanoparticles[J]. Nanotechnology,2004,15(10): S660-S663.
    [128] Lieberman, I., Shemer, G., Fried, T., etc. Plasmon-resonance-enhanced absorptionand circular dichroism[J]. Angew. Chem. Int. Ed.,2008,47(26):4855-4857.
    [129] Govorov, A. O., Fan, Z., Hernandez, P., etc. Theory of circular dichroism ofnanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement,dipole interactions, and dielectric effects[J]. Nano Lett.,2010,10(4):1374-1382.
    [130] Abdulrahman, N. A., Fan, Z., Tonooka, T., etc. Induced chirality throughelectromagnetic coupling between chiral molecular layers and plasmonicnanostructures[J]. Nano Lett.,2012,12(2):977-983.
    [131] Kuzyk, A., Schreiber, R., Fan, Z., etc. DNA-based self-assembly of chiralplasmonic nanostructures with tailored optical response[J]. Nature,2012,483(7389):311-314.
    [132] Qi, H., Shopsowitz, K. E., Hamad, W. Y., etc. Chiral nematic assemblies of silvernanoparticles in mesoporous silica thin films[J]. J. Am. Chem. Soc.,2011,133(11):3728-3731.
    [133] Oh, H. S., Liu, S., Jee, H., etc. Chiral poly(fluorene-alt-benzothiadiazole)(PFBT)and nanocomposites with gold nanoparticles: plasmonically and structurally enhancedchirality[J]. J. Am. Chem. Soc.,2010,132(49):17346-17348.
    [134] Mastroianni, A. J., Claridge, S. A., Alivisatos, A. P. Pyramidal and chiral groupingsof gold nanocrystals assembled using DNA scaffolds[J]. J. Am. Chem. Soc.,2009,131(24):8455-8459.
    [135] George, J., Thomas, K. G. Surface plasmon coupled circular dichroism of Aunanoparticles on peptide nanotubes[J]. J. Am. Chem. Soc.,2010,132(8):2502-2503.
    [136] Wang, R.-Y., Wang, H., Wu, X., etc. Chiral assembly of gold nanorods withcollective plasmonic circular dichroism response[J]. Soft Matter,2011,7(18):8370-8378.
    [137] Guerrero-Martínez, A., Auguié, B., Alonso-Gómez, J. L., etc. Intense opticalactivity from three-dimensional chiral ordering of plasmonic nanoantennas[J]. Angew.Chem. Int. Ed.,2011,50(24):5499-5503.
    [138] Leroux, F., Gysemans, M., Bals, S., etc. Three-dimensional characterization ofhelical silver nanochains mediated by protein assemblies[J]. Adv. Mater.,2010,22(19):2193-2197.
    [139] Chen, W., Bian, A., Agarwal, A., etc. Nanoparticle superstructures made bypolymerase chain reaction: collective interactions of nanoparticles and a new principlefor chiral materials[J]. Nano Lett.,2009,9(5):2153-2159.
    [140] Sharma, J., Chhabra, R., Cheng, A., etc. Control of self-sssembly of DNA tubulesthrough integration of gold nanoparticles[J]. Science,2009,323(5910):112-116.
    [141] Li, Y., Liu, M. Fabrication of chiral silver nanoparticles and chiral nanoparticulatefilm via organogel[J]. Chem. Commun.,2008,(43):5571-5573.
    [142] Bitar, R., Agez, G., Mitov, M. Cholesteric liquid crystal self-organization of goldnanoparticles[J]. Soft Matter,2011,7(18):8198-8205.
    [143] Fan, Z., Govorov, A. O. Plasmonic circular dichroism of chiral metal nanoparticleassemblies[J]. Nano Lett.,2010,10(7):2580-2587.
    [144] Fan, Z., Govorov, A. O. Helical metal nanoparticle assemblies with defects:plasmonic chirality and circular dichroism[J]. J. Phys. Chem. C,2011,115(27):13254-13261.
    [145] Zhou, Y., Zhu, Z., Huang, W., etc. Optical coupling between chiral biomoleculesand semiconductor nanoparticles: size-dependent circular dichroism absorption[J].Angew. Chem. Int. Ed.,2011,123(48):11658-11661.
    [146] Moloney, M. Y. P., Gun'ko, Y. K., Kelly, J. M. Chiral highly luminescent CdSquantum dots[J]. Chem. Commun.,2007,(38):3900-3902.
    [147] Zhou, Y., Yang, M., Sun, K., etc. Similar topological origin of chiral centers inorganic and nanoscale inorganic structures: effect of stabilizer chirality on opticalisomerism and growth of CdTe nanocrystals[J]. J. Am. Chem. Soc.,2010,132(17):6006-6013.
    [148] Zhou, Y., Zhu, Z., Huang, W., etc. Optical coupling between chiral biomoleculesand semiconductor nanoparticles: size-dependent circular dichroism absorption[J].Angew. Chem. Int. Ed.,2011,50(48):11456-11459.
    [149] Srivastava, S., Santos, A., Critchley, K., etc. Light-controlled self-assembly ofsemiconductor nanoparticles into twisted ribbons[J]. Science,2010,327(5971):1355-1359.
    [150] Seo, J. S., Whang, D., Lee, H., etc. A homochiral metal-organic porous material forenantioselective separation and catalysis[J]. Nature,2000,404(6781):982-986.
    [151] Zhou, H. C., Long, J. R., Yaghi, O. M. Introduction to metal-organic frameworks[J].Chem. Rev.,2012,112(2):673-474.
    [1] Schnur, J. M. Lipid tubules: a paradigm for molecularly engineered structures[J].Science,1993,262(5140):1669-1672.
    [2] Fuhrhop, J. H., Helfrich, W. Fluid and solid fibers made of lipid molecular bilayers[J].Chem. Rev.,1993,93(4):1565-1582.
    [3] Hoeben, F. J. M., Jonkheijm, P., Meijer, E. W., etc. About supramolecular assembliesof π-conjugated systems[J]. Chem. Rev.,2005,105(4):1491-1546.
    [4] Shimizu, T., Masuda, M., Minamikawa, H. Supramolecular nanotube architecturesbased on amphiphilic molecules[J]. Chem. Rev.,2005,105(4):1401-1444.
    [5] Albiser, G., Premilat, S. B-Z conformational transition and hydration of poly (dC-dG).poly (dC-dG) in fibres[J]. Int. J. Biol. Macromol.,1992,14(3):161-165.
    [6] Sakurai, S.-i., Okoshi, K., Kumaki, J., etc. Two-dimensional surface chirality controlby solvent-induced helicity inversion of a helical polyacetylene on graphite[J]. J. Am.Chem. Soc.,2006,128(17):5650-5651.
    [7] Maeda, K., Mochizuki, H., Watanabe, M., etc. Switching of macromolecular helicityof optically active poly(phenylacetylene)s bearing cyclodextrin pendants induced byvarious external stimuli[J]. J. Am. Chem. Soc.,2006,128(23):7639-7650.
    [8] Fukushima, T., Tsuchihara, K. Syntheses and chirality control of optically activepoly(diphenylacetylene) derivatives[J]. Macromolecules,2009,42(15):5453-5460.
    [9] Delsuc, N., Kawanami, T., Lefeuvre, J., etc. Kinetics of helix-handedness inversion:folding and unfolding in aromatic amide oligomers[J]. ChemPhysChem,2008,9(13):1882-1890.
    [10] Muto, M., Suzuki, H., Lee, S. K., etc. Two-fold helical inversion in the chiral SmCphase of optically active materials derived from (R)-(+)-1-(1-Phenyl)ethylamine[J]. J.Phys. Chem. B,2008,112(49):15521-15524.
    [11] Barberá, J., Giorgini, L., Paris, F., etc. Supramolecular chirality and reversiblechiroptical switching in new chiral liquid-crystal azopolymers[J]. Chem. Eur. J.,2008,14(35):11209-11221.
    [12] Tachibana, T., Kambara, H. Studies of helical aggregates of molecules. I.enantiomorphism in the helical aggregates of optically active12-hydroxystearic acid andits lithium salt[J]. Bull. Chem. Soc. Jpn.,1969,42(12):3422-3424.
    [13] Tachibana, T., Kitazawa, S., Takeno, H. Studies of helical aggregates of molecules.II. The sense of twist in the fibrous aggregates from the alkali metal soaps of opticallyactive12-hydroxystearic acid[J]. Bull. Chem. Soc. Jpn.,1970,43(8):2418-2421.
    [14] Tachibana, T., Kambara, H. Enantiomorphism in the helical aggregate of lithium12-hydroxystearate[J]. J. Am. Chem. Soc.,1965,87(13):3015-3016.
    [15] Chen, Y., Guo, Y., Zhao, H., etc. Handedness inversion in preparing mesoporoussilica nanoribbons[J]. Nanotechnology,2008,19355603-355610.
    [16] Li, Y., Wang, H., Wang, L., etc. Handedness inversion in preparing chiral4,4'-biphenylene-silica nanostructures[J]. Nanotechnology,2011,22,135605-135612.
    [17] Jin, H., Qiu, H., Sakamoto, Y., etc. Mesoporous silicas by self-assembly of lipidmolecules: ribbon, hollow sphere, and chiral materials[J]. Chem. Eur. J.,2008,14(21):6413-6420.
    [18] Murata, K., Aoki, M., Suzuki, T., etc. Thermal and light control of the sol-gel phasetransition in cholesterol-based organic gels. novel helical aggregation modes as detectedby circular dichroism and electron microscopic observation[J]. J. Am. Chem. Soc.,1994,116(15):6664-6676.
    [19] Duan, P., Li, Y., Li, L., etc. multiresponsive chiroptical switch of anazobenzene-containing lipid: solvent, temperature, and photoregulated supramolecularchirality[J]. J. Phys. Chem. B,2011,115(13):3322-3329.
    [20] Che, S., Garcia-Bennett, A. E., Yokoi, T., etc. A novel anionic surfactant templatingroute for synthesizing mesoporous silica with unique structure[J]. Nat. Mater.,2003,2(12):801-805.
    [21] Che, S., Liu, Z., Ohsuna, T., etc. Synthesis and characterization of chiralmesoporous silica[J]. Nature,2004,429281-284.
    [22] Qiu, H., Wang, S., Zhang, W., etc. Steric and temperature control of enantiopurity ofchiral mesoporous silica[J]. J. Phys. Chem. C,2008,112(6):1871-1877.
    [23] Qiu, H., Che, S. Chiral mesoporous silica: chiral construction and imprinting viacooperative self-assembly of amphiphiles and silica precursors[J]. Chem. Soc. Rev.,2011,40(3):1259-1268.
    [24] Ono, Y., Nakashima, K., Sano, M., etc. Organic gels are useful as a template for thepreparation of hollow fiber silica[J]. Chem. Commun.,1998,(14):1477-1478.
    [25] Van Bommel, K. J. C., Friggeri, A., Shinkai, S. Organic templates for the generationof inorganic materials[J]. Angew. Chem. Int. Ed.,2003,42(9):980-999.
    [26] Seddon, A. M., Patel, H. M., Burkett, S. L., etc. Chiral templating of silica-lipidlamellar mesophase with helical tubular architecture[J]. Angew. Chem. Int. Ed.,2002,41(16):2988-2991.
    [27] Yang, Y., Suzuki, M., Shirai, H., etc. Nanofiberization of inner helical mesoporoussilica using chiral gelator as template under a shear flow[J]. Chem. Commun.,2005,(15):2032-2034.
    [28] Yang, Y., Suzuki, M., Fukui, H., etc. Preparation of helical mesoporous silica andhybrid Silica nanofibers using hydrogelator[J]. Chem. Mater.,2006,18(5):1324-1329.
    [29] Pashuck, E. T., Stupp, S. I. Direct observation of morphological tranformation fromtwisted ribbons into helical ribbons[J]. J. Am. Chem. Soc.,2010,132(26):8819-8821.
    [30] Youssef, M., Pellenq, R. J. M., Yildiz, B. glassy nature of water in an ultraconfiningdisordered material: the case of calcium-silicate-hydrate[J]. J. Am. Chem. Soc.,2011,133(8):2499-2510.
    [1] Johnson, W., Berova, N., Nakanishi, K., etc. Circular dichroism: principles andapplications. In Wiley-VCH, New York, NY, USA:2000.
    [2] Agranat, I., Caner, H., Caldwell, J. Putting chirality to work: the strategy of chiralswitches[J]. Nat. Rev. Drug Discov.,2002,1(10):753-768.
    [3] Gier, T. E., Bu, X., Feng, P., etc. Synthesis and organization of zeolite-like materialswith three-dimensional helical pores[J]. Nature,1998,395(6698):154-157.
    [4] Gautier, C., Burgi, T. Chiral gold nanoparticles[J]. Chemphyschem,2009,10(3):483-492.
    [5] Noguez, C., Garzon, I. L. Optically active metal nanoparticles[J]. Chem. Soc. Rev.,2009,38(3):757-771.
    [6] Govorov, A. O., Gun'ko, Y. K., Slocik, J. M., etc. Chiral nanoparticle assemblies:circular dichroism, plasmonic interactions, and exciton effects[J]. J. Mater. Chem.,2011,21(42):16806-16818.
    [7] Kitaev, V. Chiral nanoscale building blocks-from understanding to applications[J]. J.Mater. Chem.,2008,18(40):4745-4749.
    [8] Guerrero-Martínez, A., Alonso-Gómez, J. L., Auguié, B., etc. From individual tocollective chirality in metal nanoparticles[J]. Nano Today,2011,6(4):381-400.
    [9] Yang, M., Kotov, N. A. Nanoscale helices from inorganic materials[J]. J. Mater.Chem.,2011,21(19):6775-6792.
    [10] Xia, Y., Zhou, Y., Tang, Z. Chiral inorganic nanoparticles: origin, optical propertiesand bioapplications[J]. Nanoscale,2011,3(4):1374-1382.
    [11] Daniel, M.-C., Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry,quantum-size-related properties, and applications toward biology, catalysis, andNanotechnology[J]. Chem. Rev.,2003,104(1):293-346.
    [12] Tamura, M., Fujihara, H. Chiral bisphosphine BINAP-stabilized gold and palladiumnanoparticles with small size and their palladium nanoparticle-catalyzed asymmetricreaction[J]. J. Am. Chem. Soc.,2003,125(51):15742-15743.
    [13] Nie, Z., Petukhova, A., Kumacheva, E. Properties and emerging applications ofself-assembled structures made from inorganic nanoparticles[J]. Nat Nano,2010,5(1):15-25.
    [14] Rosi, N. L., Mirkin, C. A. Nanostructures in Biodiagnostics[J]. Chem. Rev.,2005,105(4):1547-1562.
    [15] Rycenga, M., Cobley, C. M., Zeng, J., etc. Controlling the synthesis and assembly ofsilver nanostructures for plasmonic applications[J]. Chem. Rev.,2011,111(6):3669-3712.
    [16] Kotov, N. A. Practical aspects of self-organization of nanoparticles: experimentalguide and future applications[J]. J. Mater. Chem.,2011,21(42):16673.
    [17] Schaaff, T. G., Whetten, R. L. Giant gold-glutathione cluster compounds: intenseoptical activity in metal-based transitions[J]. J. Phys. Chem. B,2000,104(12):2630-2641.
    [18] Gautier, C., Bu rgi, T. Chiral inversion of gold nanoparticles[J]. J. Am. Chem. Soc.,2008,130(22):7077-7084.
    [19] Nishida, N., Yao, H., Ueda, T., etc. Synthesis and chiroptical study ofD/L-penicillamine-capped silver nanoclusters[J]. Chem. Mater.,2007,19(11):2831-2841.
    [20] Sa nchez-Castillo, A., Noguez, C., Garzo n, I. L. On the origin of the optical activitydisplayed by chiral-ligand-protected metallic nanoclusters[J]. J. Am. Chem. Soc.,2010,132(5):1504-1505.
    [21] Govorov, A. O. Plasmon-induced circular dichroism of a chiral molecule in thevicinity of metal nanocrystals. application to various geometries[J]. J. Phys. Chem. C,2011,115(16):7914-7923.
    [22] Behar-Levy, H., Neumann, O., Naaman, R., etc. Chirality induction in bulk gold andsilver[J]. Adv. Mater.,2007,19(9):1207-1211.
    [23] Shemer, G., Krichevski, O., Markovich, G., etc. Chirality of silver nanoparticlessynthesized on DNA[J]. J. Am. Chem. Soc.,2006,128(34):11006-11007.
    [24] Slocik, J. M., Govorov, A. O., Naik, R. R. Plasmonic circular dichroism ofpeptide-functionalized gold nanoparticles[J]. Nano Lett.,2011,11(2):701-705.
    [25] Carmeli, I., Lieberman, I., Kraversky, L., etc. Broad band enhancement of lightabsorption in photosystem I by metal nanoparticle antennas[J]. Nano Lett.,2010,10(6):2069-2074.
    [26] Sharma, J., Chhabra, R., Cheng, A., etc. Control of self-assembly of DNA tubulesthrough integration of gold nanoparticles[J]. Science,2009,323(5910):112-116.
    [27] Mastroianni, A. J., Claridge, S. A., Alivisatos, A. P. Pyramidal and chiral groupingsof gold nanocrystals assembled using DNA Scaffolds[J]. J. Am. Chem. Soc.,2009,131(24):8455-8459.
    [28] Chen, C. L., Zhang, P., Rosi, N. L. A new peptide-based method for the design andsynthesis of nanoparticle superstructures: construction of highly ordered goldnanoparticle double helices[J]. J. Am. Chem. Soc.,2008,130(41):13555-13557.
    [29] Lilly, G. D., Agarwal, A., Srivastava, S., etc. Helical assemblies of goldnanoparticles[J]. Small,2011,7(14):2004-2009.
    [30] Leroux, F., Gysemans, M., Bals, S., etc. Three-dimensional characterization ofhelical silver nanochains mediated by protein assemblies[J]. Adv. Mater.,2010,22(19):2193-2197.
    [31] Oh, H. S., Liu, S., Jee, H., etc. Chiral poly(fluorene-alt-benzothiadiazole)(PFBT)and nanocomposites with gold nanoparticles: plasmonically and structurally enhancedchirality[J]. J. Am. Chem. Soc.,2010,132(49):17346-17348.
    [32] Guerrero-Martínez, A., Auguié, B., Alonso-Gómez, J. L., etc. Intense optical activityfrom three-dimensional chiral ordering of plasmonic nanoantennas[J]. Angew. Chem. Int.Ed.,2011,50(24):5499-5503.
    [33] George, J., Thomas, K. G. Surface plasmon coupled circular dichroism of Aunanoparticles on peptide nanotubes[J]. J. Am. Chem. Soc.,2010,132(8):2502-2503.
    [34] Li, Y., Liu, M. Fabrication of chiral silver nanoparticles and chiral nanoparticulatefilm via organogel[J]. Chem. Commun.,2008,(43):5571-5573.
    [35] Wang, R.-Y., Wang, H., Wu, X., etc. Chiral assembly of gold nanorods withcollective plasmonic circular dichroism response[J]. Soft Matter,2011,7(18):8370-8378.
    [36] Qi, H., Shopsowitz, K. E., Hamad, W. Y., etc. Chiral nematic assemblies of silvernanoparticles in mesoporous silica thin films[J]. J. Am. Chem. Soc.,2011,133(11):3728-3731.
    [37]Fan, Z., Govorov, A. O. Plasmonic circular dichroism of chiral metal nanoparticleassemblies[J]. Nano Lett.,2010,10(7):2580-2587.
    [38] Chen, W., Bian, A., Agarwal, A., etc. Nanoparticle superstructures made bypolymerase chain reaction: collective interactions of nanoparticles and a new principlefor chiral materials[J]. Nano Lett.,2009,9(5):2153-2159.
    [39] Fan, Z., Govorov, A. O. Helical metal nanoparticle assemblies with defects:plasmonic chirality and circular dichroism[J]. J. Phys. Chem. C,2011,115(27):13254-13261.
    [40] Govorov, A. O., Fan, Z., Hernandez, P., etc. Theory of circular dichroism ofnanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement,dipole interactions, and dielectric effects[J]. Nano Lett.,2010,10(4):1374-1382.
    [41] Kuzyk, A., Schreiber, R., Fan, Z., etc. DNA-based self-assembly of chiral plasmonicnanostructures with tailored optical response[J]. Nature,2012,483(7389):311-314.
    [42] Che, S., Liu, Z., Ohsuna, T., etc. Synthesis and characterization of chiral mesoporoussilica[J]. Nature,2004,429281-284.
    [43] Jin, H., Liu, Z., Ohsuna, T., etc. Control of morphology and helicity of chiralmesoporous silica[J]. Adv. Mater.,2006,18(5):593-596.
    [44] Jin, H., Qiu, H., Sakamoto, Y., etc. Mesoporous silicas by self-sssembly of lipidmolecules: ribbon, hollow sphere, and chiral materials[J]. Chem. Eur. J.,2008,14(21):6413-6420.
    [45] Ohsuna, T., Liu, Z., Che, S., etc. Characterization of chiral mesoporous materials bytransmission electron microscopy[J]. Small,2005,1(2):233-237.
    [46] Qiu, H., Inoue, Y., Che, S. Supramolecular chiral transcription and recognition bymesoporous silica prepared by chiral imprinting of a helical micelle[J]. Angew. Chem. Int.Ed.,2009,48(17):3069-3072.
    [47] Nissil, I., Kotilahti, K., Fallstr m, K., etc. Instrumentation for the accuratemeasurement of phase and amplitude in optical tomography[J]. Rev. Sci. Instrum.,2002,73,3306-3312.
    [48] Xie, J., Qiu, H., Che, S. Handedness inversion of chiral amphiphilic molecularassemblies evidenced by supramolecular chiral imprinting in mesoporous silicaassemblies[J]. Chem. Eur. J.,2012,18(9):2559-2564.
    [49] Lieberman, I., Shemer, G., Fried, T., etc. Plasmon-resonance-enhanced absorptionand circular dichroism[J]. Angew. Chem. Int. Ed.,2008,47(26):4855-4857.
    [50] Halas, N. J., Lal, S., Chang, W. S., etc. Plasmons in strongly coupled metallicnanostructures[J]. Chem. Rev.,2011,111(6):3913-3961.
    [51] Weber, W. H., Ford, G. W. Propagation of optical excitations by dipolar interactionsin metal nanoparticle chains[J]. Physical Review B,2004,70(12):125429.
    [1] Johnson, W., Berova, N., Nakanishi, K., etc. Circular dichroism: principles andapplications. In Wiley-VCH, New York, NY, USA:2000.
    [2] Harada, N., Nakanishi, K. Circular dichroic spectroscopy: exciton coupling in organicstereochemistry[M]. University Science Books Mill Valley, CA,1983.
    [3] Berova, N., Bari, L. D., Pescitelli, G. Application of electronic circular dichroism inconfigurational and conformational analysis of organic compounds[J]. Chem. Soc. Rev.,2007,36(6):914-931.
    [4] Barron, L. D. Molecular light scattering and optical activity[M]. Cambridge Univ Pr,2004.
    [5] Vukusic, P. Evolutionary photonics with a twist[J]. Science,2009,325(5939):398-399.
    [6] Woodward, J., Wepf, R., Sewell, B. Three-dimensional reconstruction of biologicalmacromolecular complexes from in-lens scanning electron micrographs[J]. J. Microsc.,2009,234(3):287-292.
    [7] Gibaud, T., Barry, E., Zakhary, M. J., etc. Reconfigurable self-assembly through chiralcontrol of interfacial tension[J]. Nature,2012,481(7381):348-351.
    [8] Vukusic, P., Sambles, J. R. Photonic structures in biology[J]. Nature,2003,424(6950):852-855.
    [9] Kolle, M., Salgard-Cunha, P. M., Scherer, M. R. J., etc. Mimicking the colourful wingscale structure of the Papilio blumei butterfly[J]. Nat Nano,2010,5(7):511-515.
    [10] Coles, H., Morris, S. Liquid-crystal lasers[J]. Nat Photon,2010,4(10):676-685.
    [11] Shopsowitz, K. E., Qi, H., Hamad, W. Y., etc. Free-standing mesoporous silica filmswith tunable chiral nematic structures[J]. Nature,2010,468(7322):422-425.
    [12] Chung, W.-J., Oh, J.-W., Kwak, K., etc. Biomimetic self-templating supramolecularstructures[J]. Nature,2011,478(7369):364-368.
    [13] Xia, Y., Zhou, Y., Tang, Z. Chiral inorganic nanoparticles: origin, optical propertiesand bioapplications[J]. Nanoscale,2011,3(4):1374-1382.
    [14] Gautier, C., Burgi, T. Chiral gold nanoparticles[J]. Chemphyschem,2009,10(3):483-492.
    [15] Noguez, C., Garzon, I. L. Optically active metal nanoparticles[J]. Chem. Soc. Rev.,2009,38(3):757-771.
    [16] Guerrero-Martínez, A., Alonso-Gómez, J. L., Auguié, B., etc. From individual tocollective chirality in metal nanoparticles[J]. Nano Today,2011,6(4):381-400.
    [17] Mastroianni, A. J., Claridge, S. A., Alivisatos, A. P. Pyramidal and chiral groupingsof gold nanocrystals assembled using DNA scaffolds[J]. J. Am. Chem. Soc.,2009,131(24):8455-8459.
    [18] Chen, W., Bian, A., Agarwal, A., etc. Nanoparticle superstructures made bypolymerase chain reaction: collective interactions of nanoparticles and a new principlefor chiral materials[J]. Nano Lett.,2009,9(5):2153-2159.
    [19] Govorov, A. O., Gun'ko, Y. K., Slocik, J. M., etc. Chiral nanoparticle assemblies:circular dichroism, plasmonic interactions, and exciton effects[J]. J. Mater. Chem.,2011,21(42):16806-16818.
    [20]Kitaev, V. Chiral nanoscale building blocks-from understanding to applications[J]. J.Mater. Chem.,2008,18(40):4745-4749.
    [21] Guerrero-Martínez, A., Auguié, B., Alonso-Gómez, J. L., etc. Intense opticalactivity from three-dimensional chiral ordering of plasmonic nanoantennas[J]. Angew.Chem. Int. Ed.,2011,50(24):5499-5503.
    [22] Qi, H., Shopsowitz, K. E., Hamad, W. Y., etc. Chiral nematic assemblies of silvernanoparticles in mesoporous silica thin films[J]. J. Am. Chem. Soc.,2011,133(11):3728-3731.
    [23] Sharma, J., Chhabra, R., Cheng, A., etc. Control of self-assembly of DNA tubulesthrough integration of gold nanoparticles[J]. Science,2009,323(5910):112-116.
    [24] Kuzyk, A., Schreiber, R., Fan, Z., etc. DNA-based self-assembly of chiralplasmonic nanostructures with tailored optical response[J]. Nature,2012,483(7389):311-314.
    [25] Govorov, A. O., Fan, Z., Hernandez, P., etc. Theory of circular dichroism ofnanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement,dipole interactions, and dielectric effects[J]. Nano Lett.,2010,10(4):1374-1382.
    [26] Gerard, V. A., Gun'ko, Y. K., Defrancq, E., etc. Plasmon-induced CD response ofoligonucleotide-conjugated metal nanoparticles[J]. Chem. Commun.,2011,47(26):7383-7385.
    [27] Shemer, G., Krichevski, O., Markovich, G., etc. Chirality of silver nanoparticlessynthesized on DNA[J]. J. Am. Chem. Soc.,2006,128(34):11006-11007.
    [28] Schaaff, T. G., Whetten, R. L. Giant gold-glutathione cluster compounds: intenseoptical activity in metal-based transitions[J]. J. Phys. Chem. B,2000,104(12):2630-2641.
    [29] Zhou, Y., Yang, M., Sun, K., etc. Similar topological origin of chiral centers inorganic and nanoscale inorganic structures: effect of stabilizer chirality on opticalisomerism and growth of CdTe nanocrystals[J]. J. Am. Chem. Soc.,2010,132(17):6006-6013.
    [30] Leroux, F., Gysemans, M., Bals, S., etc. Three-dimensional characterization ofhelical silver nanochains mediated by protein assemblies[J]. Adv. Mater.,2010,22(19):2193-2197.
    [31] George, J., Thomas, K. G. Surface plasmon coupled circular dichroism of Aunanoparticles on peptide nanotubes[J]. J. Am. Chem. Soc.,2010,132(8):2502-2503.
    [32] Hofstetter, O., Hofstetter, H., Wilchek, M., etc. Chiral discrimination using animmunosensor[J]. Nat Biotech,1999,17(4):371-374.
    [33] Li, Z., Zhu, Z., Liu, W., etc. Reversible plasmonic circular dichroism of Au nanorodand DNA sssemblies[J]. J. Am. Chem. Soc.,2012,134(7):3322-3325.
    [34] Daniel, M.-C., Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry,quantum-size-related properties, and applications toward biology, catalysis, andnanotechnology[J]. Chem. Rev.,2003,104(1):293-346.
    [35] Baev, A., Samoc, M., Prasad, P. N., etc. A quantum chemical approach to the designof chiral negative index materials[J]. Opt. Express,2007,15(9):5730-5741.
    [36] Huang, M. H., Choudrey, A., Yang, P. Ag nanowire formation within mesoporoussilica[J]. Chem. Commun.,2000,(12):1063-1064.
    [37] Ko, C. H., Ryoo, R. Imaging the channels in mesoporous molecular sieves withplatinum[J]. Chem. Commun.,1996,(21):2467-2468.
    [38] Han, Y.-J., Kim, J. M., Stucky, G. D. Preparation of noble metal nanowires usinghexagonal mesoporous silica SBA-15[J]. Chem. Mater.,2000,12(8):2068-2069.
    [39] Tian, B., Liu, X., Solovyov, L. A., etc. Facile synthesis and characterization ofnovel mesoporous and mesorelief oxides with gyroidal structures[J]. J. Am. Chem. Soc.,2003,126(3):865-875.
    [40] Wu, Y., Cheng, G., Katsov, K., etc. Composite mesostructures bynano-confinement[J]. Nat Mater,2004,3(11):816-822.
    [41] Lu, A. H., Schüth, F. Nanocasting: a versatile strategy for creating nanostructuredporous materials[J]. Adv. Mater.,2006,18(14):1793-1805.
    [42] Che, S., Liu, Z., Ohsuna, T., etc. Synthesis and characterization of chiralmesoporous silica[J]. Nature,2004,429281-284.
    [43] Qiu, H., Che, S. Chiral mesoporous silica: Chiral construction and imprinting viacooperative self-assembly of amphiphiles and silica precursors[J]. Chem. Soc. Rev.,2011,40(3):1259-1268.
    [44] Ohsuna, T., Liu, Z., Che, S., etc. Characterization of chiral mesoporous materials bytransmission electron microscopy[J]. Small,2005,1(2):233-237.
    [45] Pieraccini, S., Masiero, S., Ferrarini, A., etc. Chirality transfer across length-scalesin nematic liquid crystals: fundamentals and applications[J]. Chem. Soc. Rev.,2010,40(1):258-271.
    [46] Goodby, J. W. Chirality in liquid crystals[J]. J. Mater. Chem.,1991,1(3):307-318.
    [47] Rycenga, M., Cobley, C. M., Zeng, J., etc. Controlling the synthesis and assemblyof silver nanostructures for plasmonic applications[J]. Chem. Rev.,2011,111(6):3669-3712.
    [48] Pérez-Juste, J., Pastoriza-Santos, I., Liz-Marzán, L. M., etc. Gold nanorods:Synthesis, characterization and applications[J]. Coord. Chem. Rev.,2005,249(17–18):1870-1901.
    [49] Huang, X., Neretina, S., El-Sayed, M. A. Gold nanorods: from synthesis andproperties to biological and biomedical applications[J]. Adv. Mater.,2009,21(48):4880-4910.
    [50] Halas, N. J., Lal, S., Chang, W. S., etc. Plasmons in strongly coupled metallicnanostructures[J]. Chem. Rev.,2011,111(6):3913-3961.
    [51] Jin, H., Liu, Z., Ohsuna, T., etc. Control of morphology and helicity of chiralmesoporous silica[J]. Adv. Mater.,2006,18(5):593-596.
    [52] Sun, Y., Yin, Y., Mayers, B. T., etc. Uniform silver nanowires synthesis byreducing AgNO3with ethylene glycol in the presence of seeds and poly(VinylPyrrolidone)[J]. Chem. Mater.,2002,14(11):4736-4745.
    [53] Fan, Z., Govorov, A. O. Plasmonic circular dichroism of chiral metal nanoparticleassemblies[J]. Nano Lett.,2010,10(7):2580-2587.
    [54] Auguie, B., Alonso-Go mez, J. L., Guerrero-Marti nez, A. s., etc. Fingers crossed:optical activity of a chiral dimer of plasmonic nanorods[J]. J. Phys. Chem. Lett.,2011,2(8):846-851.
    [55] Fan, Z., Govorov, A. O. Helical metal nanoparticle assemblies with defects:plasmonic chirality and circular dichroism[J]. J. Phys. Chem. C,2011,115(27):13254-13261.
    [56] Xie, J., Duan, Y., Che, S. Chirality of metal nanoparticles in chiral mesoporoussilica[J]. Adv. Funct. Mater.,2012,10.1002/adfm.201200588.
    [57] Jain, P. K., Eustis, S., El-Sayed, M. A. Plasmon coupling in nanorod assemblies:optical absorption, discrete dipole approximation simulation, and exciton-couplingmodel[J]. J. Phys. Chem. B,2006,110(37):18243-18253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700