介孔材料的合成及其作为药物载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔材料是上世纪90年代初被首次发现的,是一个集物理、化学、材料等为一体的多学科交叉领域。由于其2-50 nm均匀可控的孔径,大的比表面积和孔容等特性使其在催化、分离、生物医药等领域具有潜在的应用,引起了研究者的广泛兴趣。介孔材料的介观结构和化学组成是介孔材料的重要特征。不同的介孔的拓扑结构和化学组成使介孔材料具有不同的特性,并可产生不同的应用前景。人们从不同的角度阐述了介孔材料的结构形成机理,但还不够完善。本文使用阴离子表面活性剂导向体系对介孔结构形成机理进行了更加深入的研究,并据此提出了新的结构控制机理;使用硬模板的方法合成了金属氧化物介孔材料;选择介孔材料作为药物载体,发展了一种基于介孔材料的经皮药物投递系统。
     在第二章中,本文采用阴离子表面活性剂N-肉豆蔻酰谷氨酸(C14GluA)作为模板剂,N-三甲氧基硅丙基-N,N,N-三甲基氯化铵(TMAPS)作为助结构导向剂(CSDA),通过改变该合成体系中关键组分的比例关系,通过大量实验结果绘制了阴离子表面活性剂导向介孔材料(AMS)的合成相图。通过对合成相图中相区分布的讨论,本文系统地考察了介孔结构的控制机制,并提出在该体系中存在以下结构控制机理。(1)有机/无机界面曲率决定了介孔类型,即介孔拓扑结构是双连续的,直管状的还是笼状的。有机/无机界面曲率的改变可由表面活性剂堆积常数g的改变来实现。(2)在笼状介观相的形成过程中,介观笼之间的静电相互作用起到了关键作用。当介孔笼间相互作用比较强时,介观笼的堆积表现为“硬球”紧密堆积;而当介孔笼间相互作用比较弱时,介观笼的堆积表现为“软球”堆积,由紧密堆积和最小表面积共同决定其堆积方式。在“软球”堆积产生的各种介观相中,立方相Fd-3m和Pm-3n出现在介观笼间相互作用相对较弱的体系中,而四方相P42/mnm出现在介观笼间相互作用相对较强的体系中。其中笼状介观相形成机理是被首次提出。
     在第三章中,通过表面活性剂分子设计的策略,合成了一具有厚壁结构的介孔材料。本文使用一种烷基醇聚醚羧酸盐(AEC)型表面活性剂作为模板剂,通过该分子中聚氧乙烯(EO)链段和羧酸官能团分别与硅物种和CSDA发生氢键和静电相互作用,合成了具有双重硅壁结构的介孔材料。该材料表现出较大的孔壁厚度和较高的水热稳定性。另外,本文通过AEC分子中EO链段平均长度的控制对介孔材料的壁厚进行了精细调节。
     在第四章中,本文通过硬模板的方法使用Co3O4复制了不同孔径的SBA-15(p6mm),KIT-6(Ia-3d)和AMS-10(Pn-3m)材料,得到了不同结构的介孔Co3O4,并初步地研究了模板二氧化硅材料的孔径和空间对称性与硬模板法合成的介孔金属氧化物结构的关系。我们发现,(1)当SBA-15的孔径较小时,在反相复制为Co3O4时介孔结构不能被保持,得到的是相互分离的单晶纳米丝;而当SBA-15的孔径较大的情况下,反相复制得到的介孔Co3O4保持了模板介孔二氧化硅材料的空间结构,并能保持模板材料的外形。(2)当KIT-6材料的孔径较小时,同时发生Co3O4复制Ia-3d结构双连续孔道中的单套孔道和双套孔道。当KIT-6材料的孔径较大时,其Ia-3d结构中两套互不连通的介观孔道被Co3O4完全复制。(3)在所能获得的AMS-10的孔径范围内(5.1 nm - 6.7 nm),Co3O4复制了Pn-3m结构双连续孔道中的双套孔道和单套孔道。硬模板复制法也提供了模板材料的结构信息,我们发现AMS-10沿D曲面生长的二氧化硅壁中,在最薄的地方可能存在连通D曲面两侧双连续孔道的有序微孔。
     在第五章中,发展了一种基于介孔材料的在经皮给药领域具有潜在应用的药物投递系统。本文使用异硫氰酸荧光素(FITC)作为模型药物,首先将药物键合到可穿透细胞膜的多肽(CPP)上,使药物具有了穿透细胞膜的能力;然后将此化合物引入到有机无机杂化材料中,实现对药物/CPP的稳定化及对药物的控制释放。该方法的有效性被体外释放、基质辅助激光解析电离飞行时间质谱(MALDI-TOFMS)和细胞实验所证实。体外释放实验表明其释放曲线呈S型,即存在诱导期,加速释放期和释放完毕三个阶段,总释放时间超过120小时。将此含FITC-CPP的杂化材料与细胞共同培养,发现FITC-CPP缓慢释放并持续地穿透细胞膜进入细胞,在96小时后仍能在细胞内观察到明显的FITC信号。这表明,介孔有机无机杂化材料的使用保证了药物/CPP的安全存储,实现了药物/CPP的缓慢释放,并导致了细胞对药物/CPP的持续内吞作用。因此该药物释放体系在经皮给药领域具有潜在的应用前景。
Mesoporous material is a newly developed multidisciplinary research field initiatedin the early 1990s. It attracts wide interest of researchers because of its potentialapplications in catalysis, separation and drug delivery, etc, on the basis of its uniquecharacteristics, including homogeneous and controllable pore size within 2 to 50 nm, highspecific surface area and large pore volume. The mesostructure and chemicalcomposition of mesoporous material are its distinguishing features in differentapplications. Researchers tried to explain the formation mechanism and find controllingmethods of mesostructures from different perspectives, though not perfect to be appliedin most situations. In this paper, the anionic surfactant templating route to mesoporoussilica was focused on to advance the investigation of mesostructure formation, and a newreliable mechanism was proposed for the first time. We synthesized non-siliceous metaloxide mesoporous crystals by hard-templating method. And also in this work, a noveldrug delivery system was developed to make mesoporous silica applicable in transdermaldrug administration.
     In Chapter 2, a synthesis field diagram of anionic-surfactant-templated mesoporoussilica (AMS) was developed by using N-myristoyl-L-glutamic acid (C14GluA) astemplate and N-trimethoxylsilylpropyl-N,N,N-trimehylammonium chloride (TMAPS) asthe co-structure directing agent (CSDA), and varying the mole compositions of keycomponents in this system. By investigating the distribution of different phase zones inthe diagram, it was convinced that two mechanisms control the formation ofmesostructure. First, the pore geometry (bicontinuous, cylindrical and cage-type) iscontrolled by organic/inorganic interface curvature, which is dominated by surfactantpacking parameter g. Second, electrostatic interactions between mesocages play a vitalrole in their packing manners.“Hard sphere packing”is applied if the electrostaticinteractions between mesocages are large enough, and in this case Fm-3m structure isfavored. Otherwise,“soft sphere packing”is applied and a compromise between“closepacking”and“minimum surface area”determines the final structure. In this case, Fd-3m and Pm-3n phases are favored when the electrostatic interactions between mesocages arerelatively small, and otherwise P42/mnm is favored. The second mechanism was proposedfor the first time.
     In Chapter 3, a thick-walled mesoporous silica was synthesized by a rational designof surfactant molecule. A fatty alcohol ether carboxylate surfactant (AEC) was used asthe template, and a double silica skeleton was formed by hydrogen bonding interactionsbetween polyethyloxide (PEO) and silica oligomers and electrostatic interactions betweencarboxylate and CSDA. An enhanced hydrothermal stability was proved by experimentbecause of the thick wall of the material. And its wall thickness was fine tuned by theaverage chain length of PEO in the AEC surfactant.
     In Chapter 4, cobalt oxide replicas of mesoporous silica SBA-15 (p6mm), KIT-6(Ia-3d) and AMS-10 (Pn-3m) with different pore sizes were synthesized by using hardtemplating method, and the relationship between pore size and symmetry of templatematerials and structure of cobalt oxide replicas was investigated systematically. (1)Separated single crystalline cobalt oxide fibers were obtained when the pore size ofSBA-15 was small, and mesoporous cobalt oxide was achieved retaining the originalsymmetry and morphology if the pore size of template material was large. (2) WhenKIT-6 was used as hard template for the synthesis of mesoporous cobalt oxide, bothreplication of one set and two sets of bicontinuous networks were observed if the poresize of KIT-6 was small. Otherwise, two interwoven networks of the Ia-3d structurewould be fully replicated by cobalt oxide when the pore size of KIT-6 is large. (3) Withinall available pore sizes (5.1-6.7 nm) of AMS-10, cobalt oxide replicated both one set andtwo sets of bicontinuous networks of Pn-3m structure. On the other hand, the structure ofreplica reflects the characters of model material, and it is reasonable that AMS-10 hasregular micropores at the thinnest part of the silica wall which grows following thediamond (D) minimal surface, connecting two interwoven mesopore networks.
     In Chapter 5, a potential transdermal drug delivery system was developed on thebasis of mesoporous materials. Fluorescein-5-isothiocyanate (FITC) was used as a drugmodel, which was conjugated to a cell-penetrating peptide (CPP) to make it capable oftranslocating membranes. The FITC-CPP conjugate was introduced into theorganic/inorganic hybrid mesostructured silica, which fulfilled the safety storage of thedrug and the control of the release rate. The effectiveness of this drug delivery system was proved by in-vitro release, matrix-assisted laser desorption/ionization–time of flightmass spectrometry (MALDI-TOFMS) and cell assay. The in-vitro release shows asigmoidal feature, including three steps: introduction, accelerated release and completingrelease. The typical duration is longer than 120 hours. When incubating the FITC-CPPloaded organic/inorganic hybrid mesostructured silica with DU145 cells, a sustainedinternalization of FITC-CPP by cells was observed, and FITC signals was well detectedafter as long as 96 hours. It means the organic/inorganic hybrid mesostructured silica iscapable of protecting drug-CPP from decomposition and controlling the drug release,which results in sustained cell internalization. This study shows that it could be apotential prototype for transdermal drug delivery system.
引文
[1] IUPAC Manual of Symbols and Terminology, Pure Appl.Chem.1972, 31, 578.
    [2] G. J. de A. A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev. 2002, 102,4093.
    [3] T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, Bull. Chem. Soc. Jpn. 1990, 63, 988.
    [4] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359,710.
    [5] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C.T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenkert,J. Am. Chem. Soc. 1992, 114, 10834.
    [6] Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M.Petroff, F. Schüth, G. D. Stucky, Nature 1994, 368, 317.
    [7] Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A.Firouzi, B. F. Chmelka, F. Schüth, G. D. Stucky, Chem. Mater. 1994, 6, 1176.
    [8] Q. Huo, R. Leon, P. M. Petroff, G. D. Stucky, Science 1995, 268, 1324.
    [9] Q. Huo, D. I. Margolese, G. D. Stucky, Chem. Mater. 1996, 8, 1147.
    [10] D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 1998, 120,6024.
    [11] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D.Stucky, Science 1998, 279, 548.
    [12] C. Yu, B. Tian, J. Fan, G. D. Stucky, D. Zhao, J. Am. Chem. Soc. 2002, 124, 4556.
    [13] C. C. Pantazis, P. J. Pomonis, Chem. Mater. 2003, 15, 2299.
    [14] P. T. Tanev, T. J. Pinnavaia, Science 1995, 267, 865.
    [15] S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia, Science 1995, 269, 1242.
    [16] R. Ryoo, J. M. Kim, C. H. Ko, C. H. Shin, J. Phys. Chem. 1996, 100, 17718.
    [17] F. Kleitz, S. H. Choi, R. Ryoo, Chem. Commun. 2003, 9, 2136.
    [18] C. Z. Yu, Y. H. Yu, D. Y. Zhao, Chem. Commun. 2000, 575.
    [19] X. Liu, B. Tian, C. Yu, F. Gao, S. Xie, B. Tu, R. Che, L-M. Peng, D. Zhao, Angew.Chem. Int. Ed. 2002, 41, 3876.
    [20] J. Fan, C. Z. Yu, T. Gao, J. Lei, B. Z. Tian, L. M. Wang, Q. Luo, B. Tu, W. Z. Zhou,D. Y. Zhao, Angew. Chem. Int. Ed. 2003, 42, 3146.
    [21] Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, L. Cheng, D. Feng, Z. X. Wu, Z. X. Chen, Y.Wan, A. Stein, D. Y. Zhao, Chem. Mater. 2006,18, 4447.
    [22] Y. Huang, H. Q. Cai, T. Yu, F. Q. Zhang, F. Zhang, Y. Meng, D. Gu, Y. Wan, X. L.Sun, B. Tu, D. Y. Zhao, Angew. Chem. Int. Ed. 2007, 46, 1089.
    [23] Y. H. Deng, T. Yu, Y. Wan, Y. F. Shi, Y. Meng, D. Gu, L. J. Zhang, Y. Huang, C. Liu,X. J. Wu, D. Y. Zhao, J. Am. Chem. Soc. 2007, 129, 1690.
    [24] S. Che, A. E. Garcia-Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, T.Tatsumi, Nat. Mater. 2003, 2, 801.
    [25] S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Nature 2004, 429,281.
    [26] A. E. Garcia-Bennett, K. Miyasaka, O. Terasaki, S. Che, Chem. Mater. 2004, 16,3597.
    [27] A. E. Garcia-Bennett, O. Terasaki, S. Che, T. Tatsumi, Chem. Mater. 2004, 16, 813.
    [28] A. E. Garcia-Bennett, N. Kupferschmidt, Y. Sakamoto, S. Che, and O. Terasaki,Angew. Chem. Int. Ed., 2005, 44, 5317.
    [29] C. Gao, Y. Sakamoto, K. Sakamoto, O. Terasaki, S. Che, Angew. Chem. Int. Ed. 2006,45, 4295.
    [30] C. Gao, H. Qiu, W. Zeng, Y. Sakamoto, O. Terasaki, K. Sakamoto, Q. Chen, S. Che,Chem. Mater. 2006, 18, 3904.
    [31] C. Gao, Y. Sakamoto, O. Terasaki, S. Che, Chem. Eur. J. 2008, 14, 11423.
    [32] H. Qiu, Y. Sakamoto, O. Terasaki, S. Che, Adv. Mater. 2008, 20, 425.
    [33] H. Zheng, C. Gao, S. Che, Micopor. Mesopor. Mater. 2008, 116, 299.
    [34] C. Gao, Y. Sakamoto, O. Terasaki, K. Sakamoto, S. Che, J. Mater. Chem. 2007, 17,3591.
    [35] H. Jin, Z. Liu, T. Ohsuna, O. Terasaki, Y. Inoue, K. Sakamoto, T. Nakanishi, K.Ariga, S. Che, Adv. Mater. 2006, 18, 593.
    [36] X. Wu, H. Jin, Z. Liu, T. Ohsuna, O. Terasaki, K. Sakamoto, S. Che, Chem. Mater.2006, 18, 241.
    [37] H. Qiu, S. Wang, W. Zhang, K. Sakamoto, O. Terasaki, Y. Inoue, S. Che, J. Phy.Chem. C 2008, 112, 1871.
    [38] H. Jin, H. Qiu, Y. Sakamoto, P. Shu, O. Terasaki, S. Che, Chem. Eur. J. 2008, 14,6413.
    [39] H. Qiu, S. Che, J. Phys. Chem. B 2008, 112, 10466.
    [40] H. Jin, H. Qiu, C. Gao, S. Che, Micopor. Mesopor. Mater. 2008, 116, 171.
    [41] S. A. El-Safty, J. Evans, J. Mater. Chem., 2002, 12, 117.
    [42] S. A. El-Safty, T. Hanaoka, Chem. Mater. 2003, 15, 2892.
    [43] S. A. El-Safty, T. Hanaoka, Adv. Mater. 2003, 15, 1893.
    [44] S. A. El-Safty, T. Hanaoka, Chem. Mater. 2004, 16, 384.
    [45] S. A. El-Safty, T. Hanaoka, F. Mizukami, Chem. Mater. 2005, 17, 3137.
    [46] S. A. El-Safty, T. Hanaoka, F. Mizukami, Adv. Mater. 2005, 17, 47.
    [47] S. A. El-Safty, J. Porous Mater 2008, 15, 369.
    [48] L. L. Hench, J. K. West, Chem. Review 1990, 90, 33.
    [49] H. Yang, N. Coombs, I. Sokolov, G. A. Ozine, Nature 1996, 381, 589.
    [50] H. Yang, A. Kuperman, N. Coombs, S. Mamiche-Afara, G. A. Ozin, Nature 1996,379, 703.
    [51] C. J. Brinker, Y. Lu, A. Sellinger, H. Fan, Adv. Mater. 1999, 11, 579.
    [52] Y. Lu, H. Fan, A. Stump, T. L. Ward, T. Rieker, C. J. Brinker, Nature 1999, 398, 223.
    [53] D. Grosso, F. Cagnol, G. J. de A. A. Soler-Illia, E. L. Crepaldi, H. Amenitsch, A.Brunet-Bruneau, A. Bourgeois, C. Sanchez, Adv. Mater. 2004, 14, 309.
    [54] D. Zhao, P. Yang, D. I. Margolese, B. F. Chmelka, G. D.Stucky, Chem. Commun.1998, 2499.
    [55] D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka, G. D. Stucky, Adv. Mater. 1998,10, 1380.
    [56] G. S. Attard, J. C. Glyde, C. G. G?ltner, Nature 1995, 378, 366.
    [57] N. R. B. Coleman, G. S. Attard, Micopor. Mesopor. M ater. 2001, 44-45, 73.
    [58] P. Feng, X. Bu, G. D. Stucky, D. J. Pine, J. Am. Chem. Soc. 2000, 122, 994.
    [59] Y. Wan, D. Zhao, Chem. Rev. 2007, 107, 2821.
    [60] C-Y. Chen, H-X. Li, M. E. Davis, Microporous Mater. 1993, 2, 17.
    [61] C-Y. Chen, S. L. Burkett, H-X. Li, M. E. Davis, Microporous Mater. 1993, 2, 27.
    [62] A. Firouzi, D. Kumar, L. M.Bull, T. Besier, P. Sieger, Q. Huo, S. A. Walker, J. A.Zasadzinsky, C. Glinka, J. Nicol, D. Margolesse, G. D.Stuky, B. F. Chmelka, Science1995, 267, 1138.
    [63] A. Monnier, F. Schüth, Q.Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D.Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, B. F. Chmelka, Science 1993,261, 1299.
    [64] S. Inagaki, Y. Fukushima, K. Kuroda, J. Chem. Soc. Chem. Commun. 1993, 680.
    [65] J. Tang, X. Zhou, D. Zhao, G-Q Lu, J. Zou, C. Yu, J. Am. Chem. Soc. 2007, 129,9044.
    [66] Y. Sakamoto, C. Gao, S. Che, O. Terasaki, 5th International MesostructuredMaterials Symposium, 2006.
    [67] S. T. Hyde, in Handbook of Applied Surface and Colloid Chemistry, JOHN WILEY& SONS, 2001, p312.
    [68] A. C. Finnefrock, R. Ulrich, A. D. Chesne, C. C. Honeker, K. Schumacher, K. K.Unger, S. M. Gruner, U. Wiesner, Angew. Chem. Int. Ed. 2001, 40, 1208.
    [69] A. Jain, G. E. S. Toombes, L. M. Hall, S. Mahajan, C. B. W. Garcia,W. Probst, S. M.Gruner, U. Wiesner, Angew. Chem. Int. Ed. 2005, 44, 1226.
    [70] Y. Sakamoto, M. Kaneda, O. Terasaki, D. Zhao, J. M. Kim, G. Stucky, H. J. Shin, R.Ryoo, Nature 2000, 408, 449.
    [71] K. Miyasaka, L. Han, S. Che, O. Terasaki, Angew. Chem. Int. Ed. 2006, 45 , 6516.
    [72] P. I. Ravikovitch, A. V. Neimark, Langmuir 2002,18, 1550.
    [73] S. Shen, A. E. Garcia-Bennett, Z. Liu, Q. Lu, Y. Shi, Y. Yan, C. Yu, W. Liu, Y. Cai, O.Terasaki, D. Zhao, J. Am. Chem. Soc. 2005, 127, 6780.
    [74] D. Zhao, Q. Huo, J. Feng, J. Kim, Y. Han, G. D. Stucky, Chem. Mater. 1999, 11,2668.
    [75] J. El Haskouri, S. Cabrera, M. Calde?s, C. Guillem, J. Latorre, A. Beltra?n, D. Beltra?n,M. D. Marcos, P. Amoro?s, Chem. Mater. 2002, 14, 2637.
    [76] X. Zhou, C. Yu, J. Tang, X. Yan, D. Zhao, Micopor. Mesopor. Mater. 2005, 79, 283.
    [77] J. N. Israelachvili, D. J. Mitchell, B. W. Ninham, J. Chem. Soc. Faraday Trans. 2.1976, 72, 1525.
    [78] S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J. C. Handon, A.Monnier, Chem. Mater. 2001, 13, 2247.
    [79] J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y-U. Kwon, O. Terasaki, S-E. Park, G. D.Stucky, J. Phys. Chem. B 2002, 106, 2552.
    [80] J. C. Vartuli, K. D. Schmitt, C. T. Kresge, W. J. Roth, M. E. Leonowicz, S. B.McCullen, S. D. Hellring, J. S. Beck, J. L. Schlenker, D. H. Olson, E. W. Sheppard, Chem.Mater. 1994, 6, 2317.
    [81] S. Che, S. Lim, M. Kaneda, H. Yoshitake, O. Terasaki, T. Tatsumi, J. Am. Chem. Soc.2002, 124, 13962.
    [82] S. Che, H. Li, S. Lim, Y. Sakamoto, O. Terasaki, T. Tatsumi, Chem. Mater. 2005, 17,4103.
    [83] Y. Wang, Y. Wang, C. Yang, G. Lu, F. Schüth, Langmuir, 2006, 22, 5491.
    [84] S. Che, Y. Sakamoto, O. Terasaki, T. Tatsumi, Micopor. Mesopor. Mater. 2005, 85,207.
    [85] L. Han, Y. Sakamoto, O. Terasaki, Y. Li, S. Che, J. Mater. Chem.2007, 17,1216.
    [86] P. Ziherl, R. D. Kamien, J. Phys. Chem. B 2001, 105, 10147.
    [87]徐如人,庞文琴,于吉红,霍启升,陈接胜,《分子筛与多孔材料化学》,科学出版社,2004.
    [88] J. Fan, S. W. Boettcher, C. -K. Tsung, Q. Shi, M. Schierhorn, G. D. Stucky, Chem.Mater. 2008, 20, 909.
    [89] G. A. Ozin, Adv. Mater. 1992, 4, 612.
    [90] M. Tiemann, Chem. Mater. 2008, 20, 961.
    [91] H. Yang, D. Zhao, J. Mater. Chem. 2005, 15, 1217.
    [92] F. Li, Z. Wang, A. Stein, Angew. Chem. Int. Ed. 2007, 46, 1885.
    [93] Z. Wang, F. Li, A. Stein, Nano Letters 2007, 7, 3223.
    [94] F. Li, Z. Wang, N. S. Ergang, C. A. Fyfe, A. Stein, Langmuir 2007, 23, 3996.
    [95] Z. Wang, A. Stein, Chem. Mater. 2008, 20, 1029.
    [96] Z. Yang, Z. Niu, X. Cao, Z. Yang, Y. Lu, Z. Hu, C. C. Han, Angew. Chem. Int. Ed.2003, 42, 4201.
    [97] A. Yamaguchi, F. Uejo, T. Yoda, T. Uchida, Y. Tanamura, T. Yamashita, N. Teramae,Nat. Mater. 2004, 3, 337.
    [98] Y. Wu, G. Cheng, K. Katsov, S. W. Sides, J. Wang, J. Tang, G. H. Fredrickson, M.Moskovits, G. D. Stucky, Nat. Mater. 2004, 3, 816.
    [99] Q. Lu, F. Gao, S. Komarneni, T. E. Mallouk, J. Am. Chem. Soc. 2004, 126, 8650.
    [100] B. Platschek, N. Petkov, T. Bein, Angew. Chem. Int. Ed. 2006, 45, 1134.
    [101] B. Platschek, N. Petkov, D. Himsl, S. Zimdars, Z. Li, R. Kohn, T. Bein, J. Am.Chem. Soc. 2008, 130, 17362.
    [102] X. Zhang, W. Lu, J. Da, H. Wang, D. Zhao, P. A. Webley, Chem. Commun. 2009,195.
    [103] R. Ryoo, S. H. Joo, S. J. Jun, J. Phys. Chem. B 1999,103, 7743.
    [104] S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M.Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J.Am. Chem. Soc. 2000, 122, 10712.
    [105] T.-W. Kim, I.-S. Park, R. Ryoo, Angew. Chem. 2003, 115, 4511.
    [106] S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature 2001,169.
    [107] R. Ryoo, S. H. Joo, S. Jun, J. Phys. Chem. B 1999, 103, 7743.
    [108] H. J. Shin, C. H. Ko, R. Ryoo, J. Mater. Chem. 2001, 11, 260.
    [109] C. Dickinson, W. Zhou, R. Hodgkins, Y. Shi, D. Zhao, H. He, Chem. Mater. 2006,18, 3088.
    [110] Y. Shi, Y. Wan, R. Zhang, D. Zhao, Adv. Funct. Mater. 2008, 18, 2436.
    [111] W. Yue, W. Zhou, Chem. Mater. 2007, 19, 2359.
    [112] A. Rumplecker, F. Kleitz, E.-L. Salabas, Ferdi Schüth, Chem. Mater. 2007, 19, 485.
    [113] H. Tüysüz, C. W. Lehmann, H. Bongard, B. Tesche, R. Schmidt, F. Schüth, J. Am.Chem. Soc. 2008, 130, 11510.
    [114] Y. Sakamoto, T.-W. Kim, R. Ryoo, O. Terasaki, Angew. Chem. Int. Ed. 2004, 43,5231.
    [115] R. Seshadri, F. C. Meldrum, Adv. Mater. 2000, 12, 1149.
    [116] T. Ota, M. Imaeda, H. Takase, M. Kobayashi, N. Kinoshita, T. Hirashita, H.Miyazaki, Y. Hikichi, J. Am. Ceram. Soc. 2000, 83, 1521.
    [117]范杰,余承忠,屠波,赵东元,《高等学校化学学报》,2001,22,1459.
    [118] S. A. Davis, S. L. Burkett, N. H. Mendelson, S. Mann, Nature 1997,385, 420.
    [119] W. Fan, M. A. Snyder, S. Kumar, P.-S. Lee, W. C. Yoo, A. V. McCormick, R. L.Penn, A. Stein, M. Tsapatsis, Nat. Mater. 2008, 7, 984.
    [120] M. Vallet-Regí, F. Balas, D. Arcos, Angew. Chem. Int. Ed. 2007, 46, 7548.
    [121] M. Colilla, M. Manzano, M. Vallet-Regí, Int. J. Nanosci. 2008, 3, 403.
    [122] B. G. Trewyn, S. Giri, I. I. Slowing, V. S.-Y. Lin, Chem. Commun. 2007, 3236.
    [123] I. I. Slowing, J. L. Vivero-Escoto, C.-W. Wu, V. S.-Y. Lin, Adv. Drug Deliv. Rev.2008, 60, 1278.
    [124] M. Vallet-Regí, A. Rámila, R. P. del Real, J. Pérez-Pariente, Chem. Mater. 2001, 13,308.
    [125] Y.-H. Son, M. Paek, Y. B. Choy, H. R. Choi, D. S. Kim, K. C. Park, J. H, Choy,Chem. Commun. 2007, 2799.
    [126] F. Qu, G. Zhu, H. Lin, J. Sun, D. Zhang, S. Li, S. Qiu, Eur. J. Inorg. Chem. 2006,3943.
    [127] U. Brohede, R. Atluri, A. E. Garcia-Bennett, M. Str?mme, Curr. Drug. Deliv. 2008,5, 177.
    [128] P. Horcajada, A. Rámila, J. Pérez-Pariente, M. Vallet-Regí, Micropor. Mesopor.Mater. 2004, 68, 105.
    [129] I. Izquierdo-Barba, A. Martínez, A. L. Doadrio, J. Pérez-Pariente, M. Vallet-Regí,Eur. J. Pharm. Sci. 2005, 26, 365.
    [130] J.Andersson, J. Rosenholm, S. Areva, M. Lindén, Chem. Mater. 2004, 16, 4160.
    [131] F. Qu, G. Zhu, S. Huang, S. Li, J. Sun, D. Zhang, S. Qiu, Micopor. Mesopor. Mater.2006, 92, 1.
    [132] R. Casasús, E. Climent, M. D. Marcos, R. Martínez-Má?ez, F. Sancenón, J. Soto, P.Amorós, J. Cano, E. Ruiz, J. Am. Chem. Soc. 2008, 130, 1903.
    [133] Y. Zhu, J. Shi, W. Shen, X. Dong, J. Feng, M. Ruan, Y. Li, Angew. Chem. Int. Ed.2005, 44, 5083.
    [134] D. G. Shchukin, G. B. Sukhorukov, H. M?hwald, Angew. Chem. Int. Ed. 2003, 42,4472.
    [135] B. Wang, C. Xu, J. Xie, Z. Yang, S. Sun, J. Am. Chem. Soc. 2008, 130, 14436.
    [136] Y. Zhu, J. Shi, Micopor. Mesopor. Mater. 2007, 103, 243.
    [137] C.-H. Lee, L.-W. Lo, C.-Y. Mou, C.-S. Yang, Adv. Funct. Mater. 2008,18, 3283.
    [138] S. Zhu, Z. Zhou, D. Zhang, ChemPhysChem 2007, 8, 2478.
    [139] Z. Zhou, S. Zhu, D. Zhang, J. Mater. Chem. 2007, 17, 2428.
    [140] N. K. Mal, M. Fujiwara, Y. Tanaka, Nature 2003, 421, 350.
    [141] N. K. Mal, M. Fujiwara, Y. Tanaka, T. Taguchi, M. Matsukata, Chem. Mater. 2003,15, 3385.
    [142] C. Park, K. Lee, C. Kim, Angew. Chem. Int. Ed. 2009, 48, 1275.
    [143] T. D. Nguyen, K. C.-E. Leung, M. Liong, Y. Liu, J. F. Stoddart, J. I. Zink, Adv.Funct. Mater. 2007, 17, 2101.
    [144] C.Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V. S.-Y. Lin,J. Am. Chem. Soc. 2003, 125, 4451.
    [1] T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, Bull. Chem. Soc. Jpn. 1990, 63, 988.
    [2] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359,710.
    [3] A. Carlsson, M. Kaneda, Y. Sakamoto, O. Terasaki, R. Ryoo, S. H. Joo, J. ElectronMicrosc. 1999, 48, 795.
    [4] C. Gao, Y. Sakamoto, K. Sakamoto, O. Terasaki, S. Che, Angew. Chem., Int. Ed. 2006,45, 4295.
    [5] A. C. Finnefrock, R. Ulrich, A. Du Chesne, C. C. Honeker, K. Schumacher, K. K.Unger, S. M.Gruner, U. Wiesner, Angew. Chem. Int. Ed. 2001, 40, 1208.
    [6] A. Jain, G. E. S. Toombes, L. M. Hall, S. Mahajan, C. B. W. Garcia, W. Probst, S. M.Gruner, U. Wiesner, Angew. Chem. Int. Ed. 2005, 44, 1226.
    [7] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky,Science 1998, 279, 548.
    [8] Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, G. D.Stucky, Nature 1994, 368, 317.
    [9] Y. Sakamoto, M. Kaneda, O. Terasaki, D. Zhao, J. M. Kim, G. D. Stucky, H. J. Shin, R.Ryoo, Nature 2000, 408, 449.
    [10] S. Shen, Y. Li, Z. Zhang, J. Fan, B. Tu, W. Zhou, D. Zhao, Chem. Commun. 2002,2212.
    [11] A. E. Garcia-Bennett, K. Miyasaka, O. Terasaki, S. Che, Chem. Mater. 2004, 16,3597.
    [12] D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 1998, 120,6024.
    [13] J. Fan, C. Yu, F. Gao, J. Lei, B. Tian, L. Wang, Q. Luo, B. Tu, W. Zhou, D. Zhao,Angew. Chem. Int. Ed. 2003, 42, 3146.
    [14] Y. Sakamoto, I. Díaz, O. Terasaki, D. Zhao, J. Pérez-Pariente, J. M. Kim, G. D.Stucky, J. Phys. Chem. B 2002, 106, 3118.
    [15] A. E. Garcia-Bennett, N. Kupferschmidt, Y. Sakamoto, S. Che, O. Terasaki, Angew.Chem. Int. Ed. 2005, 44, 5317.
    [16] Q. Huo, R. Leon, P. M. Petroff, G. D. Stucky, Science 1995, 268, 1324.
    [17] J. N. Israelachvili, D. J. Mitchell, B. W. Ninham, J. Chem. Soc. Faraday Trans. 21976, 72, 1525.
    [18] Q. Huo, D. I. Margolese, G. D. Stucky, Chem. Mater. 1996, 8, 1147.
    [19] S. Che, A. E. Garcia-Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, T.Tatsumi, Nat. Mater. 2003, 2, 801.
    [20] A. E. Garcia-Bennett, O. Terasaki, S. Che, T. Tatsumi, Chem. Mater. 2004, 16, 813.
    [21] C. Gao, H. Qiu, W. Zeng, Y. Sakamoto, O. Terasaki, K. Sakamoto, C. Chen, S. Che,Chem. Mater. 2006, 18, 3904.
    [22] C. Gao. Y. Sakamoto, O. Terasaki, K. Sakamoto, S. Che, J. Mater. Chem. 2007, 17,3591.
    [23] S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Nature 2004, 429,281.
    [24] K. Miyasaka, L. Han, S. Che, O. Terasaki, Angew. Chem. Int. Ed. 2006, 45, 6516.
    [25] P. Ziherl, R. D. Kamien, J. Phys. Chem. B 2001, 105, 10147.
    [26]徐如人,庞文琴,于吉红,霍启升,陈接胜,《分子筛与多孔材料化学》,科学出版社,2004.
    [27] S.-C. Mau, D. A. Huse, Phys. Re .E 1999, 59, 4396.
    [28] T. C. Hales, Notices Am. Math. Soc. 2000, 47, 440.
    [29]顾惕人,马季铭,戴乐蓉,《表面化学》,科学出版社,1996。
    [30] A. Yethiraj, A. van Blaaderen, Nature 2003, 421, 513.
    [1] C. Gao, Y. Sakamoto, O. Terasaki, K. Sakamoto, S. Che, J. Mater. Chem., 2007, 17,3591.
    [2] S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J. C. Handon, A.Monnier, Chem. Mater. 2001, 13, 2247.
    [3] Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A.Firouzi, B. F. Chmelka, F. Schüth, G. D. Stucky, Chem. Mater. 1994, 6, 1176.
    [4] J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y-U. Kwon, O. Terasaki, S-E. Park, G. D.Stucky, J. Phys. Chem. B 2002, 106, 2552.
    [5] S. Shen, A. E. Garcia-Bennett, Z. Liu, Q. Lu, Y. Shi, Y. Yan, C. Yu, W. Liu, Y. Cai, O.Terasaki, D. Zhao, J. Am. Chem. Soc. 2005, 127, 6780.
    [6] D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 1998, 120,6024.
    [7] S. Che, S. Lim, M. Kaneda, H. Yoshitake, O. Terasaki, T. Tatsumi, J. Am. Chem. Soc.2002, 124, 13962.
    [8] Y. Sakamoto, M. Kaneda, O. Terasaki, D. Zhao, J. M. Kim, G. D. Stucky, H. J. Shin,R. Ryoo, Nature 2000, 408, 449.
    [9] R. Ryoo, S. H. Joo, J. M. Kim, J. Phys. Chem. B 1999, 103, 7435.
    [10] S. Guan, S. Inagaki, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 2000, 122, 5660.
    [11] S. Che, Y. Sakamoto, O. Terasaki, T. Tatsumi, Chem. Mater. 2001, 13, 2237.
    [12] M. Kruk, L. Cao, Langmuir 2007, 23, 7247.
    [13] M. Kruk, M. Jaroniec, C. H. Ko, R. Ryoo, Chem. Mater. 2000, 12, 1961.
    [14] J. S. Lee, S. H. Joo, R. Ryoo, J. Am. Chem. Soc. 2002, 124, 1156-1157.
    [15] A. Sayari, P. Liu, M. Kruk, M. Jaroniec, Chem. Mater. 1997, 9, 2499.
    [16] K. Flodstrom, V. Alfredsson, Micropor. Mesopor. Mater. 2003, 59, 167.
    [17] F. Zhang, Y. Yan, H. Yang, Y. Meng, C. Yu, B. Tu, D. Zhao, J. Phys. Chem. B 2005,109, 8723.
    [18] S. Che, A. E. Garcia-Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, T.Tatsumi, Nat. Mater. 2003, 2, 801.
    [19] S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Nature 2004, 429,281.
    [20] C. Gao, Y. Sakamoto, K. Sakamoto, O. Terasaki, S. Che, Angew. Chem. Int. Ed. 2006,45, 4295.
    [21] C. Gao, H. Qiu, W. Zeng, Y. Sakamoto, O. Terasaki, K. Sakamoto, Q. Chen, S. Che,Chem. Mater. 2006, 18, 3904.
    [22] H. Zheng, C. Gao, S. Che, Micropor. Mesopor. Mater. 2008, 116, 299.
    [23] R. Ryoo, S. H. Joo, S. Jun, J. Phys. Chem. B 1999, 103, 7743.
    [24] S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J.Am. Chem. Soc. 2000, 122, 10712.
    [1] P. Behrens, Angew. Chem. Int. Ed. 1996, 35, 515.
    [2] X. He, D. Antonelli, Angew. Chem. Int. Ed. 2002, 41, 214.
    [3] E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bios, J. Nagle, Science 1996, 271,168.
    [4] M. Tiemann, Chem. Eur. J. 2007, 13, 8376.
    [5] F. Schuth, Chem. Mater. 2001, 13, 3184.
    [6] G.J.de A. A. Soler-II-lia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev. 2002, 102,4093.
    [7] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359,710.
    [8] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky,Science 1998, 279, 548.
    [9] S. C. Laha, R. Ryoo, Chem. Commun. 2003, 2138.
    [10] R. Ryoo, S. H. Joo, S. J. Jun, J. Phys. Chem. B 1999,103, 7743.
    [11] S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature 2001, 169.
    [12] H.J. Shin, R. Ryoo, J. Mater. Chem. 2001, 11, 260.
    [13] H. J. Shin, R.Ryoo, Z. Liu, O. Terasaki, J. Am. Chem. Soc. 2001, 123, 1246
    [14] Shi, Y. Wan, R. Zhang, D. Zhao, Adv. Funct. Mater. 2008, 18, 2436.
    [15] Y. Wang, C.-M. Yang, W. Schmidt, B. Spliethoff, E. Bill, F. Schüth, Adv. Mater.2005, 17, 53.
    [16] J. Roggenbuck, M. Tiemann, J. Am. Chem. Soc. 2005, 127, 1096.
    [17] Dickinson, W. Zhou, R. Hodgkins, Y. Shi, D. Zhao, H. He, Chem. Mater. 2006, 18,3088.
    [18] B. Tian, X. Liu, H. Yang, S. xie, C. Yu, B. Tu, D. Zhao, Adv. Mater. 2003, 15, 1370.
    [19] H. Yang, Q. Shi, B. Tian, Q. Lu, F. Gao, S. Xie, J. Fan, C. Yu, B. Tu, D. Zhao, J. Am.Chem. Soc. 2003, 125, 4724.
    [20] W. Yue, W. Zhou, Chem. Mater. 2007, 19, 2359.
    [21] K. Zhu, B. Yue, W. Zhou, H. He, Chem. Chmmun. 2003, 98.
    [23] A. Rumplecker, F. Kleitz, E.-L. Salabas, Ferdi Schüth, Chem. Mater. 2007, 19, 485.
    [24] H. Tüysüz, C. W. Lehmann, H. Bongard, B. Tesche, R. Schmidt, F. Schüth, J. Am.Chem. Soc. 2008, 130, 11510.
    [25] B. Yue, H. Tang, Z. Kong, K. Zhu, C. Dickinson, W. Zhou, H. He, Chem. Phys. Lett.2005, 407, 83.
    [26] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D.Stucky, Science 1998, 279, 548.
    [27] F. Kleitz, S.H. Choi, R. Ryoo, Chem. Commun. 2003, 17, 2136.
    [28] C. Gao, Y. Sakamoto, K. Sakamoto, O. Terasaki, S. Che, Angew. Chem. Int. Ed.2005, 118, 4401.
    [29] A. Galarneau, H. Cambon, F. D. Renzo, R. Ryoo, M. Choi, F. Fajula, New J. Chem.2003, 27, 73.
    [30] K. Schumacher, P. I. Ravikovitch, A. Du Chesne, A. V. Neimark, K. K. Unger,Langmuir 2000, 16, 4648.
    [31] P. I. Ravikovitch, A. V. Neimark, Langmuir 2000, 16, 2419.
    [32] Y. Sakamoto, T.-W. Kim, R. Ryoo, O. Terasaki, Angew. Chem. Int. Ed. 2004, 43,5231.
    [33] C. Gao, H. Qiu, W. Zeng, Y. Sakamoto, O. Terasaki, K. Sakamoto, Q. Chen, S. Che,Chem. Mater. 2006, 18, 3904.
    [1] S. Fawell, J. Seery, Y. Daikh, C. Moore, L.L. Chen, B. Pepinsky, J. Barsoum, Proc.Natl. Acad. Sci. U. S. A. 1994, 91,664.
    [2] D. Derossi, A.H. Joliot, G. Chassaing, A. Prochiantz, J. Biol. Chem. 1994, 269,10444.
    [3] S. Futaki, T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka, K. Ueda, Y. Sugiura, J. Biol.Chem. 2001, 276, 5836.
    [4] J. B. Rothbard, S. Garlington, Q. Lin, T. Kirschberg, E. Kreider, P. L. McGrane, P. A.Wender, P.A. Khavari, Nat. Med. 2000, 6, 1253.
    [5] S. Futaki, Biopolymers 2006, 84, 241.
    [6] S. R. Schwarze, A. Ho, A. Vocero-Akbani, S.F. Dowdy, Science 1999, 285, 1569.
    [7] E. L. Snyder, S. F. Dowdy, Curr. Opin. Mol. Ther. 2001, 3, 147.
    [8] V.P. Torchilin, R. Rammohan, V. Weissig, T.S. Levchenko, Proc. Natl. Acad. Sci. U.S. A. 2001, 98, 8786.
    [9] L. Josephson, C.H. Tung, A. Moore, R. Weissleder, Bioconjug. Chem. 1999, 10, 186.
    [10] C. Palm, M. Jayamanne, M. Kjellander, M. H?llbrink, Biochim. Biophys. Acta 2007,1768, 1769.
    [11] T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, Bull. Chem. Soc. Jpn. 1990, 63,988.
    [12] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992,359, 710.
    [13] C. Tourné-Péteilh, D. A. Lerner, C. Charnay, L. Nicole, S. Begu, J. M. Devoisselle,ChemPhysChem, 2003, 4, 281.
    [14] M. Vallet-Regi, A. Rámila, R.P. del Real, J. Pérez-Pariente, Chem. Mater. 2001, 13,308.
    [15] B.G. Trewyn, S. Giri, I.I. Slowing, V.S.-Y. Lin, Chem. Commun. 2007, 3236.
    [16] K. Ariga, A. Vinu, J. P. Hill, T. Mori, Coord. Chem. Rev. 2007, 251, 2562.
    [17] C.-Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V. S.-Y.Lin, J. Am. Chem. Soc. 2003, 125, 4451.
    [18] A. L. Doadrio, E. M. B. Sousa, J. C. Doadrio, J. Pérez Pariente, I. Izquierdo-Barba,M. Vallet-Regí, J. Control. Release 2004, 97, 125.
    [19] M. Vallet-Regí, F. Balas, D. Arcos, Angew. Chem. Int. Ed. 2007, 47, 7548.
    [20] F. Qu, G. Zhu, H. Lin, J. Sun, D. Zhang, S. Li, S. Qiu, Eur. J. Inorg. Chem. 2006, 19,3943.
    [21] Y.-H. Son, M. Park, Y. B. Choy, F. R. Choi, D. S. Kim, K. C. Park, J.-H. Choy,Chem. Commun. 2007, 2799.
    [22] C. Charnay, S. Begu, C. Tourne-Peteilh, L. Nicole, D. A. Lerner, J. M. Devoisselle,Eur. J. Pharm. Biopharm. 2004, 57, 533.
    [23] Q. Ji, M. Miyahara, J. P. Hill, S. Acharya, A. Vinu, S. B. Yoon, J.-S. Yu, K.Sakamoto, K. Ariga, J. Am. Chem. Soc. 2008, 130, 2376.
    [24] G. S. Attard, J. C. Glyde, C. G. G?ltner, Nature 1995, 378, 366.
    [25] S. A. El-Safty, T. Hanaoka, Chem. Mater. 2003, 15, 2892.
    [26] S. F. Khattak, S. R. Bhatia, S. C. Roberts, Tissue Eng. 2005, 11, 974.
    [27] J. Kirstein, B. Platschek, C. Jung, R. Brown, T. Bein, C. Br?uchle, Nat. Mater. 2007,6, 303.
    [28] I. Nakase, M. Niwa, T. Takeuchi, K. Sonomura, N. Kawabata, Y. Koike, M.Takehashi, S. Tanaka, K. Ueda, J.C. Simpson, A. T. Jones, Y. Sugiura, S. Futaki, Mol.Ther. 2004, 10, 1011.
    [29] G.S. Attard, J.C. Glyde, C.G. G?ltner, Nature 1995, 378, 366.
    [30] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 1998, 120,6024.
    [31] Y. Sakamoto, M. Kaneda, O. Terasaki, D.Y. Zhao, J. M. Kim, G. Stucky, H. J. Shin,R. Ryoo, Nature 2000, 408, 449.
    [32] M. Ahola, P. Kortesuo, I. Kangasniemi, J. Kiesvaara, A. Yli-Urpo, Int. J. Pharm.2000, 195, 219.
    [33] T. Czuryszkiewicz, J. Ahvenlammi, P. Kortesuo, M. Ahola, F. Kleitz, M. Jokinen, M.Lind, J. B. Rosenholm, J. Non-Cryst. Solids 2002, 306, 1.
    [34] J. D. Bass, D. Grosso, C. Boissiere, E. Belamie, T. Coradin, C. Sanchez, Chem.Mater. 2007, 19, 4349.
    [35] C. Berkland, K. Kim, D. W. Pack, Pharm. Res. 2003, 20, 1055.
    [36] J. F. Fitzgerald, O. I. Corrigan, J. Control. Release 1996, 42, 125.
    [37] J. F. Fitzgerald, O. I. Corrigan, in M. A. El-Nokaly, D. M. Piatt, B. A. Charpentier(Eds), Polymeric Delivery Systems, Properties and Applications, ACS Symposium Series,vol. 520, American Chemical Society, Washington, DC, 1993, p. 311.
    [38] K. M. Gallagher, O. I. Corrigan, J. Control. Release 2000, 69, 261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700