手性阴离子表面活性剂结构导向法合成手性介孔材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高度有序的手性介孔二氧化硅是最近发现的一种新型介孔材料,受到化学、材料学等多学科的普遍关注。这是由于它不仅具有介孔材料高有序度、高比表面积、大孔容、孔径可调的优点,而且还拥有独特的手性孔道结构。它在手性吸附分离、手性纳米材料的合成以及手性催化等方面具有巨大的应用潜力。但是,这个新兴领域还存在很多问题有待于我们去解决。本论文将围绕如何控制手性介孔二氧化硅的合成,影响手性形貌形成的各种因素,以及解释手性形貌形成机理等方面进行了详细研究。本文包括以下几部分内容:
     第一章,前一部分综述了手性材料的基本特性及有机手性材料中的手性超分子聚集体和手性液晶;后一部分综述了无机手性材料的制备方法和手性介孔材料的发展现状。
     第二章,通过改变合成过程中搅拌速度合成了各种不同结构的二氧硅介孔材料以及有效地控制了其形貌。本文以手性阴离子表面活性剂十四烷基丙胺酸钠(C14-L-AlaS)为模板,以3-胺丙基三乙氧基硅烷(APES)为助结构导向剂,以正硅酸乙酯(TEOS)为无机硅源合成了介观结构高度有序的手性介孔材料。当搅拌速度低于300 rpm时,形成了不同结构、不同螺距、不同半径、不同长短的手性介孔材料以及不同的螺旋飘带介孔材料。搅拌速度升高到400-800 rpm时,手性介孔材料的形貌变得均一,而且其半径随着搅拌速度的增加而增加,而长度变短。手性介孔材料的螺距随着粒子直径的增加而增加,而二者比值保持一定值不变。XRD、SEM和TEM表征结果表明不同搅拌速度下所得到的不同形貌的手性介孔材料均具有高度有序的二维六方p6mm结构。不同搅拌速度下得到的手性介孔材料中左手方向所占的比例均为75%,不随搅拌速度的改变而改变。
     第三章,通过改变合成温度首次合成出纯左或右手方向螺旋飘带状介孔材料,并考察了其形成过程。C14-L-AlaS-APES-TEOS的合成体系,在0、10、15和20 oC反应温度下分别形成具有螺旋飘带、空心球、飞碟和手性四种形貌的二氧化硅介孔材料。研究发现:(1)具有螺旋飘带形貌介孔材料的墙壁由两套无序的孔道组成;空心球形貌介孔孔道指向球心排列;而飞碟和手性介孔材料孔道为高度有序的二维六方结构;(2)这四种形貌二氧化硅介孔材料均从表面活性剂的具有层状结构的直带形貌转变而来,而其中螺旋形貌的二氧化硅是通过固-固转变形成,空心球、飞碟和手性棒状二氧化硅材料是通过直带溶解之后转变而形成;(3)具有螺旋飘带形貌二氧化硅介孔材料是纯右手的,而手性棒状形貌二氧化硅介孔材料(CMS)中左手所占的比例是75%;(4)螺旋飘带形貌介孔材料只有由手性表面活性剂为模板才能形成,而手性介孔材料由手性、非手性和外消旋的表面活性剂为模板均可形成。
     第四章,通过设计合成手性介孔材料的方法,找出了优化合成条件。针对手性阴离子表面活性剂(Cn-L-AlaS)为模板,N-三甲氧基丙基硅烷-N,N,N-三甲基氯化铵(TMAPS)为助结构导向剂的手性介孔材料的合成体系研究了反应体系中表面活性剂的离子化程度、助结构导向剂与表面活性剂的摩尔比、反应温度、表面活性剂的碳链长度以及反应使用的碱的种类等反应条件对合成手性介孔材料介观结构,孔径和形貌的影响。研究发现:(i)手性介孔材料的介观结构存在于二维六方相的一狭小范围内,二维六方结构与层状相和Ia3d相相邻;(ii)手性介孔材料在很小范围表面活性剂胶束曲率下形成,胶束曲率可以通过调节表面活性剂的离子化程度、助结构导向剂与表面活性剂的摩尔比以及表面活性剂的碳链长度来调节;(iii)手性介孔材料在反应温度为25-100 oC范围内都能形成;(iv)反应体系中碱的种类能影响手性介孔材料的孔道直径的大小,却不能影响手性介孔材料的方向性。
The highly ordered chiral mesoporous silica have attracted much interest in the chemistry and material communities because of their helical pore structure, high surface areas, large pore volume and tailorable pore size. It is thought to have great application potentiality in selective adsorption and separation, synthesis of chiral nano materials, and asymmetric catalysis. However, there are still a lot of problems to solve in this new field. In this thesis,the synthesis of the chiral mesoporous silica, the mechanism of such synthesis and the factors of chiral mesoporous silica will be discussed. There are four parts in this thesis:
     In chapter 1, the basic character of chiral materials and organinc chiral material including chiral supramolecular assembling and chiral liquid crystal were firstly reviewed. Then, the synthesis mechanism of inorganic materials and the current studies on the chiral mesoporous materials were reviewed.
     In chapter 2, chiral ordered mesoporous silica was synthesized by using chiral surfactant N-myristoyl-L-alanine sodium salt (C14-L-AlaS) as template, 3-aminopropyltriethoxysilane (APES) as co-structure directing agent (CSDA) and tetraethoxylsilane (TEOS) as inorganic source. The morphology and chiral structure clearly depend on the stirring rate. When the stirring rate is lower than 300 rpm the samples show diverse morphologies: twisted ribbon like and various twisted rod like structures with different chiral pitches. The morphologies become uniformly twisted rod with a hexagonal cross-section when the stirring rate is increased to 400 rpm, 600 rpm and 800 rpm. The samples synthesized at rate faster than 1200 rpm showed non-helical morphology. The outer diameter of rod was increased with increasing stirring rate and the pitch length was also increased with increasing of the rod diameter with constant pitch/rod diameter ratio of ~15.5. It can be considered that the same 2d-hexagonal p6mm structure with the same pore size and wall thickness has been formed regardless of the stirring rate. The left-/right-handedness ratio is proved to be ca. 7.5/2.5 for the total samples regardless of the difference in stirring rate or direction as far as the rate is faster than 400 rpm.
     In chapter 3, using lipids (N-acyl amino acid) and APES as structure and costructure directing agents, mesoporous silicas with four different morphologies, that is helical ribbon (HR), hollow sphere, circular disc and helical hexagonal rod were synthesized only by changing synthesis temperature from 0 to 10, 15 and to 20°C. Their structures were studied by electron microscopy. It has been found that (i) they have structures double-layer disordered mesopores in HR and radially oriented mesopores in the hollow sphere, and highly ordered straight and chiral 2d-hexagonal mesopores in the disk-like and helical rod, respectively; (ii) these four types mesoporous silicas were transformed from the flat bilayered lipid ribbon with the chain-interdigitated layer phase through solid-solid transformation for HR formation and dissolving procedure transformation for hollow sphere, circular disc and twisted morphologies, respectively; (iii) the mesoporous silica helical ribbon was exclusively right-handed and the 2d-hexagonal chiral mesoporous silica was left-handed excess when L form N-acyl aminoacid has been used as lipid template; (iv) the HR has been formed only by the chiral lipid molecules and the 2d-hexagonal chiral mesoporous silicas have been formed chiral, achiral and racemic lipids.
     In chapter 4, chiral mesoporous silica with highly ordered helical nano-sized channels was synthesized by using chiral anionic amphiphilic molecules (N-acyl-L-alanine) as template upon a CSDA method. Synthetic conditions, such as ionization degree of the surfactant, CSDA/surfactant molar ratio, reaction temperature, the carbon chain length, and the type of counterions have been extensively studied. It was found that: (i) in the synthesis-space diagram of mesophases, the CMS mesostrucrue locates within the area of two dimensional (2D-) hexagonal which is a neighbor of lamellar and bicontinuous Ia3d mesostructures; (ii) the generation of CMS demands very rigorous micellar curvature which was mainly controlled by the ionization degree of the surfactant controlled by acid addition amount, CSDA/surfactant molar ratio and the carbon chain length; (iii) the CMS can be synthesized in a wide reaction temperature range of 25-100 oC; and (iv) the pore diameter of the CMS was decreased with decreasing size of the counterion.
引文
[1]林国强,陈耀全,陈新滋,李月明,手性合成-不对称反应及其应用,科学出版社,2000年,3-4。
    [2]张生勇,郭建权,不对称催化反应原理及在有机合成中的应用,科学出版社,2002年,1-2。
    [3]尹玉英,刘春蕴,有机化合物分子旋光性的螺旋理论,化学工业出版社,2000年,20-21。
    [4] M. E. Davis, Ordered porous materials for emerging applications. Nature, 2002 417(6891), 813-821.
    [5] M. E. Davis, New vistas in zeolite and molecular sieve catalysis. Acc. Chem. Res. 1993, 26(3), 111-115.
    [6] T. E. Gier, X. Bu, P. Feng, G. D. Stucky, Synthesis and organization of zeolite-like materials with three- dimensional helical pores. Nature, 1998, 395 (6698), 154-157.
    [7] Y. Wang, J.Yu, M. Guo, R. Xu, [{Zn2(HPO4)4}{Co(dien)2}]·H3O: A zinc phosphate with multidirectional intersecting helical channels. Angew. Chem. Int. Ed. 2003, 42(34), 4089-4092.
    [8]沈家骢,超分子层状结构组装与功能,科学出版社,2004年,1-2.
    [28] M. M. Bouman, E. W. Meijer, Stereomutation in optically active regioregular polythiophenes. Adv. Mater. 1995, 7, 385-387.
    [29] E. Yashima, H. Goto, Y. Okamoto, Metal-Induced Chirality Induction and Chiral Recognition of Optically Active, Regioregular Polythiophenes. Macromolecules 1999, 32, 7942-7945.
    [30] H. Goto, Y. Okamoto, E. Yashima, Metal-Induced Supramolecular Chirality in an Optically Active Polythiophene Aggregate. Chem. Eur. J. 2002, 8, 4027-4036.
    [31] J. H. K. Ky. Hirschberg, L. Brunsveld, A. Ramzi, J. A. J. M. Vekemans, R. P. Sijbesma, E. W. Meijer, Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature, 2000, 407(6801), 167-170.
    [32] E. Yashima, Y. Okamoto, Circular Dichroism: Principles and Applications (eds. Berova N, Nakanishi K, Woody R W), 2nd ed. New York : Wiley-VCH , 2000, 521-546.
    [33] J. W. Canary, A. E. Holmes, J. Liu, Prospects for circular dichroism detection of nonracemic extraterrestrial organic molecules. Enantiomer, 2001, 6(2-3), 181-188.
    [34] H. Tsukube, S. Shinoda, Lanthanide complexes in molecular recognition and chirality sensing of biological substrates. Chem. Rev., 2002, 102(6), 2389-2403.
    [35] R. F. Pasternack, E. J. Gibbs, Metal-DNA Chemistry, ACS Symposium Series 402, Washington D. C., American Chemical Society, 1989, 59.
    [36] R. F. Pasternack, E. J. Gibbs, P. J. Collings, et al., A nonconventional approach to supramolecular formation dynamics. The kinetics of assembly of DNA-bound porphyrins. J. Am. Chem. Soc. 1998, 120(24), 5873-5878.
    [37] R. Garoff, E. Litzinger, R. Connor, I. Fishman, B. Armitage, Helical aggregation of cyanine dyes on DNA templates: Effect of dye structure on formation of homo- and heteroaggregates. Langmuir, 2002, 18(16), 6330-6337.
    [38] H. Shimizu, A. Kaito, M. Hatano, Induced circular dichroism ofβ-cyclodextrincomplexes with azanaphthalenes-polarization directions of theπ←πtransitions in azanaphthalenes. J. Am. Chem. Soc. 1982, 104(45), 7059-7065.
    [39] T. Arimura, H. Kawabata, T. Matsuda, et al. New water-soluble host calixarenes bearing chiral substituents. J. Org. Chem. 1991, 56(1), 301-306.
    [40] V. V. Borovkov, J. M. Lintuluoto, Y. Inoue, Syn-anti conformational changes in zinc porphyrin dimers induced by temperature-controlled alcohol ligation. J. Phys. Chem. B, 1999, 103(24), 5151-5156.
    [41] E. Yashima, K. Maeda, T. Nishimura, Detection and Amplification of Chirality by Helical Polymers. Chem. Eur. J. 2004, 10 (1), 42-51.
    [42] Y. Kikuchi, K. Kobayashi, Y. Aoyama, Complexation of chiral glycols, steroidal polyols, and sugars with a multibenzenoid, achiral host as studied by induced circular dichroism spectroscopy: Exciton chirality induction in resorcinol-aldehyde cyclotetramer and its use as a supramolecular probe for the assignments of stereochemistry of chiral guests. J. Am. Chem. Soc. 1992, 114(4), 1351-1358.
    [43] T. Morozumi, S. Shinkai, Induced circular dichroism detection of chiral ammonium guests through inclusion in calix[n]arene cavities. J. Chem. Soc. Chem. Commun. 1994, (10), 1219-1220.
    [44] V. V. Borovkov, J. M. Lintuluoto, M. Fujiki, Y. Inoue, Temperature effect on supramolecular chirality induction in bis(zinc pophyrin). J. Am. Chem. Soc. 2000, 122(18), 4403- 4407.
    [45] X. Huang, B. H. Rickman, B. Borhan, N. Berova, K. Nakanishi, Zinc porphyrin tweezer in host-guest complexation: Determination of absolute configurations of diamines, amino acids, and amino alcohols by circular dichroism. J. Am. Chem. Soc. 1998, 120(24), 6185- 6186.
    [46] T. Nakano, Y. Okamoto, Synthetic helical polymers: Conformation and function. 2001, Chem. Rev. 101(12), 4013-4038.
    [47] E. Yashima, T. Matsushima, Y. Okamoto, Poly( (4-carboxypheny1)acetylene) as a Probe for Chirality Assignment of Amines by Circular Dichroism. J. Am. Chem. Soc. 1995, 117(46), 11596-11597.
    [48] R. Nonokawa, E. Yashima, Detection and amplification of a small enantiomeric imbalance inα-amino acids by a helical poly (phenylacetylene) with crown ether pendants. J. Am. Chem. Soc. 2003, 125(5), 1278-1283.
    [49] R. Nonokawa, E. Yashima, Helicity induction on a poly (phenylacetylene) derivative bearing aza-18-crown-6 ether pendants in water. J. Polym. Sci. Part A, 2003, 41 (7), 1004- 1013.
    [50] R. Nonokawa, M. Oobo, E. Yashima, Helicity induction on a poly (phenylacetylene) derivative bearing aza-15-crown-5 ether pendants in organic solvents and water. Macromolecules 2003, 36(17), 6599-6606.
    [51] R. Sakai, T. Satoh, R. Kakuchi, H. Kaga, T. Kakuchi, Macromolecular helicity induction for novel optically inactive poly (phenyl isocyanate) bearing crown ether based on the host-guest complexation. Macromolecules 2003, 36(10), 3709-3713.
    [52] M. M. Green, C. Khatri, N. C. Peterson, A macromolecular conformational change driven by a minute chiral solvation energy. J. Am. Chem. Soc. 1993, 115(11), 4941- 4942.
    [53] P. Dellaportas, R. G. Jones, S. J. Holder, Induction of preferential helical screw senses in optically inactive polysilanes via chiral salvation. Macromol. Rapid Commun. 2002, 23(2), 99-103.
    [54] H. Nakashima, J. R. Koe, K. Torimitsu, M. Fujiki, Transfer and amplification of chiral molecular information to polysilylene aggregates. J. Am. Chem. Soc. 2001, 123(20), 4847-4848.
    [55] T. Mizutani, S. Yagi, A. Honmaru, H. Ogoshi, Interconversion between point chirality and helical chirality driven by shape-sensitive interactions. J. Am. Chem.Soc. 1996, 118(22), 5318-5319.
    [56] Y. Furusho, T. Kimura, Y. Mizuno, T. Aida, Chirality-Memory Molecule: A D2-Symmetric Fully Substituted Porphyrin as a Conceptually New Chirality Sensor. J. Am. Chem. Soc. 1997, 119(22), 5267-5268.
    [57] A. Sugasaki, M. Ikeda, M. Takeuchi, A. Robertson, S. Shinkai, Efficient chirality transcription utilizing a cerium(IV) double decker porphyrin: A prototype for development of a molecular memory system. J. Chem. Soc. Perkin Trans. 1999, 1(12), 3259-3264.
    [58] R. B. Prince, S. A. Barnes, J. S. Moore, Foldamer-based molecular recognition. J. Am. Chem. Soc. 2000, 122(12), 2758-2762.
    [59] L. J. Prins, D. N. Reinhoudt, P. Timmerman, Noncovalent synthesis using hydrogen bonding. Angew. Chem. Int. Ed. 2001, 40(13), 2382-2426.
    [60] T. Ishi-i, M. Crego-Calama, P. Timmerman, D. N. Reinhoudt, S. Shinkai, Enantioselective formation of a dynamic hydrogen-bonded assembly based on the chiral memory concept. J. Am. Chem. Soc. 2002, 124(49), 14631-14641.
    [61] H. Fenniri, B.-L. Deng, A. E. Ribbe, Helical rosette nanotubes with tunable chiroptical properties. J. Am. Chem. Soc. 2002, 124(37), 11064-11072.
    [62] M. Inouye, M. Waki, H. Abe, Saccharide-Dependent Induction of Chiral Helicity in Achiral Synthetic Hydrogen-Bonding Oligomers. J. Am. Chem. Soc. 2004, 126(7), 2022-2027.
    [63] V. Maurizot, C. Dolain, I. Huc, Intramolecular versus intermolecular induction of helical handedness in pyridinedicarboxamide oligomers. Eur. J. Org. Chem. 2005, (7), 1293-1301.
    [64] V. Berl, I. Huc, R.G. Khoury, M.J. Krische, J.M. Lehn Interconversion of single and double helices formed from synthetic molecular strands. Nature, 2000, 407(6805), 720-723.
    [65] R.B. Prince, J.S. Moore, L. Brunsveld, E.W. Meijer Cooperativity in the folding of helical m-phenylene ethynylene oligomers based upon the 'Sergeants-and-Soldiers' principle. Chem. Eur. J. 2001, 7(19), 4150-4154.
    [66] L. Brunsveld, E.W. Meijer, R.B. Prince, J.S. Moore, Self-assembly of folded m-phenylene ethynylene oligomers into helical columns. J. Am. Chem. Soc. 2001, 123(33), 7978-7984.
    [67] W. E. Lindsell, P. N. Preston, J. M. Seddon, et al. Macroscopic helical and cylindrical morphologies from achiral 1,3-diynes. Chem. Mater. 2000, 12(6), 1572-1576.
    [68] V. Berl, M. J. Krische, I. Huc, et al. Template-induced and molecular recognition directed hierarchical generation of supramolecular assemblies from molecular strands. Chem. Eur. J. 2000, 6(11), 1938-1946.
    [69] W. H. Yang, X. D. Chai, L. F. Chi, et al. From Achiral Molecular Components to Chiral Supermolecules and Supercoil Self-Assembly. Chem. Eur. J.1999, 5(4), 1144-1149.
    [70] J. C. Nelson, J. G. Saven, J. S. Moore, P. G. Wolynes, Solvophobically driven folding of nonbiological oligomers. Science 1997, 277(5333), 1793-1796.
    [71] C. Honda, H. Hada, Distortion and electronic state of 1,1 prime -diethyl-2,2 prime -cyanine dye molecule. Photogr. Sci. Eng. 1976, 20(1), 15-19.
    [72] C. Honda, H. Hada, Spectroscopic study on the j-aggregate of cyanine dyes-2. Photogr. Sci. Eng. 1977, 21(2), 91-96.
    [73] J. M. Ribo, J. Crusats, F. Sagues, et al. Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science, 2001, 292(5524), 2063-2066.
    [74] A. Pawlik, S. J. Kirstein, Structural conditions for spontaneous generation of optical activity in J-aggregates. J. Phys. Chem. B, 1997, 101(29), 5646-5651.
    [75] T. Ezuhara, K. Endo, Y. Aoyama, Structural conditions for spontaneous generation
    [65] R.B. Prince, J.S. Moore, L. Brunsveld, E.W. Meijer Cooperativity in the folding of helical m-phenylene ethynylene oligomers based upon the 'Sergeants-and-Soldiers' principle. Chem. Eur. J. 2001, 7(19), 4150-4154.
    [66] L. Brunsveld, E.W. Meijer, R.B. Prince, J.S. Moore, Self-assembly of folded m-phenylene ethynylene oligomers into helical columns. J. Am. Chem. Soc. 2001, 123(33), 7978-7984.
    [67] W. E. Lindsell, P. N. Preston, J. M. Seddon, et al. Macroscopic helical and cylindrical morphologies from achiral 1,3-diynes. Chem. Mater. 2000, 12(6), 1572-1576.
    [68] V. Berl, M. J. Krische, I. Huc, et al. Template-induced and molecular recognition directed hierarchical generation of supramolecular assemblies from molecular strands. Chem. Eur. J. 2000, 6(11), 1938-1946.
    [69] W. H. Yang, X. D. Chai, L. F. Chi, et al. From Achiral Molecular Components to Chiral Supermolecules and Supercoil Self-Assembly. Chem. Eur. J.1999, 5(4), 1144-1149.
    [70] J. C. Nelson, J. G. Saven, J. S. Moore, P. G. Wolynes, Solvophobically driven folding of nonbiological oligomers. Science 1997, 277(5333), 1793-1796.
    [71] C. Honda, H. Hada, Distortion and electronic state of 1,1 prime -diethyl-2,2 prime -cyanine dye molecule. Photogr. Sci. Eng. 1976, 20(1), 15-19.
    [72] C. Honda, H. Hada, Spectroscopic study on the j-aggregate of cyanine dyes-2. Photogr. Sci. Eng. 1977, 21(2), 91-96.
    [73] J. M. Ribo, J. Crusats, F. Sagues, et al. Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science, 2001, 292(5524), 2063-2066.
    [74] A. Pawlik, S. J. Kirstein, Structural conditions for spontaneous generation of optical activity in J-aggregates. J. Phys. Chem. B, 1997, 101(29), 5646-5651.
    [75] T. Ezuhara, K. Endo, Y. Aoyama, Structural conditions for spontaneous generation
    [85] F. Reinitzer, Monatsh. Chem. 1888, 9, 421.
    [86] H. Coles, Chiral nematics: Physical properties and applications, in Handbook of Liquid Crystals, Vol. 2A, edited by D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill (Wiley-VCH, Weinheim, 1998), 335-409.
    [87] P. G. de Gennes, An analogy between superconductors and smectic A. Sol. State Commun. 1972, 10, 753- 756.
    [88] H. S. Kitzerow, C. Bahr, Chirality in Liquid Crystals. Springer, New York, 2001.
    [89] S.R. Renn, T.C. Lubensky, Abrikosov dislocation lattice in a model of the cholesteric to smectic-A transition. Phys. Rev. A, 1988, 38(4). 2132-2147.
    [90] J. W. Goodby, M. A. Waugh, S.M. Stein, E. Chin, R. Pindak, J. S. Patel, Characterization of a new helical smectic liquid crystal. Nature, 1989, 337 (6206), 449- 452.
    [91] J. W. Goodby, M. A. Waugh, S. M. Stein, E. Chin, R. Pindak, J. S. Patel, A new molecular ordering in helical liquid crystals. J. Am. Chem. Soc. 1989, 111(21), 8119-8125.
    [92] G. Pelzl, S. Diele, W. Weissflog, Banana-shaped compounds - A new field of liquid crystals. Adv. Mater. 1999, 11(9), 707-724.
    [93] G. Pelzl, S. Diele, A. Jákli, C. Lischka, I. Wirth, W. Weissflog, Helical superstructures in a novel smectic mesophase formed by achiral banana-shaped molecules. Liq. Cryst. 1999, 26(1), 135-139.
    [94] D. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark, E. K?rblova, and D. M.Walba, Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules. Science 1997, 278(5345), 1924-1927.
    [95] T. Lubensky, New banana phases. Science, 2000, 288(5474), 2146–2147.
    [96] K. D. Lawson, T. J. Flautt, Magnetically oriented lyotropic liquid crystalline phases. J. Am. Chem. Soc. 1967, 89(21), 490-5491.
    [97] F. B. Rosevear, The mesomorphic phases of surfactant compositions. J. Soc. Cosmet.Chem. 1968, 19, 581-591.
    [98] K. Hiltrop, E. Figgemeier, M. Pape, J. Partyka, In: W. Kuczynski(ed),Self-Organization in Chiral Liquid Crystals. Scientific Publishers OWN, Poznan,1997, 35.
    [99] H.-D. Dorfler, Chirality, twist and structures of micellar lyotropic cholestericliquid crystals in comparison to the properties of chiralic thermotropic phases. Adv.Colloid Interface Sci. 2002, 98 (3), 285-340.
    [100]沈钟,赵振国,王国庭,胶体与表面化学,化学工业出版社,2004年。
    [101] Y. Yang, M. Suzuki, H. Fukui, H. Shirai, and K. Hanabusa. Preparation of HelicalMesoporous Silica and Hybrid Silica Nanofibers Using Hydrogelator. Chem. Mater.2006, 18(5), 1324-1329.
    [102] Y. Ono, K. Nakashima, M. Sano, J. Hojo, S. Shinkai, Template effect ofcholesterol-based organogels on Sol-Gel polymerization creates novel silica with ahelical structure. Chem. Lett. 1999, 10,1119-1120.
    [103] J. H. Jung, Y. Ono, K. Hanabusa, S. Shinkai, Creation of Both Right-Handed andLeft-Handed Silica Structures by Sol-Gel Transcription of Organogel FibersComprised of Chiral Diaminocyclohexane Derivatives. J. Am. Chem. Soc. 2000,122(20), 5008-5009.
    [104] Y. Ono, K. Nakashima, M. Sano, J. Hojo, S. Shinkai, Organogels are useful as atemplate for the preparation of novel helical silica fibers. J. Mater. Chem. 2001,11(10), 2412-2419.
    [105] J. H. Jung, Y. Ono, S. Shinkai, Sol-gel polycondensation of tetraethoxysilane in acholesterol-based organogel system results in chiral spiral silica. Angew. Chem. Int.Ed. 2000, 39(10), 1862-1865.
    [106] J. H. Jung, H. Kobayashi. M. Masuda, T. Shimizu and S. Shinkai, Helical RibbonAggregate Composed of a Crown-Appended Cholesterol Derivative Which Acts as an Amphiphilic Gelator of Organic Solvents and as a Template for Chiral Silica Transcription. J. Am. Chem. Soc. 2001, 123(36), 8785-8789.
    [107] J. H. Jung, K. Yoshida, and T. Shimizu. Creation of Novel Double-Helical Silica Nanotubes Using Binary Gel System. Langmuir 2002, 18, 8724-8727.
    [108] Y. Yang, M. Suzuki, H. Shirai, A. Kurose, K, Hanabusa, Nanofiberization of inner helical mesoporous silica using chiral gelator as template under a shear flow. Chem. Commun. 2005, 2032-2034.
    [109] Y. Yang, M. Nakazawa, M. Suzuki, M. Kimura, H. Shirai, and K. Hanabusa. Formation of Helical Hybrid Silica Bundles. Chem. Mater. 2004, 16(20), 3791-3793.
    [110] Y. Yang, M. Suzuki, S. Owa, H. Shirai, and K. Hanabusa. Preparation of Helical Nanostructures Using Chiral Cationic Surfactants. Chem. Commun. 2005, 4462-4464.
    [111] Y. Yang, M. Suzuki, S. Owa, H. Shirai, and K. Hanabusa. Control of Helical Silica Nanostructures Using Chiral Surfactant. J. Mater. Chem. 2006, 16, 1644-1650.
    [112] Y. Yang, M. Suzuki, S. Owa, H. Shirai, and K. Hanabusa. Control of Mesoporous Silica Nanostructures and Pore-Architectures Using a Thickener and a Gelator. J.Am. Chem. Soc. 2007, 129, 581-587.
    [113] S. Kobayashi, N. Hamasaki, M. Suzuki, M. Kimura, H. Shirai, and K. Hanabusa, Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents. J. Am. Chem. Soc. 2002, 124 (23), 6550-6551.
    [114]徐如人,庞文琴,于吉红,霍启升,陈接胜,分子筛与多孔材料化学,科学出版社,2004年550-551。
    [115] J. Beck, J. Vartuli, W. Roth, A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates. J. Am. Chem. Soc. 1992, 114,10834-10843.
    [116] Q. Huo, D. I. Margoese, U. Margolese, Generalized Synthesis of Periodic Surfactant Inorganic Composite-Materials. Nature 1994, 368, 317-321.
    [117] Q. Huo, D. Margolese, U. Ciesla, Organization of Organic- Molecules with Inorganic Molecular-Species into Nanocomposite Biphase Arrays. Chem. Mater. 1994, 6, 1176-1191.
    [118] S. Inagaki, Y. Fukushima, K. Kuroda, Synthesis of Highly Ordered Mesoporous Materials from a Layered Polysilicate. J. Chem. SocChem Commun. 1993, 378, 680-682.
    [119] T. Yanagisawa, T. Shimizu, K. Kuroda, The Preparation of Alkyltrimethylammonium-Kanemite Complexes and Their Conversion to Microporous Materials. Bull Chem Soc Jpn. 1990, 63, 988-992.
    [120] C. Goltner, M. Antonietti, Mesoporous materials by templating of liquid crystalline phase. Adv. Mater. 1997, 9, 431.
    [121] C. Goltner, S. Henke, M. Weissenberger, Mesoporous silica from lyotropic liquid crystal polymer templates. Angew. Chem. Int. Ed. 1998, 37, 613-616.
    [122] J. Vartuli, K. Schmitt, C. Kresge, Development of a Formation Mechanism for M41s Materials. Zeolites and Related Microporous Mater. State of the Art 1994, 53-60.
    [123] J. Vartuli, C. Kresge, M. Leonowicz, Synthesis of Mesoporous Materials-Liquid-Crystal Templating Versus Intercalation of Layered Silicates. Chem. Mater. 1994, 6, 2070-2077.
    [124] E. Leontidis, Hofmeister anion effects on surfactant self-assembly and the formation of mesoporous solids. Curr Opin Colloid Interface Sci. 2002, 7, 81-91.
    [125] Q. Huo, R. Leon, P. Petroff, Mesostructure Design with Gemini Surfactants-Supercage Formation in a 3-Dimensional Hexagonal Array. Science1995, 268, 1324-1327.
    [126] S. Polar, M. Antonietti, Porous materials via nanocasting procedures: innovative materials and learning about soft-matter organization. Chem Commun. 2002, 2593-2604.
    [127] A. Firouzi, F. Atef, A. Oertli, Alkaline lyotropic silicate-surfactant liquid crystals. J. Am. Chem. Soc. 1997, 119, 3596-3610.
    [128] X. Chen, G. Ding, H. Chen, Formation at low surfactant concentrations and characterization of mesoporous MCM-41. Sci. China Ser B-Chem. 1997, 40, 278-285.
    [129] Q. Huo, D. Margolese, G. Stucky, Surfactant control of phases in the synthesis of mesoporous silicabased materials. Chem. Mater. 1996, 8, 1147-1160.
    [130] C. Chen, H. Li, M. Davis, Studies on mesoporous materials. I. Synthesis and characterization of CMC-41. Microporous Mater. 1993, 2, 17-26. 131] C. Chen, S. Burkette, H. Li, Studies on mesoporous materials. II. Synthesis mechanism of CMC-41. Microporous Mater. 1993, 2, 27-34.
    [132] G. Stucky, Q. Huo, A. Firouzi, Directed synthesis of organic/inorganic composite structures. Progress in Zeolite and Microporous Materia, 1997, 3-28.
    [133] P. Feng, X. Bu, G. Stucky, Monolithic mesoporous silica templated by microemulsion liquid crystals. J. Am. Chem. Soc. 2000, 122, 994-995.
    [134] A. Firouzi, D. Kumar, L. Bull, Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies. Science 1995, 267, 1138-1143.
    [135] A. Monnier, F. Schuth, Q. Huo, Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures. Science 1993, 261, 1299-1303.
    [136] Y. Sakamoto, S. Inagaki, T. Ohsuna, Structure analysis of mesoporous material‘FSM-16’-Studies by electron microscopy and X-ray diffraction. MicroporousMesoporous Mater. 1998, 21, 589-596.
    [137] N. Coleman, G. Attard, Ordered mesoporous silicas prepared from both micellar solutions and liquid crystal phases. Microporous Mesoporous Mater. 2001, 44, 73-80.
    [138] S. Bagshaw, E. Prouzet, T. Pinnavaia, Templating of Mesoporous Molecular-Sieves by Nonioinic Polyethylene Oxide Surfactants. Science 1995, 269, 1242-1244.
    [139] A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997, 97, 2373-2419.
    [140] R. Iler, The Chemistry of Silica. New York, Wiley, 1971.
    [141] J. Clark, D. Macquarrie, Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids. Chem. Commun. 1998, 853-860.
    [142] Q. Huo, D. L. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, G.D. Stucky, Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays. Chem.Mater. 1994, 6, 1176-1191.
    [143] M. S. Wong, J. Y. Ying, Amphiphilic Templating of Mesostructured Zirconium Oxide. Chem.Mater. 1998, 10, 2067-2077.
    [144] Z. Zhang, S. Dai, Preparation and Characterization of Novel Inorganic Organic-Mesoscopic-Ordered Composite with Bridges Formed by Coordination Compounds. J.Am.Chem.Soc. 2001, 123(37), 9204-9205.
    [145] X. Xu, Y. Han, L. Zhao, Y. Yu, D. Li, H. Ding, N. Li, Y. Guo, F.-S. Xiao, Anion-Exchange Pproperties and Reversible Phase Transitions of Metal-Cation-Mediated Bridged Organic-Inorganic Hybrid Mesoscopic Materials. Chem.Mater. 2003, 15, 74-77.
    [146] S. Che, A. E. Garcia-Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki,T.Tatsumi, A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nature Mater. 2003, 2 (12), 801-805.
    [147] S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Synthesis and characterization of chiral mesoporous silica. Nature, 2004, 429 (6989), 281-284.
    [148] Y. Kim, S. Yang, Prepartion of Mesoporous Materials from the Flow-Induced Microstructure in Aqueous Surfactant Solutions. Chem.Mater. 2000, 12 (10), 3227-3235.
    [149] Q. Zhang, F. Lü, C. Li, Y. Wang, H. Wan, An efficient synthesis of helical mesoporous silica nanorods. Chem. Lett. 2006, 35(2), 190-191.
    [150] J. Wang, W. Wang, P. Sun, Z. Yuan, B. Li, Q.Jin, D. Ding, T. Chen. Hierarchically helical mesostructured silica nanofibers templated by achiral cationic surfactant. J. Mater. Chem. 2006, 16(42), 4117-4122.
    [151] S. Yang, L. Zhao, C. Yu, X. Zou, J. Tang, P. Yuan, D. Chen, D. Zhao, On the origin of helical mesostructures. J. Am. Chem. Soc. 2006, 128(32), 10460-10466.
    [152] B. G. Trewyn, C. M. Whitman, V. Y. Lin, Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano. Lett. 2004, 4(11), 2139-2143.
    [153] H. Jin, Z. Liu, T. Ohsuna, O. Terasaki, Y. Inoue, K. Sakamoto, T. Nakanishi, K. Ariga, S. Che, Control of morphology and helicity of chiral mesoporous silica. Adv. Mater. 2006, 18 (5), 593-596.
    [154] T. Ohsuna, Z. Liu, S. Che, O. Terasaki, Characterization of chiral mesoporous materials by transmission electron microscopy. Small, 2005, 1 (2), 233-237.
    [155] X. Wu, H. Jin, Z. Liu, T. Ohsuna, O. Terasaki, K. Sakamoto, S Che., Racemic helical mesoporous silica formation by achiral anionic surfactant. Chem. Mater. 2006, 18 (2), 241-243.
    [156] X. Wu, J. Ruan, T. Ohsuna, O. Terasaki, S. Che, A novel route for synthesizingsilica nanotubes with chiral mesoporous wall structures. Chem. Mater. 2007, 19, 1577-1583.
    [157] Y. Yu, H. Qiu, X. Wu, H. Li, Y. Li, Y. Sakamoto, Y. Inoue, K. Sakamoto, O. Terasaki, and S. Che, Synthesis and Characterization of Silica Nanotubes with Mesoporous Channels Perpendicular to the Central Axis of the Tube. Advanced Functional Material, revised.
    [158] B. G. Trewyn, C. M. Whitman, V. Y. Lin, Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano. Lett. 2004, 4 (11), 2139-2143.
    [159] S. Yang, L. Zhao, C. Yu, X. Zou, J. Tang, P. Yuan, D. Chen, D. Zhao, On the origin of helical mesostructures. J. Am. Chem. Soc. 2006, 128 (32), 10460-10466.
    [160] B. Wang, C. Chi, W. Shan, Y. Zhang, N. Ren, W. Yang, and Y. Tang. Chiral Mesotructure Silica Nanofibers of MCM-41. Angew. Chem. 2006, 118, 2142-2144.
    [161] G. Lin, Y. Tsai, H. Lin, C. Tang, and C. Lin, Synthesis of Mesoporous Silica Helical Fibers Using a Catanionic-Neutral Ternary Surfactant in a Highly Dilute Silica Solution: Biomimetic Silicification. Langmuir 2007, 23, 4115-4119.
    [162] Y. Wu, G. Cheng, K. Katsov, S. W. Sides, J. Wang, J. Tang, G. H. Fredrickson, M.Moskovits, G. D. Stucky, Composite mesostructures by nano-confinement. Nat. Mater. 2004, 3(11), 816-822.
    [163] W. J. Kim, S. M. Yang, Helical mesostructured tubules from taylor vortex-assisted surfactant templates. Adv. Mater. 2001, 13(15), 1191-1195.
    [1] A. Klug, From Macromolecules to Biological Assemblies (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 1983, 22, 565-582.
    [2] A. E. Roman, R. J. M. Nolte, Helical Molecular Programming. Angew. Chem. Int. Ed. Engl. 1998, 37, 63-68.
    [3] J. M. Lehn, Supramolecular Chemistry, VCH, Weinheim, Germany 1995.
    [4] D. B. Amabilono, J. F. Stoddart, Interlocked and Intertwined Structures and Superstructures. Chem. Rev. 1995, 95, 2725-2828.
    [5] E. Yashima, K. Maeda, Y. Okamoto, Memory of macromolecular helicity assisted by interaction with achiral small molecules. Nature 1999, 399, 449-451.
    [6] J. H. Gerorger, A. Singh, R. R. Price, J. M. Schnur, P. Yager, P. E. Schoen, Helical and tubular microstructures formed by polymerizable phosphatidylcholines. J. Am. Chem. Soc. 1987, 109, 6169-6175.
    [7] B. N. Thomas, C. M. Lindemann, R. C. Corcoran, C. L. Contant, J. E. Kirsch, J. P. Persichini, Phosphonate Lipid Tubules II. J. Am. Chem. Soc. 2002, 124, 1227-1233.
    [8] M. M. Green, N. C. Peterson, T. Sato, A. Teramoto, S. Lifson, A Helical Polymer with a Cooperative Response to Chiral Information. Science 1995, 268, 1860-1866
    [9] K. Tang, M. M. Green, K. S. Cheon, J. V. Selinger, B. A. Garetz, Chiral Conflict. The Effect of Temperature on the Helical Sense of a Polymer Controlled by the Competition between Structurally Different Enantiomers: From Dilute Solution to the Lyotropic Liquid Crystal State. J. Am. Chem. Soc. 2003, 125, 7313-7323.
    [10] T. Kunitake, Angew. Synthetic Bilayer Membranes: Molecular Design, Self-Organization, and Application. Chem. Int. Ed. Engl. 1992, 31, 709-726.
    [11] J. H. Fuhrhop, W. Helfrich, Fluid and solid fibers made of lipid molecular bilayers. Chem. Rev. 1993, 93, 1565-1582.
    [12] D. A. Frankel, D. F. O’Brien, Supramolecular Assemblies of Diacetylenic Aldonamides. J. Am. Chem. Soc. 1994, 116, 10057-10069.
    [13] P. Yager, P. Schoen, Formation of Tubules by a Polymerizable Surfactant. Mol. Cryst. Liq. Cryst. 1984, 106, 371-381.
    [14] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710-712.
    [15] Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schüth, G. D. Stucky, Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994, 368, 317-321.
    [16] P. T. Tanev, T. J. Pinnavaia, A Neutral Templating Route to Mesoporous Molecular Sieves. Science 1995, 267, 865-867.
    [17] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279, 548-552.
    [18] D. M. Antonelli, J. Y. Ying, Synthesis of a Stable Hexagonally Packed MesoporousNiobium Oxide Molecular Sieve Through a Novel Ligand-Assisted Templating Mechanism. Angew. Chem. Int. Ed. Engl. 1996, 35, 426-430.
    [19] J. H. Jung, Y. Ono, K. Hanabusa, S. Shinkai, Creation of Both Right-Handed and Left-Handed Silica Structures by Sol-Gel Transcription of Organogel Fibers Comprised of Chiral Diaminocyclohexane Derivatives. J. Am. Chem. Soc. 2000, 122, 5008-5009.
    [20] Y. Yang, M. Suzuki, S. Owa, H. Shirai, K. Hanabusa,Preparation of helical nanostructures using chiral cationic surfactants. Chem. Commun. 2005, 35, 4462-4464.
    [21] J. H. Jung, H. Kobayashi, M. Masuda, T. Shimizu, S. Shinkai, Helical Ribbon Aggregate Composed of a Crown-Appended Cholesterol Derivative Which Acts as an Amphiphilic Gelator of Organic Solvents and as a Template for Chiral Silica Transcription. J. Am. Chem. Soc. 2001, 123, 8785-8789.
    [22] N. H. Mendelson, Production and initial characterization of bionites: materials formed on a bacterial backbone. Science 1992, 258, 1633-1636.
    [23] A. M. Seddon, H. M. Patel, S. L. Burkett, S. Mann, A Combined Effect of Molecular Electrostatic Potential and N7 Accessibility Explains Sequence-Dependent Binding of cis-[Pt(NH3)2(H2O)2]2+ to DNA Duplexes. Angew. Chem. Int. Ed. 2002, 41, 2998-3001.
    [24] D. D. Archibald, S. Mann, Template mineralization of self-assembled anisotropic lipid microstructures. Nature 1993, 364, 430-433.
    [25] S. Barel, P. Schoen, Silica-deposited phospholipid tubules as a precursor to hollow submicron-diameter silica cylinders. Chem. Mater. 1993, 5, 145-147.
    [26] Y. Yang, M. Suzuki, S. Owa, H. Shirai, and K. Hanabusa. Control of Mesoporous Silica Nanostructures and Pore-Architectures Using a Thickener and a Gelator. J.Am. Chem. Soc. 2007, 129, 581-587.
    [27] S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Tersarki, T. Tatsumi, Synthesis and characterization of chiral mesoporous silica. Nature 2004, 429, 281-284.
    [28] T. Ohsuna, Z. Liu, S. Che, O. Terasaki, Characterization of Chiral Mesoporous Materials by Transmission Electron Microscopy. Small 2005, 2, 233-237.
    [29] X. Wu, H. Jin, Z. Liu, T. Ohsuna, O. Terasaki, K. Sakamoto, S. Che, Racemic Helical Mesoporous Silica Formation by Achiral Anionic Surfactant. Chem. Mater. 2006, 18, 241- 243.
    [30] H. Qiu, S. Wang, W. Zhang, K. Sakamoto, O. Terasaki, Y. Inoue, S. Che, Steric and Temperature Control of Enantiopurity of Chiral Mesoporous Silica. J. Phys. Chem. C 2008, 112, 1871-1877.
    [31] A. S. Tracey, X. Zhang, Investigation into the mechanism for generation of the helical axis in cholesteric lyotropic liquid crystals. J. Phys. Chem. 1992, 96, 3889-3894.
    [32] D. P. Acharya, et al, Phase behavior and effect of enantiomerism on potassium N-dodecanoyl alaninate / water / decanol system. J. Oleo. Sci. 2003, 52, 407-420.
    [1] J. M. Schnur, Lipid Tubules: A Paradigm for Molecularly Engineered Structures. Science 1993, 262, 1669-1676.
    [2] T. Shimizu, M. Masuda, H. Minamikawa, Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. Chem. Rev. 2005, 105, 1401-1444.
    [3] J. H. Jung, S. H. Lee, J. S. Yoo, K. Yoshida, T. Shimizu, S. Shinkai, Creation of Double Silica Nanotubes by Using Crown-Appended Cholesterol Nanotubes. Chem. Eur. J. 2003, 9, 5307-5313.
    [4] M. Ogawa, Formation of Novel Oriented Transparent Films of Layered Silica-Surfactant Nanocomposites. J. Am. Chem. Soc. 1994, 116, 7941-7942.
    [5] H. P. Lin, C. Y. Mou, Tubules-Within-a-Tubule" Hierarchical Order of MesoporousMolecular Sieves in MCM-41. Science 1996, 273, 765-768.
    [6] J. H. Jung, Y. Ono, S. Shinkai, Novel Silica Structures Which Are Prepared by Transcription of Various Superstructures Formed in Organogels. Langmuir 2000, 16, 1643-1649.
    [7] J. H. Jung, S. Shinkai, T. Shimizu, Organic supramolecular architectures and their sol-gel transcription to Silica nanotubes. The Chem.Rec. 2003, 3(4), 212-224.
    [8] Q. Ji, T. Shimizu, Chemical synthesis of transition metal oxide nanotubes in water using an iced lipid nanotube as a template. Chem. Commun. 2005, 42, 4411-4413.
    [9] Q. Ji, R. Iwaura, T. Shimizu, Regulation of Silica Nanotube Diameters: Sol-Gel Transcription Using Solvent-Sensitive Morphological Change of Peptidic Lipid Nanotubes as Templates. Chem. Mater. 2007, 19, 1329-1334.
    [10] N. Nakashima, S. Asakuma, T. Kunitake, Optical microscopic study of helical superstructures of chiral bilayer membranes. J. Am. Chem. Soc. 1985, 107, 509-510.
    [11] J. H. Jung, H. Kobayashi, M. Masuda, T. Shimizu, S. Shinkai, Helical Ribbon Aggregate Composed of a Crown-Appended Cholesterol Derivative Which Acts as an Amphiphilic Gelator of Organic Solvents and as a Template for Chiral Silica Transcription. J. Am. Chem. Soc. 2001, 123, 8785-8789.
    [12] G. John, J. H. Jung, H. Minamikawa, K. Yoshida, T. Shimizu, Morphological Control of Helical Solid Bilayers in High-Axial-Ratio Nanostructures Through Binary Self-Assembly. Chem, Eur. J. 2002, 8(23), 5494-5500.
    [13] J. H. Jung, Y. Do, Y. Lee, T. Shimizu, Self-Assembling Structures of Long-Chain Sugar-Based Amphiphiles Influenced by the Introduction of Double Bonds. Chem. Eur. J. 2005, 11(19), 5538-5544.
    [14] J. H. Jung, Y. Ono, S. Shinkai, Sol-Gel Polycondensation of Tetraethoxysilane in a Cholesterol-Based Organogel System Results in Chiral Spiral Silica. Angew. Chem. Int. Ed. 2000, 39(10), 1862-1865.
    [15] Y. Yang, M. Suzuki, S. Owa, H. Shirai, K. Hanabusa, Preparation of helical nanostructures using chiral cationic surfactants. Chem. Commun. 2005, 35, 4462-4464.
    [16] Y. Yang, M. Suzuki, S. Owa, H. Shirai, K. Hanabusa, Control of helical silica nanostructures using a chiral surfactant. J. Mater. Chem. 2006, 16(17), 1644-1650.
    [17] Y. Yang, M. Suzuki, S. Owa, H. Shirai, Control of Mesoporous Silica Nanostructures and Pore-Architectures Using a Thickener and a Gelator. J. Am. Chem. Soc. 2007, 129(3), 581-587.
    [18] X. Wu, J. Ruan, T. Ohsuna, O. Terasaki, S. Che, A Novel Route for Synthesizing Silica Nanotubes with Chiral Mesoporous Wall Structures. Chem. Mater. 2007, 19(7), 1577-1583.
    [19] J. H. Jung, Y. Ono, K. Sakurai, M. Sano, S. Shinkai, Novel Vesicular Aggregates of Crown-Appended Cholesterol Derivatives Which Act as Gelators of Organic Solvents and as Templates for Silica Transcription. J. Am. Chem. Soc. 2000, 122, 8648-8653.
    [20] S. Che, A. E. Garcia-Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki and T. Tatsumi, A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nature Materials 2003, 2, 801-805.
    [21] C. Gao, Y. Sakamoto, K. Sakamoto, O. Terasaki and S. Che, Synthesis and Characterization of Mesoporous Silica AMS-10 with Bicontinuous Cubic Pnm Symmetry. Angew. Chem. Int. Ed. 2006, 45(26), 4295-4298.
    [22] C. Gao, H. Qiu, W. Zeng, Y. Sakamoto, O. Terasaki, K. Sakamoto, Q. Chen, S. Che, Formation Mechanism of Anionic Surfactant-Templated Mesoporous Silica. Chem. Mater. 2006, 18(16), 3904-3914.
    [23] A. E. Garcia-Bennett, O. Terasaki, S. Che, T. Tatsumi, Structural Investigations of AMS-n Mesoporous Materials by Transmission Electron Microscopy. Chem. Mater.2004, 16(5), 813-821.
    [24] S. Che, Z. Liu, T. Ohsuna, K. Sakamto, O. Terasaki, T. Tatsumi, Synthesis and characterization of chiral mesoporous silica. Nature 2004, 429(20), 281-284.
    [25] B. N. Thomas, C. R. Safinya, R. J. Plano, N. A. Clark, Lipid Tubule Self-Assembly: Length Dependence on Cooling Rate Through a First-Order Phase Transition. Science 1995, 267, 1635-1638.
    [26] J. E. Dubois, M. E. Alaoui, J. Toullec, Formation of stable bilayer assemblies in water from single-chain amphiphiles. Relationship between the amphiphile structure and the aggregate morphology. J. Am. Chem. Soc. 1981, 103(18), 5401-5413.
    [27] J. H. Fuhrhop, C. Boettcher, Stereochemistry and curvature effects in supramolecular organization and separation processes of micellar N-alkylaldonamide mixtures. J. Am. Chem. Soc. 1990, 112(5), 1768-1776.
    [28] H. Jin, Z. Liu, T. Ohsuna, O. Terasaki, Y. Inoue, K. Sakamoto, T. Nakanishi, K. Ariga, S. Che, Control of Morphology and Helicity of Chiral Mesoporous Silica. Adv. Mater. 2006, 18, 593-596.
    [29] I. Toyoko, T. Yoshiyuki, M. Hidetoshi, Formation of fibrous molecular assemblies by amino acid surfactants in water. J. Am. Chem. Soc. 1992, 114(9), 3414-3419.
    [30] J. M. Schnur, B. R. Ratna, J. V. Selinger, A. Singh, G. Jyothi, K. R. K. Easwaran, Diacetylenic Lipid Tubules: Experimental Evidence for a Chiral Molecular Architecture. Science 1994, 264, 945-947.
    [31] B. G.Trewyn, C. M.Whitman, V. S.-Y.Lin, Morphological Control of Room- Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents. Nano Lett. 2004, 4, 2139-2143.
    [32] M. Takehara, I. Yoshimura, K. Takizawa, R. Yoshida, SurfaceActive N-Acylglutamate:Preparation of Long Chain N-Acylglutamic Acid. J. Am. Oil Chem. Soc. 1972, 49, 157-161.
    [1] D. Zhao, P. Yang, N. Melosh, J. Feng, B. F.Chmelka, G. D. Stucky, Continuous Mesoporous Silica Films with Highly Ordered Large Pore Structures. Adv. Mater.1998, 10(16), 1380-1385.
    [2] P. Feng, X. Bu, G. Stucky, D. Pine, Monolithic Mesoporous Silica Templated by Microemulsion Liquid Crystals. J. Am. Chem. Soc. 2000, 122, 994-995.
    [3] H. Yang, Q. Shi, B. Tian, S. Xie, F. Zhang, Y. Yan, B. Tu, D. Zhao, A Fast Way for Preparing Crack-Free Mesostructured Silica Monolith. Chem. Mater. 2003, 15, 536-541.
    [4] D. Zhao, J. Sun, Q. Li, G. D. Stucky, Morphological Control of Highly Ordered Mesoporous Silica SBA-15. Chem. Mater. 2000, 12, 275-279.
    [5] M. E. Davis, New vistas in zeolite and molecular sieve catalysis. Acc. Chem. Res. 1993, 26, 111-115.
    [6] M. E. Davis, Ordered porous materials for emerging applications. Nature, 2002, 417, 813-821.
    [7] S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Synthesis and characterization of chiral mesoporous silica. Nature 2004, 429, 281-284.
    [8] H. Jin, Z. Liu, T. Ohsuna, O. Terasaki, Y. Inoue, K. Sakamoto, T. Nakanishi, K. Ariga and S. Che, Control of Morphology and Helicity of Chiral Mesoporous Silica. Adv. Mater. 2006, 18, 593-596.
    [9] X. Wu, H. Jin, Z. Liu, T. Ohsuna, O. Terasaki, K. Sakamoto, S. Che, Racemic Helical Mesoporous Silica Formation by Achiral Anionic Surfactant. Chem. Mater. 2006, 18, 241-243.
    [10] B. Wang, C. Chi, W. Shan, Y. Zhang, N. Ren, W. Yang, Y. Tang, Chiral Mesostructured Silica Nanofibers of MCM-41. Angew. Chem. 2006, 118(13), 2142-2144.
    [11] S. Yang, L. Zhao, C. Yu; X. Zhou, J. Tang, P. Yuan; D. Chen, D. Zhao, On the Origin of Helical Mesostructures. J. Am. Chem. Soc. 2006, 128, 10460-10466.
    [12] M. J. Kelso, R. L. Beyer, H. N. Hoang, A. S. Lakdawala, J. P. Snyder, W. V. Oliver,T.A Robertson, T. G. Appleton, D. P. Fairlie, -Turn Mimetics: Short Peptide -Helices Composed of Cyclic Metallopentapeptide Modules. J. Am. Chem. Soc. 2004, 126, 4828-4842.
    [13] C. Piguet, M. Borkovec, J. Hamacek, K. Zeckert, Strict self-assembly of polymetallic helicates: the concepts behind the semantics. Coord.Chem. Rev., 2005, 249(5-6), 705-726.
    [14] M. Albrecht, "Let's Twist Again"-Double-Stranded, Triple-Stranded, and Circular Helicates. Chem. Rev. 2001, 101, 3457-3498.
    [15] H. Yin, G. I. Lee, H. S. Park, G. A. Payne, J. M. Rodriguez, S. M. Sebti, A.D. Hamilton, Terphenyl-Based Helical Mimetics That Disrupt the p53/HDM2 Interaction. Angew. Chem. Int. Ed. 2005, 44(48), 2704-2707.
    [16] S. Aravinda, S. Datta, N. Shamala, P. Balaram, Hydrogen-Bond Lengths in Polypeptide Helices: No Evidence for Short Hydrogen Bonds. Angew. Chem., Int. Ed. 2004, 43(48), 6728-6731.
    [17] B. G. Trewyn, C. M.Whitman, V. S.-Y.Lin, Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents. Nano Lett. 2004, 4, 2139-2143.
    [18] C. Gao, H. Qiu, W. Zeng, Y. Sakamoto, O. Terasaki, K. Sakamoto, Q. Chen, S. Che, Formation Mechanism of Anionic Surfactant-Templated Mesoporous Silica. Chem. Mater. 2006, 18, 3904-3914.
    [19] H. Lin, S. Cheng and C. Mou, Mesoporous Molecular Sieves MCM-41 with a Hollow Tubular Morphology. Chem. Mater. 1998, 10, 581-589.
    [20] Y. Yu , H. Qiu, X. Wu , H. Li , Y.Li, Y. Sakamoto, O. Terasaki, K. Sakamoto and S. Che, A Novel Route to Synthesize Mesoporous Silica Nanotubes. Adv. Fun. Mater. 2008, revised.
    [21] J. N. Israelachvili, D. J. Mitchell, B. W. Ninham, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 2 1976, 72, 1525-1568.
    [22] S. Che, S. Lim, M. Kaneda, H. Yoshitake, O. Terasaki, T. Tatsumi, The Effect of the Counteranion on the Formation of Mesoporous Materials under the Acidic Synthesis Process. J. Am.Chem. Soc. 2002, 124, 13962-13963.
    [23] B. G.Trewyn, C. M.Whitman, V. S.-Y.Lin, Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents. Nano Lett. 2004, 4, 2139-2143.
    [24] M. Takehara, I. Yoshimura, K. Takizawa, R. Yoshida, SurfaceActive N-Acylglutamate:Preparation of Long Chain N-Acylglutamic Acid. J. Am. Oil Chem. Soc. 1972, 49, 157-161.
    [25]吴小伟,非手性表面活性剂结构导向法合成螺旋介孔材料及其机理研究,2007,104-105。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700