手性樟脑三齿席夫碱配体的合成及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于手性化合物在医药、化学和生物学等领域的特殊作用,获得手性化合物的不对称合成方法就成为人们研究的热点。而在不对称合成的方法中,通过手性催化剂诱导的催化不对称合成只需要催化量的手性化合物就可以获得大量的光学活性物质。所以这种不对称合成方法效率高、生产成本低,这也正是其魅力所在。
     不对称合成的核心问题是手性中心的产生和控制。手性配体作为手性诱导试剂对产物的光学纯度起着关键的作用,因此,人们对手性配体的研究较为深入。由手性氨基醇合成的手性三齿席夫碱配体具有原料价格便宜,合成方法简单,实用范围广等多种优点,备受化学家的青睐。在手性三齿席夫碱配体的设计中,手性氨基醇的选择和对水杨醛的修饰非常重要,对配体的手性识别的效果影响很大。天然手性化合物樟脑,只含一种对映体,用它做起始原料,可以利用其已有的手性中心,在分子的适当部位引入新的官能团,得到多种有用的手性配体,且樟脑类化合物由于其独特的立体结构和电子效应,已经在不对称合成反应中得到了广泛的应用,表现出较好的立体诱导效应。
     基于上述研究背景,本论文合成了两种天然手性樟脑衍生的氨基醇。一种是从樟脑出发合成樟脑醌-3-肟,用氢化铝锂试剂将其选择性还原得到2-羟基-3-氨基樟脑氨基醇;另一种是以樟脑磺酸为原料,经过四步反应使其转化为1-氨基-2-羟基樟脑氨基醇。并以这两种手性氨基醇为基础与水杨醛及其衍生物进行缩合,合成了15种手性樟脑三齿席夫碱配体,通过红外、核磁共振氢谱、核磁共振碳谱对合成的席夫碱配体进行了结构表征和确认。
     基于此类配体具有独特的立体结构和电子效应,我们将此类配体与乙酸铜络合,用于催化硝基甲烷与对硝基苯甲醛的不对称Henry反应。研究了配合物结构对催化性能和立体选择性的影响,并以此为基础,对催化剂的用量、反应温度、溶剂等反应条件进行了筛选。在最优反应条件下,将其用于催化其它醛与硝基甲烷的不对称Henry反应。
     论文主要包括三个部分:第一章对手性三齿席夫碱配体和过渡金属形成的络合物在不对称反应中的研究进展做了综述;第二章包括樟脑氨基醇,水杨醛衍生物及席夫碱配体的合成与表征;第三章研究了合成的手性樟脑三齿席夫碱配体与乙酸铜络合催化不对称Henry反应。
The special function of chiral compounds has been gradually realized in medical treatment, chemical, and biological and other related fields. Asymmetric synthesis method for the chiral compounds is becoming hot topic. Among these methods of asymmetric synthesis, the chiral catalyst induced asymmetric synthesis, which only needs catalytic amount of chiral compound, can produce a large amount of optically active substances. Therefore, the asymmetric catalytic synthesis method is a high efficiency procedure to prepare chiral compounds, while reducing production costs. It is also a charming point of asymmetric catalytic synthesis.
     The core problem of asymmetric synthesis are the chiral center's generation and control in asymmetric catalytic synthesis, the chiral centres of ligands play a key role as chiral inducing agents on the formation of optical purity products. Therefore, the synthesis of chiral ligand and study of its intermediator in the catalytic cycles become a more abstruse area. Chemists have discovered and synthesized thousands of chiral ligands and complexes with different structures, among them, tridentate Schiff base which is synthesized by chiral amino alcohol has numerous advantages and highly favored. For example, synthesis method is simple, raw materials are cheap, and they have widely practical application. In designing of chiral tridentate Schiff base ligand, the choice of chiral amino alcohols and salicylaldehyde modification is very important which often directly affect the chiral ligand recognition effect. Natural chiral compounds camphor only contain a enantiomers, using it as starting materials, we can utilize their existed chiral centers, and introduce new functional groups to the appropriate parts of the molecule to make many useful chiral ligands. Furthermore, compound derived from camphor has been widely applied in asymmetric synthesis due to their unique stereo structure and electronic effects. They have showed a good stereo induction effects in asymmetric catalysis.
     Based on the above research background, we synthesized two kind of chiral amino alcohol derived from natural chiral camphor. One is 3-amino-1,7,7-trimethylbicyclo[2.2.1] heptan-2-ol, which is synthesized by selectively reduction camphor quinone 3-oxime with LiAlH4. The other is 1-amino-7,7-dimethylbicyclo[2.2.1]heptan-2-ol, which is obtained by four-step reaction using camphor sulfonic acid as raw material. The two amino alcohol was used as starting material, condensed with salicylaldehyde and its derivatives, totally 15 chiral tridentate Schiff base ligand derived from natural camphor are synthesized. All compounds were characterized by IR,1H-NMR and 13C-NMR, the analysis dates of these compounds are identical with the anticipated.
     Based on such ligand with the unique structures and electronic effects, we have made them complex with acetic acid copper. Asymmetric Henry reaction of nitromethane and p-nitrobenzaldehyde is catalyzed by those Schiff-base complexes. We screened these complexes and discussed the relationship of catalytic performance and stereoselectivity of ligands. On this basis, the amount of catalyst, reaction temperature, solvent and other reaction conditions were optimized. Under the optimal reaction conditions, other aldehydes and nitromethane's asymmetric Henry were catalyzed by above catalyst.
     This thesis consists of three parts, the first chapter review the research progress of chiral ligand complexes made from tridentate Schiff base ligand and transition metal in asymmetric reactions; The second chapter report the synthesis and characterization of two chiral amino alcohol derived from camphor, derivatives of salicylaldehyde and the schiff base ligands; In the third chapter, asymmetric Henry reaction is catalyzed by complexs which synthesized by base ligand and copper acetate.
引文
[1]游效曾,孟庆金,韩万书等.配位化学进展[M].北京:高等教育出版社,2000,17.
    [2]郑允飞,陈文纳,李德昌等Schiff碱及其配合物的应用研究进展[J].化工技术与开发,2004,33(4):26-29.
    [3]Baseer M. A, Jadhav V. D, Phule. R. M. Synthesis and antibacterial activity of Some new Schiff-bases[J]. Orient. J. Chem.,2000,16:553-556.
    [4]刘永红,刘晓岚,袁冬梅,石尧成,景淆壁,吴俊.手性席夫碱及其金属配合物作为手性催化剂的某些应用[J].有机化学,2005,25(8):893-901.
    [5]Bastos M. B. R, Moreira J. C, Farias P. A. M. Adsorptive stripping voltammetric behaviour of UO2 (Ⅱ) Complexed with the Schiff Base N,N-Prime-ethylenebis(salicylidenimine) in aqueous 4-(2-hydorxyethyl)-l-piperazine ethan-esulofnic acid medimu[J]. Analytica Chimica Acta,2000,408(1):83-88.
    [6]Li S. L, Chen S. H, Lei S. B, et al. Investigation on some schiff bases as HCI corrosion inhibitors for copper [J]. Corrosion Science,1999,41(7):1273-1287.
    [7]赵建章,赵冰,徐蔚青,刘举正.水杨醛缩胺类Schiff碱光致变色性质[J].高等学校化学学报.2003,24(2):324-328.
    [8]Hudson S. A, Maitlis P. M. Calamitic metallomesogens:metal-containing liquid crystals with rodlike shapes[J]. Chem. Rev.,1993,93(3):861-885.
    [9]林国强,陈耀全,李月明,陈新滋.手性合成[M].北京:科学出版社,2007.
    [10]Yu C. Y, Cohn O. M. A concise synthesis of homochiral sedamines and related alkaloids. A new reductive application of Jacobsen's catalyst[J]. Tetrahedron Lett., 1999,40(36):6665-6668.
    [11]Breysse E, Pinel C, Lemaire. M. Use of heterogenized dialdimine ligands in asymmetric transfer hydrogenation[J]. Tetrahedron:Asymmetry,1998,9(6): 897-900.
    [12]Dakin L. A, Schaus S. E, Jacobsen E. N, Panek J. S. Carbenoid insertions into the silicon-hydrogen bond catalyzed by chiral copper (Ⅰ) schiff base complexes[J]. Tetrahedron Letters,1998,39(49):8947-8950.
    [13]Sigman M. S, Jacobsen E. N. Enantioselective addition of hydrogen cyanide to imines catalyzed by A chiral (salen)Al(Ⅲ) complex[J]. J. Am. Chem. Soc.,1998, 120(21):5315-531.
    [14]Fukuda T, Katsuki T. Highly enantioselective cyclopropanation of styrene deribvatives using Co(Ⅲ)-salen complex as a catalyst[J]. Tetrahedron,1997, 53(21):7201-7208.
    [15]Schaus S. E, Branalt J, Jacobsen. E. N. Asymmetric hetero-diels-alder reactions catalyzed by chiral (salen)chromium(Ⅲ) complexes[J]. J. Org. Chem.,1998, 63(2):403-405.
    [16]Li Z, Conser K. R, Jacobsen E. N. Asymmetric alkene aziridination with readily available chiral diimine-base catalysts[J]. J. Am. Chem. Soc.,1993,115(12): 5326-5327.
    [17]Masahiko H, Yasunori M. Tetsuya L, Nobuki O. Enantioselective trimethylsilyl-cyanation of some adehydes by chiral titanium schiffs base complexes [J]. J. Chem. Soc. Chem. Commun.,1991,24,1752-1753.
    [18]Ruck R. T, Jacobsen E. N. Asymmetric catalysis of hetero-ene reactions with tridentate schiff base chromium(Ⅲ) complexes [J]. J. Am. Chem. Soc.,2002, 124(12):2882-2883.
    [19]Lai G. Y, Wang S. J, Wang Z. Y. Asymmetric henry reaction catalyzed by a copper tridentate chiral schiff-base complex[J]. Tetrahedron:Asymmetry,2008, 19(15):1813-1819.
    [20]Nozaki H, Moriuti S, Takaya H, Noyori R. Asymmetric induction in carbenoid reaction by means of a dissymmetric copper chelate[J]. Tetrahedron Lett.,1966, 7(43):5239-5244.
    [21](a) Aratani T, Yoneyoshi Y, Nagase T. Asymmetric synthesis of chrysanthemic acid. An application of copper carbenoid reaction[J]. Tetrahedron Lett.,1975, 16(21):1707-1710. (b) Aratani T, Yoneyoshi Y, Nagase T. Asymmetric synthesis of chrysanthemic acid. An application of copper carbenoid reaction[J]. Tetrahedron Lett.,1977,18(30):2599-2602. (c) Aratani T, Yoneyoshi Y, Nagase T. Asymmetric synthesis of permethric acid. stereochemistry of chiral copper carbenoid reaction[J]. Tetrahedron Lett.,1982,23(6):685-688. (d) Aratani T. Catalytic asymmetric synthesis of cyclopropanecarboxylic acids:an application of chiral copper carbenoid reaction[J]. Pure Appl. Chem.,1985,57(12):1839-1844.
    [22]Laidler D. A, Milner D. J. Asymmetric synthesis of cyclopropane carboxylates: catalysis of diazoacetate reactions by copper(Ⅱ) schiff base complexes derived from a-amino acids[J]. J. Organometallic Chem.,1984,270(1):121-129.
    [23]Salomon R. G, Kochi. J. K. Copper(Ⅰ) catalysis in cyclopropanations with diazo compounds. Role of olefin coordination[J]. J. Am. Chem. Soc.,1973,95(10): 3300-3310.
    [24]Cai L, Mahmoud S. H, Han Y. Binuclear versus mononuclear copper complexes as catalysts for asymmetric cyclopropanation of styrene[J]. Tetrahedron: Asymmetry,1999,10(3):411-427.
    [25](a) Li Z. N, Zheng Z, Wan B. S, Chen H. L. Asymmetric cyclopropanation catalyzed by copper-schiff's base complexes[J]. J. Mol. Catal. A:Chem.,2001, 165(1):67-71. (b) Li Z. N, Liu G. S, Zheng Z, Chen H. L. Asymmetric cyclopropanation of styrene catalyzed by Cu-(chiral schiff-base) complexes[J]. Tetrahedron,2000,56(37):7187-7191.
    [26](a)姚小泉,郑卓,潘桂芝,刘国生,仇敏,包信和,陈惠麟.一种新型2,5-二甲基-2,4-己二烯不对称环丙烷化原位催化体系[J].催化学报,1999,20(3):233-235. (b) Li Z. N, Zhuo Z, Chen H. L. Highly efficient and enantioselective cyclopropanation of styrene with diazoacetates using a new copper-(Schiff-base) catalyst[J]. Tetrahedron:Asymmetry,2000,11(5):1157-1163. (c)仇敏,刘国生,姚小泉,郭明彦,潘桂芝,郑卓.手性铜(Ⅱ)席夫碱配合物催化苯乙烯不对称环丙烷化反应[J].催化学报,2001,22(1):77-80.
    [27](a) Itagaki M, Koji H, Masashi K, Katsuhisa M, Katsuhiro S, Yohsuke Y. Highly efficient chiral copper schiff-base catalyst for asymmetric cyclopropanation of 2,5-dimethyl-2,4-hexadiene[J]. Tetrahedron,2004,60(36):7835-7843. (b) Makoto I, Katsuhiro S. Practical copper-catalyzed asymmetric synthesis of chiral chrysanthemic acid esters[J]. Organic Process Research & Development,2007, 11(3):509-518.
    [28](a) Hayashi M, Miyamoto Y, Inoue T, Oguni N. Enantioselective trimethylsilylcyanation of some aldehydes by chiral titanium Schiffs base complexes[J]. J. Chem. Soc. Chem. Commun.,1991,24,1752-1753. (b) Hayashi M, Miyamoto Y, Inoue T, Oguni N. Enantioselective trimethylsilylcyanation of some aldehydes catalyzed by chiral Schiff base-titanium alkoxide complexes[J]. J. Org. Chem.,1993,58(6):1515-1522.
    [29](a) Jiang Y. Z, Zhou X. G, Hu W. H, Wu L.J. Asymmetric synthesis XXII: Asymmetric catalytic trimethylsilylcyanation of benzaldehyde by novel Ti(IV)-chiral schiff base complexes[J]. Tetrahedron:Asymmetry,1995,6(2):405-408.(b)蒋耀忠,宓爱巧,胡文浩,陈代谟,王朝阳,邓金根,楼荣良,张晓梅.(1R,2S)或(1S,2R)-1,2-二苯基-2-氨基乙醇衍生物手性配体的合成及其用于不对称催化反应[J].分子催化,1997,11(6):401-407.
    [30](a) Flores L. L. Z, Parra H. M, Somanathan R, Walsh P. J. Structure/ enantioselectivity study of the asymmetric addition of trimethylsilylcyanide to benzaldehyde catalyzed by Ti(IV)-schiff base complexes[J]. Organometallics, 2000,19(11):2153-2160. (b) Gama A, Flores L. L. Z, Aguirre G, Parra H. M, Somanathan R, Walsh P. J. Steric effects in the design of chiral Schiff base-titanium complexes:new catalysts for asymmetric trimethylsilylcyanation of aldehydes[J]. Tetrahedron:Asymmetry,2002,13(2):149-154.
    [31]Li Y, He B, Qin B, Feng X. M, Zhang G. L. Highly Enantioselective cyanosilylation of aldehydes catalyzed by novel β-amino alcohol-titanium Complexes[J]. J. Org. Chem.,2004,69(23):7910-7913.
    [32]Zhou X. G, Huang J. S, Po H. K, Cheng K. K, Che C. M. Titanium and ruthenium binaphthyl schiff base complexes as catalysts for asymmetric trimethylsilyl-cyanation of aldehydes [J]. J. Chem. Soc. Dalton Trans.,1999,18:3303-3309.
    [33]周正洪,杨卓鸿,刘建兵,唐除痴.手性配体/Ti(OPr-i)4催化苯甲醛的不对称硅氰化反应[J].南开大学学报,2002,35(3):6-10.
    [34]Koichi M, Masaki S. Asymmetric ene reactions in organic synthesis[J]. Chem. Rev.,1992,92(5):1021-1050.
    [35]Carreira E. M, Lee W, Singer R. A. Catalytic, enantioselective acetone aldol additions with 2-methoxypropene[J]. J. Am. Chem. Soc.,1995,117(12): 3649-3650.
    [36]Ruck R. T, Jacobsen E. N. Asymmetric catalysis of hetero-ene reactions with tridentate schiff base chromium(Ⅲ) complexes[J]. J. Am. Chem. Soc.,2002, 124(12):2882-2883.
    [37]Ruck R. T, Jacobsen E. N. Asymmetric hetero-ene reactions of trimethylsilyl enol ethers catalyzed by tridentate schiff base chromium(Ⅲ) complexes[J]. Angew. Chem. Int. Ed.,2003,42(39):4771-4774.
    [38]梁毓学,万慧慧,高爽,王军伟,陈惠麟,郑卓,胡信全Ti(O'Pr)4/席夫碱配合物催化不对称2-甲氧基丙烯与对硝基苯甲醛的Hetero-ene反应[J].分子催化,2004,18(4):295-299.
    [39]Grachan M. L, Tudge M. T, Jacobsen E. N. Enantioselective catalytic carbonyl-ene cyclization reactions[J]. Angew. Chem. Int. Ed.,2008,47(8): 1469-1472.
    [40]Dossetter A. G, Jamison T. F, Jacobsen E. N. Acylzirconocene chloride as an unmasked acyl anion:enantioselective 1,2-addition to α,β-unsaturated ketone derivatives [J]. Angew. Chem. Int. Ed.,1999,38(16):2398-2400.
    [41]Joly G. D, Jacobsen E. N. Catalyst-controlled diastereoselective hetero-diels-alder Reactions[J]. Org. Lett.,2002,4(10):1795.
    [42]Gademann K, Chavez D. E, Jacobsen E. N. Highly enantioselective inverse-electron-demand hetero-diels-alder reactions of a,p-unsaturated aldehydes[J]. Angew. Chem. Int. Ed.,2002,41(16):3059-3061.
    [43]Chavez D. E, Jacobsen E. N. Catalyst-controlled inverse-electron-demand hetero-diels-alder reactions in the enantio- and diastereoselective synthesis of iridoid natural products[J]. Org. Lett.,2003,5(14):2563-2565.
    [44]Yu Y, Long J, Sun J, Ding K. L. Dramatically synergetic effect of carboxylic acid additive on tridentate titanium catalyzed enantioselective hetero-diels-alder reaction:additive acceleration and nonlinear effect[J]. Eur. Chem. J.,2002,8(21): 5033-5042.
    [45]Ji B. M, Yu Y, Ding K. L, Meng J. B. Assembled dendritic titanium catalysts for enantioselective hetero-diels-alder reaction of aldehydes with danishefskys diene[J]. Chem. Eur. J.,2003,9(24):5989-5996.
    [46](a) Fan Q, Lin L. L, Liu J, Huang Y. Z, Feng X. M, Zhang G. L. Highly enantioselective hetero-diels-alder reaction of brassard diene with aromatic aldehydes[J]. Org. Lett.,2004 6(13):2185-2188. (b) Fan Q, Lin L. L, Liu J, Huang Y. Z, Feng X. M. A mild and efficient asymmetric hetero-diels-alder reaction of the brassard diene with aldehydes[J]. Eur. J. Org. Chem.,2005,16: 3542-3552.
    [47]Lin L. L, Fan Q, Qin B, Feng X. M. Highly enantio- and diastereoselective brassard type hetero-diels-alder Approach to 5-methyl-containing α,β-unsaturated-lactones[J]. J. Org. Chem.,2006,71(11):4141-4146.
    [48]Nakajima K, Kojima M, Toriumi K, Saito K, Fujita J. Crystal structures of [VO(sal-L-ala)(OCH3)(CH3OH)] (sal-L-ala=N-salicylidene-L-alaninate) and {[VO(sal-L-ala)]2O}2·2CH2Cl2, and the catalytic activity of these and related complexes on asymmetric oxidation of methyl phenyl sulfide with t-Butyl hydroperoxide[J]. Bull. Chem. Soc. Jpa.,1989,62:760-767.
    [49]Bolm C, Bienewald F. Asymmetric sulfide oxidation with vanadium catalysts and H2O2[J]. Angew. Chem. Int. Ed. Engl.,1996,34(23):2640-2642.
    [50]Vetter A. H, Berkessel A. Schiff-base ligands carrying two elements of chirality: matched-mismatched effects in the vanadium-catalyzed sulfoxidation of thioethers with hydrogen peroxide[J]. Tetrahedron Lett.,1998,39(13): 1741-1744.
    [51]Ohta C, Shimizu H, Kondo A, Katsuki T. Vanadium-catalyzed enantioselective sulfoxidation of methyl aryl sulfides with hydrogen peroxide as terminal oxidant[J]. Synlett,2002,1:161-163.
    [52]Pelotier B, Anson M. S, Campbel I. B. Macdonald S. J. F, Priem G, Jackson R. F. W. Enantioselective sulfide oxidation with H2O2:A solid phase and array approach for the optimisation of chiral schiff base-vanadium catalysts[J]. Synlett, 2002,7,1055-1060.
    [53]Legros J, Bolm C. Iron-catalyzed asymmetric sulfide oxidation with aqueous hydrogen peroxide[J]. Angew. Chem. Int. Ed.,2003,42(44):5487-5489.
    [54](a) Jeong Y. C, Choi S, Hwang Y. D, Ahn K. H. Enantioselective oxidation of sulfides with hydrogen peroxide catalyzed by vanadium complex of sterically hindered chiral schiff bases[J]. Tetrahedron Lett.,2004,45(50):9249-9252. (b) Jeong Y. C, Huang Y. D, Choi S, Ahn K. H. Synthesis of sterically controlled chiral (3-amino alcohols and their application to the catalytic asymmetric sulfoxidation of sulfides[J]. Tetrahedron:Asymmetry,2005,16(21):3497-3501.
    [55]Cucciolito M. E, Del L. R, Roviello G, Ruffo F. O,N,O'-tridentate ligands derived from carbohydrates in the V(IV)-promoted asymmetric oxidation of thioanisole[J]. J. Mol. Catal. A:Chem.,2005,236:176-181.
    [56]Hiroaki S, Takeyuki S, Shigeru A, Takayoshi A, Masakatsu S. Basic character of rare earth metal alkoxides. utilization in catalytic carbon-carbon bond-forming reactions and catalytic asymmetric nitroaldol reactions[J]. J. Am. Chem. Soc., 1992,114(11):4418-4420.
    [57]Gan C. S, Wang Z. Y, Zhou M. M, et al. Efficing and enantioselective nitroaldol reaction catalyzed by copper schiff-base complexes[J]. Tetrahedron:Asymmetry, 2006,17(5):725-728.
    [58]Suribabu J, Prasenjit S, Sridhar S, Sekarpandi S, Tharmalingam P. Chiral binuclear copper(Ⅱ) catalyzed nitroaldol reaction:scopeand mechanism[J]. Tetrahedron,2008,64(51):11724-11731.
    [59](a) Mehmet C, Tarik A, Halil H, Nadir D. Synthesis of novel chiral schiff-base ligands and their application in asymmetric nitro aldol (henry) reaction[J]. Tetrahedron:Asymmetry,2007,18(9):1129-1133. (b) Mehmet C, Nadir D. Enantioselective nitroaldol (henry) reaction catalyzed by chiral schiff-base ligands[J]. Tetrahedron:Asymmetry,2008,19(5):635-639.
    [60]Guo J, Mao J. C. Asymmetric henry reaction catalyzed by bifunctional copper-based catalysts[J]. Chirality,2009,21(6):619-627.
    [61]Xin D. Y, Ma Y. D, He F. Y. Synthesis of new planar chiral [2.2]paracyclophane schiff base ligands and their application in the asymmetric henry reaction[J]. Tetrahedron:Asymmetry,2010,21(3):333-338.
    [62]Danilova T. I, Rozenberg V. I, Sergeeva E. V, Starikova Z. A, Brase S. Novel chiral tridentate Schiff base ligands of the [2.2]paracyclophane series:synthesis and application[J]. Tetrahedron:Asymmetry,2003,14(14):2013-2019.
    [63]Nallamuthu A, Umesh B, Sivan V. Salicylaldimine based copper (Ⅱ) complex:a potential catalyst for the asymmetric henry reaction[J]. Arkivoc,2010,370-379.
    [64]Oppolzer W, Chapuis C, Bernardinelli G. Camphor derived N-acrgloyl and N-crotonoyl sultans:practical activated dienophiles in asymmetric D-A reactions[J]. Helv. Chim. Acta.,1984,67(5):1397-1401.
    [65]Dennis P. C, Timothy A. F. On the scope of asymmetric nitrile oxide cycloadditions with oppolzer's chiral sultam. total synthesis of (+)-hepialone, (-)-(1R,3R,5S)-1,3-dimethyl-2,9-dioxabicylco[3.3.1]nonane, and (-)-(1S)-7,7-di-megthyl-6,8-dioxabicyclo[3.2.1]octane[J]. J. Org. Chem.,1990,55(15):4585-4595.
    [66]Tevens R. V, Aaeta G. F. C, Lawrence D. S. Camphorae:chiral intermediates for the enantiospecific total synthesis of steroids[J]. J. Am. Chem. Soc.,1983, 105(26):7713-7719.
    [67]Oppolzer W, Mills R. J, Pachinger W, et al. Preparation of enantiomerically pure β-silylcarboxyl derivatives by asymmetric 1,4-addition to N-enoyl-sultams[J]. Helv. Chim. Acta.,1986,69(7):1542-1545.
    [68]Oppolzer W, Schneider P. Enantioseledtive synthesis of β-necrodol and of 1-epi-β-necrodol via asymmetric 1,4-addition and magnesium-ene cyclization[J]. Helv. Chim. Acta.,1986,69(8):1817-1820.
    [69]Oppolzer W, Rafael P, Moretti R. Asymmetric syntheses of a-amino acids from a-halogenated 10-sulfonamidoisobornyl esters[J]. Tetrahedron Lett.,1986,27(7): 831-834.
    [70]Oppolzer W, Moretti R, Thomi S. Asymmetric alkylation of N-acyl sultams:A general route to enantiomerically pure, crystalline C(a,a)-disubstituted carboxylic acid deribatives[J]. Tetrahedron Lett.,1989,30(41):5603-5606.
    [71]Oppolzer W, Barras J. P. Asymmetric dihydroxylations of β-substituted N-(a, β-enoyl)bornane-10,2-sultams[J]. Helv. Chim. Acta.,1987,70(7):1666-1675.
    [72]Carolyn A, Stephen L. R, Michael J. T, et al. Diversw origins of conformational equilibrium isotope effects for hydrogen in 1,3-dioxans[J]. Tetrahedron Lett., 1989,30(34):4585-4588.
    [73]Tevens R. V, Aaeta G. F. C, Lawrence D. S. Camphorae:chiral intermediates for the enantiospecific total synthesis of steroids[J]. J. Am. Chem. Soc.,1983, 105(26):7713-7719.
    [74]Xu P. F, Chen Y. S, Lin S. I, et al. Chiral tricyclic iminolactone derived from (1R)-(+)-camphor as a glycine equibalent for the asymmetric synthesis of a-amino acids[J]. J. Org. Chem.,2002,67(7):2309-2314.
    [75]Li S, Hui X. P, Xu P. F, et al. A straightforward route to the asymmetric synthesis of 3,4-diepipolyoxamic acid and its isoners[J]. Tetrahedron:Asymmetry,2005, 16(10):1729-1731.
    [76]Bonner M. P, Thornton E. R. Asymmetric aldol reactions. A new camphor-derived chiral auxiliary giving highly stereoselective aldol reacrions of both lithium and titanium(IV)enolates[J]. J. Am. Chem. Soc.,1991,113(4):1299-1308.
    [77]Kyo H. A, Seungkyu L, Ankee L. Asymmetric aldol reactions employing a camphor-derived chiral oxazinone auxiliary. J. Org. Chem.,1992,57(19): 5065-5066.
    [78]Yan T. H, Tan C. W, Lee H. C, et al. Asymmetric aldol reactions:A novel model for swithing between chelation- and non-chelation-controlled aldol reactions[J]. J. Am. Chem. Soc.,1993,115(7):2613-2621.
    [79]Kitamura M, Suga S, et al. Catalytic asymmetric induction.highly enantio- selective addition of dialkylzincs to aldehydes[J]. J. Am. Chem. Soc.,1986, 108(19):6071-6074.
    [80]Nugent W. A. MIB:An advantageous alternative to DAIB for the addition of organozinc reagents to aldehydes[J]. Chem. Commun.,1999, (15):1369-1370.
    [81]Knollmuller M, Ferencic M, Gartner P. Enantioselective addition of organometallics to aldehydes using camphor derived chiral 1,4-aminoalcohols as ligands[J]. Tetrahedron:Asymmetry,1999,10(20):3969-3975.
    [82](a) Hanyu N, Alki T, Mino T, et al. Enantioselective addition of diethylzinc to aldehydes catalyzed by optically active 1,4-aminoalcohols [J]. Tetrahedron: Asymmetry,2000,11(14):2971-2979. (b) Hanyu N, Aoki T, et al. New Chiral 1,4-aminoalcohols derived from (+)-camphor and (-)-fenchone for the enantioselective addition of diethylzinc to aldehyde[J]. Tetrahedron:Asymmetry, 2000,11(20):4127-4136.
    [83]Antonio, Vilar E. T.2-exo-versus 2-endo-hydroxyl in 8-amino norbornan-2-ol-based catalysts:investigating the role of the C(2) configuration in the asymmetric induction[J]. Tetrahedron:Asymmetry,2004,15(5):753-756.
    [84]Nevalainen M, Nwvalainenion V. (+)-Camphor-derived amino alcohols as ligands for the catalytic wnantioselective additon diethylzinc to benzaldehydes[J]. Tetrahedron:Asymmetry,2001,12(12):1771-1777.
    [85]Tanaka K, Matsui M, Suzuki H. Enantiocontrolled reduction of prochiral aromaticketones with borane using diastereoisomeric secondary aminoalcohols as chiral catalysts [J]. Chem.Soc. Chem. Commun.,1991, (18):1311-1312.
    [86]Santhi V, Rao J. M. Asymmetric reduction of prochiral ketones using in situ generated oxazaborolidines derived from amino alcohols of(1R)-camphor as catalysts[J]. Tetrahedron:Asymmetry,2000,11(17):3553-3560.
    [87]Li X. S, Yeung C. H, Chan A. S. C, Yang T. K. New 1,3-amino alcohols derived from ketopinic acid and their application in catalytic enantioselective reduction of prochiral ketones[J]. Tetrahedron:Asymmetry,1999,10(4):759-763.
    [88]Hiroaki S, Teruhisa T, Shizue W, Takeyuki S, Noriie I, Masakatsu S. Efficient diastereoselective and enantioselective nitroaldol reactions from prochiral starting materials:utilization of La-Li-6,6-disubstituted BINOL complexes as asymmetric catalysts[J]. J. Org. Chem.,1996,60(23):7388-7389.
    [89]Christensen C, Juhl K, Hazell R. G, Jorgensen K. A, Copper-catalyzed enantioselective henry reactions of a-keto esters:An easy entry to optically active β-nitro-a-hydroxy esters and β-amino-a-hydroxy esters[J]. J. Org. Chem., 2002,67(14):4875-4881.
    [90]Evans D. A, Daniel S, Magnus R, Hon W. L, Jared T. S, Downey W. C. A new copper acetate-bis(oxazoline)-catalyzed enantioselective henry reaction[J]. J. Am. Chem. Soc.,2003,125(42):12692-12693.
    [91]Lu S. F, Du D. M, Zhang S. W, Xu J. X. Facile synthesis of C2-symmetric tridentate bis(thiazoline) and bis(oxazoline) ligands and their application in the enantioselective henry reaction[J]. Tetrahedron:Asymmetry,2004,15(21): 3433-3441.
    [92]Kuo Y. M, You J. S. Rational design of sterically and electronically easily tunable chiral bisimidazolines and their applications in dual Lewis acid/Brφnsted base catalysis for highly enantioselective nitroaldol (henry) reactions[J]. Chem. Eur. J., 2007,13(6):1863-1871.
    [93]Liu S. L, Wolf C. Asymmetric nitroaldol reaction catalyzed by a C2-symmetric bisoxazolidine ligand[J]. Org. Lett.,2008,10(9):1831-1834.
    [94]Trost B. M, Yeh V. S. C, Hisanako I, Bremeyer N. Effect of ligand structure on the zinc-catalyzed henry reaction. asymmetric syntheses of (-)-denopamine and (-)-arbutamine[J]. Org. Lett.,2002,4(16):2621-2623.
    [95]Claudio P, Mikel O, Antonio L. Enantioselective henry reactions under dual Lewis acid/amine catalysis using chiral amino alcohol ligands[J]. Angew. Chem. Int. Ed., 2005,44(25):3881-3884.
    [96]Woraluk M, Ittiphol S, Palita U, Worawan B, Tirayut V. Novel thiolated amino-alcohols as chiral ligands for copper-catalyzed asymmetric nitro-aldol reactions[J]. Tetrahedron Lett.,2007,48(24):4235-4238.
    [97]Shan Z. X, Ha W. Z. Effect of ligand structure on the Zinc-catalyzed henry reaction. asymmetric syntheses of (-)-denopamine and (-)-arbutamine [J]. Lett. Org. Chem.,2008,5(2):79-81.
    [98](a) Takayoshi A, Masahiko W, Akitsugu F, Naota Y, Akira Y. Direct monitoring of the asymmetric induction of solid-phase catalysis using circular dichroism: diamine-CuI-catalyzed asymmetric henry reaction[J]. Angew. Chem. Int. Ed., 2006,45(36):5978-5981. (b) Takayoshi A, Ryuta T, Yoko E, Masahiko W, Akira Y. Asymmetric syn-selective henry reaction catalyzed by the sulfonyldiamine- CuCl-pyridine system[J]. J. Org. Chem.,2008,73(13):4903-4906.
    [99](a) Marco B, Fabio P, Simona T, Achille U, Caterina V. Highly enantioselective nitroaldol reaction catalyzed by new chiral copper complexes[J]. Chem. Commun., 2007, (6):616-618. (b) Marco B, Salvatore C, Enzo C, Pasqal O, Riaccardo S, AChlle U. R. New adaptive chiral thiophene ligands for copper-catalyzed asymmetric henry reaction[J]. Chirality,2009,21(1):239-244.
    [100]Rafal K, Sidorowicz L, Jacek S. Z. Asymmetric henry reaction catalyzed by chiral secondary diamine-copper(Ⅱ) complexes[J]. Tetrahedron:Asymmetry,2008, 19(19):2310-2315.
    [101]Kogami Y, Nakajima T, Ikeno T, Yamada T. Enantioselective henry reaction catalyzed by salen-Cobalt complexes[J]. Synthesis,2004, (12):1947-1950.
    [102](a) Gonzalo B, Estela C, Isabel F, Victor H, Pedro J. R. Modular iminopyridine ligands. application to the enantioselective copper(Ⅱ)-catalyzed henry reaction[J]. Tetrahedron:Asymmetry,2006,17(14):2046-2049; (b) Gonzalo B, Luis R, Hernandez-Olmos D. V, Pedro J. R. New highly asymmetric henry reaction catalyzed by Cu(Ⅱ) and a CI-symmetric aminopyridine ligand, and its application to the synthesis of miconazole[J]. Chem. Eur. J.,2008,14(15):4725-4730.
    [103]Maheswaran H, Leon P. K, Gopi K. G, Ravikumar K, Sridhar B, Kantam L. M. Enantioselective nitroaldol (henry) reaction using copper(Ⅱ) complexes of (-)-sparteine[J]. Chem. Commun.,2006,39:4066-4068.
    [104]Li H. M, Wang B. M, Deng L. Enantioselective nitroaldol reaction of a-ketoesters catalyzed by cinchona alkaloids[J]. J. Am. Chem. Soc.,2006,128(3):732-733.
    [105]Tomotaka O, Satoru N, Tomihiro F, Takemoto Y. Enantioselective aza-henry reaction catalyzed by a bifunctional organocatalyst[J]. Org. Lett.,2004,6(4): 625-627.
    [106]Dawei M, Qiang B. P, Han F. Diastereoselective henry reactions of N,N-dibenzyl a-amino aldehydes with nitromethane catalyzed by enantiopure guanidines[J]. Tetrahedron Lett.,2002,43(51):9401-9403.
    [107]Stephen H, Pratik V. D. Generation of functional diversity via nitroaldol condensations of a-aminoacid aldehydes-A new and stereocontrolled route to acyclic 1,3-diamino-2-alcohols[J]. Tetrahedron Lett.,1996,37(7):987-990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700