氮磷—氧磷配体的合成及不对称催化加氢的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对映纯药物、农用化学品、香精和其他手性精细化学品的需求的日益增长,推动了不对称催化技术的快速发展。在所有不对称催化方法中,利用分子氢还原前手性烯烃、酮和亚胺,已成为构建手性化合物的最有效方法之一。但是昂贵的配体阻碍了不对称催化技术的广泛应用,因此开展低廉、高效的氮磷-氧磷配体的合成和不对称催化加氢的应用研究,对建立适用的不对称催化技术平台,制备广泛的手性化合物,推动手性技术的产业化进程,具有较强的实际应用价值。
     仲氨型氨基醇是制备手性氮磷-氧磷配体的关键原料。本论文以α-氨基酸为原料,经过N-酰化后,利用NaBH_4/I_2还原体系一步法同时将酰胺上的羰基和羧基还原,建立了成本低廉的仲氨型手性氨基醇的合成新路线;采用化学酶法合成了新的具有刚性结构的N-杂环手性氨基醇(S)-Ticol(3-羟甲基-1,2,3,4-四氢异喹啉)。在此基础上,设计并合成了新的具有刚性结构的手性氮磷.氧磷配体(S)-TIAMPP和四个具有C_2对称轴的双噁唑啉双磷烷手性氮磷-氧磷配体BPEBOP。然后,利用合成的手性氮磷-氧磷配体制备相应的均相铑催化剂并应用在氨基酸、甜味剂、手性药物等的不对称催化加氢中。最后探讨了用固相合成技术将羟脯氨酸和苏氨酸固载在Merrifield树脂的方法,并制备相应的非均相手性氮磷—氧磷配体和手性催化剂,研究它们在非均相铑催化加氢中的应用。
     首先,采用NaBH_4/H_2SO_4和NaBH_4/I_2的还原体系和催化加氢还原方法制备了系列伯胺型手性氨基醇,并着重研究了仲胺型氨基醇的合成方法,为制备成本低廉、高效的氮磷-氧磷配体打下基础。用NaBH_4/I_2直接还原L-脯氨酸合成了L-脯氨醇。通过对其还原和水解反应的优化,获得收率为88.4%的L-脯氨醇,产品光学纯度大于99%,条件温和,操作稳定,适宜规模制备。以α-氨基酸为起始原料,分别采用碱法、酸法、超声波法合成了系列N-乙酰、N-甲酰氨基酸,然后利用NaBH_4/I_2还原体系一步法同时将羰基和羧基还原,建立了仲氨型手性氨基醇的合成新路线。N-甲基-苯丙氨醇、N-甲基-L-苯甘氨醇、N-乙基-苯丙氨醇、N-乙基-L-苯甘氨醇、N-甲基-L-丙氨醇、N-乙基-L-丙氨醇的产品收率分别为75%、73%、78%、75%、55%、65%,比传统的LiAlH_4方法在收率上高出10-20%,成本也低得多,步骤大大简化。对其结构进行了表征。采用化学酶法成功地合成了
The increasing demand of producing enantiomerically pure pharmaceuticals, agrochemicals, flavors, and other fine chemicals, has facilitated the development of asymmetric catalytic technologies. Among all asymmetric catalytic methods, asymmetric hydrogenation utilizing molecular hydrogen to produce prochiral olefins, ketone and imines became one of the most efficient methods for constructing chiral compounds. But the high cost of ligands blocked the commercial application of asymmetric catalytic hydrogenation. The development of aminophospine-phosphinite (AMPP) ligands with highly enantioselectiviy and low cost and application in asymmetric catalytic hydrogenation had important practical value for the construction of economic available technological platform and the advance of preparation of the chiral compounds and the industrialization of chiral technology.The second amino alcohols were the key feedstock for AMPP ligands. A new synthetic route of second amino alcohols was developed by "one-step" reduction of carbonyl and carboxyl group utilizing NaBH4/I2 after N-acylization to reduce the preparation cost of second amino alcohols from α-amino acids. The new rigid chiral amino alcohol (S)-Ticol (3-hydroxygenmethyl-1,2,3,4-tetrahydroisoquininone ) was synthesized by chemoenzymatic method. Then (SO -TIAMPP and a series of BPEBOP C2-symmetric bis(phphospholano)ethane bearing bis(oxzaphosphlidine) were first designed and synthesized. The corresponding Rh-AMPP homogeneous catalysts were synthesized and applied in asymmetric hydrogenation. The Hproline and Theronine were supported by Merrifield resin using solid-phase technology. Heterogeneous chiral catalysts were prepared. Their catalytic properties were studied.Firstly, a series of primary amino alcohols were prepared respectively by utilizing NaBH4/H2SO4 and NaBH4/I2 reductive systems and Ru/C catalytic hydrogenation. And the synthetic method of second amino alcohols was thoroughly studied. These chiral amino alcohols were the raw materials for the preparation of new AMPP ligands with low cost and high enantioselectivity. L-prolinol was prepared via NaBH4/I2 reduction system with 88.4% yield. The new synthetic method of
    N-substituted amino alcohols was also developed by "one-step" reduction to carbonyl group and carboxyl group with the yields about 70-75% after N-acylization by alkali method, acid method and supersonic wave. The new method' yields exceeded the old method' by 10-20%. Optically pure (S)-1,2,3,4-tetrahydroisoquininone-S-carboxylic acid (Tic) was achieved by chemoenzymatic synthesis with 49.1% and 99.5% e.e. Novel rigid N-heterocyclic amino alcohol (5)-Ticol was synthesized via NaBH4/I2 system with the 77% yield. The synthesis of (S)-Tic and (S)-Ticol was not reported in the previous literatures.Secondly, a series of corresponding AMPP ligands were prepared. Beyond the synthesis of N-Methyl-PGlyNOPP, ProNOPP, etc., the new N-hetercyclic six-membered ligand (S)-TIAMPP was achieved using (S)-Ticol and PPh2Cl at the presence of triethylamine, which was characterized by 1HNMR、 13CNMR、 31PNMR. The best yield 70.2% was obtained under the optimum condition. On the illumination of the structure of excellent ligand BPE, new C2-symmetric AMPP ligands (S,S)-Me-BPEPBOP, (R,R)-Ph-BPEPBOP, (R,R)-Phe-BPEPBOP and (S,S)-Pro-BPE-BOP from N-ethyl derivatives of alaninol, phenylglyninol, phenylaninol, prolinol were first designed and synthesized.Thirdly, a new rigid chiral rhodium-AMPP catalysts [Rh(COD)((S)-TIAMPP)]+ BF4- was prepared, and its enantioselectivity and activity were both studied with the over 95% converting yield and 85%-96% e.e in the asymmetric Rh-catalyzed hydrogenation of methyl-N-benzoyl-cinamate. Studies on catalytic activities of different non-C2-symmetric chiral catalysts showed that the rigidity of ligands increased the enantioselectivity about 10-15% more. Novel C2-symmetric chiral AMPP catalysts were first prepared and their catalytic properties were studied. We found that the symmetric property of ligands in the chiral AMPP-Rh catalysts had obvious effect on the enantioselectivity. Especially, the chiral catalysts 4n and 4o had much more catalytic activity and enantioselectivity than their corresponding non-C2-symmetric AMPP-Rh catalysts with respectively 97% e.e and 95% e.e in the asymmetric hydrogenation of methyl-N-benzoyl-ccinamate. Chiral catalyst 4o respectively offered 97% e.e and 95% e.e in the asymmetric hydrogenation of
    a-amino-acetophenone and ethyl acetoacetate. This type of chiral catalysts would have promising prospect in the field of asymmetric catalytic hydrogenation.The D-alanine preparation process via asymmetric Rh-catalyzed hydrogention was studied. The optimized process of asymmetric hydrogenation of N-acetyl-dehy-droalanine catalyzed by chiral catalysts 4n resulted 100% converting yield and 95% e.e under the conditions of S/C=100, 1.0MPa, 40℃, the substrate concentration 0.03M, THF as solvent for 4h.The heterogenization of the chiral homogeneous ligands was originally developed by solide-phase syntheitic technology. HPAMPP and ThrAMPP-supproted -Merrifield resins were obtained with 81% and 80% supporting yield, respectively. The chiral HPAMPP-Merriefield-rhodium and ThrAMPP-Merrifield-resin-rhodium catalysts were applied in the asymmetric hydrogenation of N-acetyl-dehydroalanine. The former converting yield was 100%, the average e.e value was 89% in three parallel experiments; and the later average converting yield was 88%, the e.e value was 80% under the condition of S/C100, 40℃, 1.0MPa, THF as solvent. Preparation cost of D-alanine by chiral heterogeneous catalysts supported by Merrifield resin could be lower for the recycling of chiral catalysts. This method would have a promising potential in the near future.Finally, based on the synthesis of highly effective and low-cost AMPP ligands and studies on the homogeneous and heterogeneous asymmetric hydrogenation, the prospect of application of asymmetric catalytic hydrogenation in the industry and proposal were put forth in the thesis.
引文
[1] Rouhi A M. Chiral chemistry[J]. Chem. Eng. News, 2004, 82(24): 47-62.
    [2] 张生勇,郭建权.不对称催化反应-原理及在有机合成中的应用[M],北京:科学出版社,2000.
    [3] Knowles W S. Asymmetric hydrogenation [J]. Acc. Chem. Res.,1983, 16(3): 106-112.
    [4] Scott W. Preparation of L-phenylanaline by asymmetric catalytic hydrogenation[J]. Ind. Chem. News, 1986, 7: 32-34.
    [5] Mashima K. Highly stereoselective asymmetric hydrogenation of α-benzamidomethyl-3-oxobutanoate catalyzed by cationic binap-ruthenium(Ⅱ) complexes[J]. Chem. Commun., 1991(9): 609-612.
    [6] Chrisp P, GoaK L. Preparation of α-amino acids[J]. Drugs, 1990, 39: 523-525
    [7] Osboru J A, Jardine F H, Wilkinson G. Homogeous hydrogenation catalyzed by [RhCl(PPh_3)_3] [J]. J. Chem. Soc., 1966: 1711-1715.
    [8] Tang W J, Zhang X M. New chiral phosphorus ligands for enantioselective hydrogenation[J]. Chem. Rev.. 2003, 103: 3029-3069.
    [9] Dickman D. A, Meyers A. I, Smith G. A. Reduction of α—Amino acids: L-valinol[J]. Org. Syn, 2001, 7: 530.
    [10] Stanfield C. F, Parker J. E, Kanellis P. Synthesis of protected amino alcohols: A comparative study[J]. J. Org. Chem, 1981, 46: 4799-4800.
    [11] Brown H. C, Subba Rao B. C. Hydroboration. Ⅲ. The reduction of organic compounds by diborane, an acid-type reducing agent[J]. J. Am. Chem. Soc., 1960, 82(3): 681-686.
    [12] Clinton F. L, Milwaukee W. Reduction of amino acids in the presence of boron trifluoride[P]. US: 3935280, 1976-04-24.
    [13] Bhaskar Kanth J. V., Mariappan P. Selective reduction of carboxylic acids into alcohols using NaBH_4 and I_2[J]. J. Org. Chem. 1991, 56: 5964-5965.
    [14] Marc J. McKennon, A. I. Meyers. Convenient reduction of amino acids and their derivatives[J]. J. Org. Chem, 1993, 58: 3568-3571.
    [15] Atsushi Abiko, Satoru Masamune. An improved, convenient procedure for reduction of amino acids to amino alcohols: use of NaBH_4-H_2SO_4[J]. Tetrahedron Letters, 1992, 33(38): 5517-5518.
    [16] Kenso Soai, Hidekazu Oyamada, Masako Takase. The preparation of N-protected amino alcohols and N-protected peptide alcohol by reduction of the corresponding esters with sodium borohydride. An improved procedure involving a slow addition of a small amount of methanol[J]. Bull. Chem. Soc. Jpn, 1984, 57: 2327-2328.
    [17] Mcgeary R P. Facile and chemoselective reduction of carboxylic acids to alcohols using BOP reagent and sodium borohydride[J]. Tetrahedron Letters, 1998, 39(20): 3319-3322.
    [18] Massimo Falorni, Andrea Porcheddu, Maurizio Taddei. Mild reduction of carboxylic acids to alcohols using cyanuric chloride and sodium borohydride[J]. Tetrahedron Letters, 1999, 40: 4395-4396.
    [19] Kotots G. A convenient one-pot conversion of N-protected amino acids and peptides into alcohols[J]. Synthesis, 1990: 299-301.
    [20] 李叶芝,郭纯孝,鲁向阳等.由氨基酸酯制备氨基醇[J].吉林大学自然科学学报,1998,1:85-87.
    [21] Narasimhan S, Madhavan K, Ganeshwar P. Facile reduction of carboxylic acids to alcohols by zinc borohydrid e [J]. J. Org. Chem., 1995, 60(16): 5314-5315.
    [22] Herbert J M, Hewson A T, Peace J E. New reduction of LiBH_4/DCC system[J]. Synth. Commun., 1998, 28(5): 823-832.
    [23] Quirk Jennlfer M, Harsy Stephen G. Hakansson Christer L. Novel process for the preparation of serinol[P]. US: 0348223, 1989-01-7.
    [24] Zhi gang Zhang, James E. Jackson, Dennis J. Miller. Aqueous-phase hydrogenation of lactic acid to propylene glycol[J]. Applied Catalysis A: General, 2000, 219: 89-98.
    [25] Antons, S., Tilling, A., Wolters, E. Method for producing optically active amino alcohols. US 6310254, 2001-01-23.
    [26] Vineyard B D, Knowles W S, Sabacky M J, et al. Asymmetric hydrogenation. Rhodium chiral bisphosphine catalyst[J]. J. Am. Chem. Soc. 1977, 99(18): 5946-5952.
    [29] Imamoto T, Watanabe J, Wada Y, et al. P-chiral bis(trialkylphosphine) ligands and theiruse in highly enantioselective hydrogenation reactions[ J ]. J. Am. Chem.Soc. 1998,120(7): 1635-1636.
    [30] Ohta T, Takaya H, Kitamura M, et al. Asymmetric hydrogenation of unsaturated carboxylic acids catalyzed by BINAP-ruthenium(Ⅱ) complexes[ J ]. J. Org. Chem. 1987, 52(14): 3174-3176.
    [31] Saito, T., Yokozawa, T., Zhang, X., et al. (TakasagoInternational Corporation). Chiral diphosphine compound intermediate for preparing the same transition metal complex having the same diphospine compound as ligand and asymmetric hydrogenation catalyst[ P ]. US 5,872,273,1999-02-16.
    [32] Pai C C, Li Y M, Zhou Z Y, et al. Synthesis of new chiral diphosphine ligand (BisbenzodioxanPhos) and its application in asymmetric catalytic hydrogenation [ J ]. TetrahedronLett. 2002,43(15): 2789-2792.
    [33] Burk M J, Feaster J E, Harlow R L. New electron-rich chiral phosphines for asymmetric catalysis[ J ].Organometallics 1990, 9(10): 2653-2656.
    [34] Holz J, Quirmbach M, Schmidt U, et al. Synthesis of a New Class of Functionalized Chiral Bisphospholane Ligands and the Application in Enantioselective Hydrogenations[ J ]. J. Org. Chem., 1998, 63(22): 8031-8034.
    [35] Li W, Zhang Z, Xiao D, Zhang X. Rhodium-hydroxyl bisphospholane catalyzed highly enantioselective hydrogenation of dehydroamino acids and esters [ J ].Tetrahedron Lett. 1999,40(37): 6701-6704.
    [36] RajanBabu T V, Yan Y Y, Shin S. Synthesis, Characterization, and applicability of neutral polyhydroxy phospholane derivatives and their rhodium(I) complexes for reactions in organic and aqueous Media[ J ].J. Am. Chem. Soc. 2001,123 (42): 10207-10213.
    [37] Holz J, Heller D, Sturmer R, et al. Synthesis of the first water-soluble chiral tetrahydroxy diphosphine Rh(I) catalyst for enantioselective hydrogenation[ J ].Tetra- hedron Lett. 1999,40(39): 7059-7062.
    [38] Xiao D, Zhang X. Highly enantioselective hydrogenation of acyclic imines catalyzed by Ir-f-binaphane complexes[ J ].Angew. Chem. Int. Ed. Engl., 2001, 40(18): 3425.
    [39] Selke R, Facklam C, Foken H, et al. Application of the term relative enantiosel- ectivity as useful measure for comparison of chiral catalysts, demonstrated on asymmetric hydrogenation of amino acid precursor[ J ]. Tetrahedron: Asymmetry 1993,4(3): 369-382.
    [40] RajanBabu T V, Ayers T A, Casalnuovo A L. Electronic amplification of selectivity in rh-catalyzed hydrogenations: D-glucose-derived ligands for the Synthesis of D- or L-Amino Acids[ J ].J. Am.Chem. Soc. 1994, 116(9): 4101-4102.
    [41] Chan A S C, Hu W, Pai C C, Lau C P,et al. Novel Spiro Phosphinite Ligands and their application in homogeneous catalytic hydrogenation reactions[ J ]. J. Am. Chem. Soc. 1997,119 (40): 9570-9571.
    [42] Chen Y, Li X, Tong S K, et al. A highly effective phosphinite ligand derived from d-Mannitol for rh-catalyzed asymmetric hydrogenation [ J ]. Tetrahedron Lett. 1999,40 (5): 957-960.
    [43] Yonehara K, Hashizume T, Mori K, et al. Novel water-soluble bisphosphin- ite chiral ligands derived from α , α - and β , β -trehalose. application to asymmetric hydrogenation of dehydroamino acids and their esters in water or an aqueous/ organic biphasic medium[ J ]. J. Org. Chem. 1999, 64 (15): 5593-5598.
    [44] Zhou Y G, Tang W, Wang W B, et al. Highly effective chiral ortho-substit- uted BINAPO ligands (o-BINAPO):applications in ru-catalyzed asymmetric hydrogen nations of aryl-substituted -(acylamino)acrylates and keto esters[ J ]. J. Am.Chem. Soc. 2002,124 (18): 4952-4953.
    [45] Reetz M T, Gosberg A, Goddard R, et al. Diphophonites as highly efficient ligands for enantioselective rhodium-catalyzed catalytic hydrogenation[ J ].Chem. Commun. 1998, (19): 2077.
    [46] Forini M, Giongo G M. Aminophosphine-rhodium complexes as catalysts in asymmetric hydrogenation. The influence of the chiral amino groups on the catalyst enatioselectivity[ J ]. J. Mol. Catal. 1980, 7: 411-413.
    [47] Zhang F Y, Pai, C C, Chan A S C. Asymmetric synthesis of chiral amine derivatives through enantioselective hydrogenation with a highly effective rhodium catalyst containing a chiral bisaminophosphine ligand[ J ]. J. Am. Chem. Soc.1998,
     120 (23):5808-5809.
    [48] Guo R, Li X, Wu J, Kwok W H ,et al. Rhodium-catalyzed asymmetric hydrogenation with aminophosphine ligands derived from 1,1' -binaphthyl-2,2' -diamine[ J ]. Tetrahedron Lett. 2002,43(38): 6803-6806.
    [49] (a) Agbossou F, Carpentier J F , Hapiot F , et al. The aminophosphine-phos- phinites and related ligands.synthesis, coordination chemistry and enantioselective catalysis[ J ]. Coord. Chem. Rev., 1998, (178 -180): 1615-1645; (b). Agbossou F, Isabelle S. Chiral aminophosphine phosphinite ligands and related auxiliaries recent advances in their design, coordination chemistry, and use in enantioselective catalysis [ J ]. Coordination Chemistry Reviews, 2003, 242 : 145 -158; (c) Lou R L, Mi A Q , Jiang Y Z , Li Z, et al. Aminophosphine phosphinites derived from chirall,2-Diphenyl-2-aminoethanols: synthesis and application in rhodium-catalyzed asymmetric hydrogenation of dehydroamino acid derivatives[ J ]. Tetrahedron, 2000, 56(32): 5857-5863 .
    [50] Cesarotti E, Chiesa A, Alfonso G D. Asymmetric hydrogention by chiral aminophosphine-phosphite rhodium complexes[ J ]. Tetrahedron Letts. 1982,23(29): 2995-2996
    [51] Karim A, Mortreum A, Petit F. Hydrogenation asymmetric dehydroamino acides catalyezed by complexes rhodium-aminophosphine phosphinite. Influenced by structure and chelates[ J ]. J of Organometallic Chemistry, 1986, 312: 375-381
    [52] Karim A, Mortreum A, Petit F. Synthesis of aminophosphine phosphinite:chiral utilization by reduction asymmetric catalysis[ J ]. J of Organometallic Chemistry, 1986,317:93-104.
    [53] Carpentier J.-F, Mortreux A. Asymmetric hydrogenation of a-keto acid derivatives by rhodium-[aminophosphine-phosphinite] catalysts[ J ]. Tetrahedron: asymmetry, 1997, 8(7): 1083-1099.
    [54] Naili S, Mortreux A, Agbossou F. New chiral aminophophine carboxyphophinite ligands(AMPCP).synthesis and application in asymmetric hydrogenation and hydroformylation[ J ]. Tetrahedron: Asymmetriy, 1998,9(19): 3421-3430.
    [55] Pasquier C, Naili S, Mortreux A. Free and Cr(CO)_3-complexed aminophophine phosphinite ligands for highly enantioselective hydrogenation of α-functionalized ketones[J]. Organometallics, 2000, 19(26): 5723-5732.
    [56] Dobler C, Kreuzfeld H K, Pracejus H. Chiral bicyclic O,N-bis(diphenylphos phino)aminoalkanols as ligands for enantioselective metal complex hydrogenation catalysts[J]. J. of Organometal. Chem., 1988, 344: 89-92.
    [57] Li X S, Lou R L, Yeung C H. Asymmetric hydrogenation of dehydroamino acis derivatives catalyzed by a new aminophophine phosphinite ligand derived from ketopinic acid [J]. Tetrahedron: Asymmetry, 2000, 11: 2077-2082
    [58] (a)Lou R L ,Mi A Q ,Albert S C Chan, et al. Aminophosphine Phosphinites Derived from Chiral 1,2-Diphenyl-2-aminoethanols: Synthesis and Application in Rhodium-Catalyzed Asymmetric Hydrogenation of Dehydroamino Acid Derivatives[J].Tetrahedron,2000,56(32):5857—5863.(b) 蒋耀忠,宓爱巧,王朝阳等.N-烷基化手性配体的合成[J].有机化学,1994,14:68-73.
    [59] (a) Kreuzfeld H.-J, Dobler Ch. Asymmetric hydrogenation catalyzed by CARAPHOS-rhodium[J]. J of Mol. Cat. A: Chemical, 1998, 136: 105-110. (b) Kreuzfeld H.-J, Dobler Ch, Krause H W. Enantioselective hydrogenation of dehydroamino acid derivatives using PINDOPHOS-rhodium as chiral catalyst [J]. Tetrahedron: Asymmetry, 1996, 7(4): 1011-1018. (c) Kreuzfeld H.-J, Dobler Ch, Krause H W, et al. Unusual amino acids V. Asymmetric hydrogenation of (Z)-N-acylamino-cinnamic acid derivatives bearing different protective groups[J]. Tetrahedron: Asymmetry, 1993, 4(9): 2047-2051.
    [60] Francio G, Faraone F, Leitner W. Asymmetric catalysis with chiral phosphane/phosphoramidite ligands derived from Quinoline(QUINAPHOS)[J]. Angew. Chem. Int. Ed. Engl., 2000, 39(21): 1428-1430.
    [61] Dieguez M, Ruiz A, Claver C. Chiral phosphinite-phosphoroamidites: a new class of ligand for asymmetric catalytic hydrogenation[J]. Chem. Commun. 2001 (24): 2702-2704.
    [62] Boaz N W, Debenham, S. D.; Mackenzie, E. B.; Large, S. E. Phosphinoferro-cenylaminophosphines as Novel and Practical Ligands for Asymmetric Catalysis[J]. Org. Lett. 2002,4(21): 2421-2424.
    [63] Dobler Ch, Kreuzfeld H.-J, Pracejus H. Chiral bicyclic O,N-bis(diphenylpho phino)aminoalkanols as ligands foir enantioselective metal complex hydrogentaion catalysts [ J ]. J of Organometal. Chemistry: 1988, 344: 89-92.
    [64] Schmidt U, Oehme G, Krause H. Catalytic stereoselective synthesis of a-amino phosphonic acid derivatives by asymmetric hydrogeantion[ J ]. Syntetic Communications, 1996, 26(4): 777-781.
    [65] Kreuzfeld H.-J, Dobler Ch, Krause H W. Enantioselective hydrogenation of dehydroamino acid derivatives using PINDOPHOS-rhodium as chiral catalyst [ J ]. Tetrahedron: Asymmetry, 1996,7(4): 1011-1018.
    [66] Kreuzfeld H.-J, Dobler Ch, Krause H W, et al .Unusual amino acids V. Asymmetric hydrogenation of (Z)-N-acylamino-cinnamic acid derivatives bearing different protective groups[ J ]. Tetrahedron: Asymmetry, 1993,4(9): 2047-2051.
    [67] Xie Y N , Lou R L, Li Z , et al. DPAMPP in catalytic asymmetric reactions: enantioselective synthesis of L-homophenylalanine [ J ] . Tetrahedron : Asymmetry, 2000 , 11(7): 1487 - 1494.
    [68] Carpentier J.-F, Mortreux A. Asymmetric hydrogenation of α-keto acid derivatives by rhodium-[aminophosphine-phosphinite] catalysts[ J ]. Tetrahedron: asymmetry, 1997, 8(7): 1083-1099.
    [69] Devocelle M, Agbossou F, Mortreux A. Asymmetric hydrogenation of α,p,y-aminoktones by cationic rhodium(I)-AMPP complexes[ J ]. Synlett.1997, (11): 1306-1307.
    [70] (a)Brown J M , Chaloner P A . The mechanism of asymmetric homogeneous hydrogenation. Rhodium(I) complexes of dehydroamino acids containing asymmetric ligands related to bis(1,2-diphenylphosphino)ethane [J]. J.Am.Chem.Soc., 1980,102(9): 3040-3048 ( b)Hardick D J, Blagbrough I.S,.Potter B V L, Isotopic enrichment by asymmetric deuteriation. an investigation of the Synthesis of deuteriated (S)-(-)-methylsuccinic acids from itaconic acid [ J ]. J. Am. Chem. Soc.,1996, 118(25): 5897-5903 .
    [71] (a) Halpen J. Mechenism stereochemistry of asymmetric catalysis by metal complexes[ J ]. Pure and Apple Chem., 1983, 55(1): 99-106.(b)Ladis R, Halpen J.
     Asymmetric hydrogenation of methyl (Z)-.alpha.-acetamidocinnamate catalyzed by [l,2-bis(phenyl-o-anisoyl)phosphino]ethane rhodium(I): kinetics, mechanism and origin of enantioselection [ J ]. J. Am. Chem. Soc., 1987,109(6): 1746-1754.
    [72] Chta J, Takaya H, Noyori R. Bis(diarylphosphino)-l,l binaphthyl (BINAP) -ruthenium(Ⅱ) dicarboxylate complexes: new, highly efficient catalysts for asymmetric hydrogenations [ J ]. Inorg.Chem.,1988,27: 566-569.
    [73] Ashby M T ,Halpern J, Kinetics and mechanism of catalysis of the asymmetri -c hydrogenation of .alpha.,.beta.-unsaturated carboxylic acids by bis(carboxylato) {2,2'-bis(diphenylphosphino)-1,1'-binaphthyl}ruthenium(II),[RuII(BINAP)(O_2CR)_2] [ J ]. J. Am. Chem. Soc., 1991,113(2): 589-594.
    [74] Whitessell J K. C_2 symmetry and asymmetric induction[ J ]. Chem.Rev.1989 ,89(7): 1581.
    [75] Blaser H.U, The chiral pool as a source of enantioselective catalysts and auxiliaries[ J ]. Chem.Rev., 1992,92(5): 932-935.
    [76] Rajanbabu T V,Ayers T A, Casalnuovo A L. Electronic Amplification of Selectivity in Rh-Catalyzed Hydrogenations: D-Glucose-Derived Ligands for the Synthesis of D- or L-Amino Acids [ J ]. J.Am.Chem.Soc.,1994,116(9): 4101-4102.
    [77] Agbossou F, Carpentier J.-F, Hatat C, et al. Neutral rhodium(I) aminophosphine-phophinite complexes: synthesis, structure, and use in catalytic asymmetric hydrogenation of activated keto compounds[ J ].Organometallics, 1995,14: 2480-2489.
    [78] Krause H W, Schmit U, Taudien S, et al. Aminophophine phosphinites of propranolo analogues as ligands for rh-catalyzed asymmetric hydrogenation[ J ]. J of Mol. Cat. A: Chem. 1995,104:147-157
    [79] Kreuzafeld H J. Enantioselective hydrogenation of dehydroamino acid derivatives using pindophos-rhodium as chiral catalyst [ J ]. Tetrahedron : Asymmetry, 1996 , 7(4): 1011-1018.
    [80] Lou R L ,Mi A Q ,Albert S C Chan , et al . Aminophosphine Phosphinites Derived from Chiral l,2-Diphenyl-2-aminoethanols: Synthesis and Application in Rhodium-Catalyzed Asymmetric Hydrogenation of Dehydroamino Acid Derivatives [ J ]. Tetrahedron, 2000 , 56(32): 5857 - 5863.
    [81] Xie Y N , Lou R L , Li Z , et al. DPAMPP in catalytic asymmetric reactions: enantioselective synthesis of 1-homophenylalanine [ J ] . Tetrahedron : Asymmetry,
     2000,11(7): 1487-1494.
    [82] Kragl U, Dwars T. The development of new methods for the recycling of chiral catalysts[ J ]. Trends in Biotechnology, 2001,19(11): 442-449.
    [83] Selke R. Carbohydrate phosphinites as chiral ligands for asymmetric syntheses catalyzed complexes Part Ⅷ*: Immobilization of cationic rhodium(I) chelates of phenyl 4,6-O-( R)-benzylidene-2,3-bis(0-diphenylphosphino)-D-gluco pyranoside on silica[ J ]. J. Mol. Cat., 1990(63): 319-334.
    [84] Kam T W , M ark E D .Design and synthesis of a heterogeneous asymmetric catalyst [ J ]. Nature, 1994, 370( 6489): 449 ~ 450.
    [85] Raynor S T , Thomas J M, Raja R, et al. A one-step enantioselective reduction of ethyl nicotinate to ethyl nipecotinate using a constrained, chiral, hetero- geneous catalyst. [ J ] .Chem.Commun.,2000: 1925-1926.
    [86] Selke R. Phosphinites of carbohydrates as chiral ligands for asymmetric synthesis catalyzed by complexes part Ⅲ.immobilization of cationic rhodium(I), chelates of phenyl 4,6-o-(R)-benzylidene-2,3-o-bis(diphenylphosphino)- β -glucopy ranoside of cation exchangersfor hydrogenation of dehydroamino acids[ J ]. J. Mol. Cat., 1986(37): 227-234.
    [87] Fan Q H, Deng G J, Lin C C, Chan A S C..Preparation of use of MeO- -PEG-supported chiral diphosphine ligands: soluble polymer-supported catalysts for asymmetric hydrogenation[ J ]..Tetrahedron: Asymmetry, 2001(12): 1241-1247.
    [88] Bayston D J, Frase J L, Ashton M R, et al. Preparation and Use of a Polymer Supported BINAP Hydrogenation Catalyst [ J ]. J.Org.Chem.,1998,63(9): 3137-3140.
    [89] Wolfson A ,Geresh S, Gottlieb M, et al . Heterogenization of Rh-MeDu- PHOS by occlusion in polyvinyl alcohol films. [ J ]. Tetrahedron:Asymmetry, 2002, 13: 465-468.
    [90] Baker G L, Fritschel S C,Stille J K. Transition-metal-catalyzed asymmetric organic synthesis via polymer-attached optically active phosphine ligands 6: asymmetric hydrogenation with polymer catalysts containing optically cative pendent alcohols. [ J ]. J. Org. Chem. 1981,46(15): 2960-2965.
    [91] Saluzzo C, Lamouille T, Guyader F L, et al.Synthesis and studies of 6,6'
     -BIANP derivatives for the heterogeneous asymmetric hydrogenation of methyl acetoacetate[ J ]. Tetrahedron: Asymmetriy, 2002,13(10): 1141-1146.
    [92] Yu H B, Hu Q S, Pu L . Synthesis of a rigid and optically active poly(B INAP) and its application in asymmetric catalysis.Tetrahedron Letter, 2000,41(10): 1681-1685.
    [93] Fan Q-H, Wang R.,Chan A S C. Polymer-supported chiral catalysts with positive support effects[ J ]. Bioorganic & Medicinal Chemistry Letters 2002, 12: 1867-1871.
    [94] (a) Fan Q-H, Liu G H, Deng G J,et al. New soluble bifunctional polymeric chiral ligands for enantioselectively catalytic reactions [ J ]. Tetrahedron Letters, 2001,42(11): 9047-9050. (b) Deng G J, Fan Q-H, Chen X M, et al. Dendritic BINAP based system for asymmetric hydrogenation of simple arylketones[ J ]. J. of Mol. Cat. A: Chem., 2003, 193:21-25.
    [95] Laghmari M, Sinou D. Chiral sulfonated phospines[ J ]. J. of Organomet. Chem., 1992,438:213-216.
    [96] Holz J, Heller D, Sturmer R, Borner A. [ J ]. Synthesis of the first water-solu- ble chiral tetrahydroxy diphosphine Rh(I) catalyst for enantioselective hydrogenation. Tetrahedron Lett. 1999,40: 7099-7062.
    [97] Rajanbabu T V, Yan Y Y, Shin S. Synthesis, Characterization, and application of neutral polyhydroxy phospholane derivatives and their rhodium(I) complex for reaction in organic and aqueous media[ J ]. J. Am. Chem. Soc, 2001, 123: 10207-10213.
    [98] (a) Wan K T, Davis M E. Aminoporphyrinic acid as a new template for polypeptide design[ J ]. J. Chem. Soc, Chem. Commun.1993, (2): 1262. (b) Wan K T, Davis M E. Ruthenium(II)-sulfonated BINAP : a novel water-soluble asymmetric hydrogenation catalysts[ J ]. Tetrahedron: Asymmetry 1993, 4(11): 2461. (c) Wan K T, Davies M E. J. Catalysis, 1994,148: 1-8.
    [99] Schmid R, Broger E A, Cereghetti M, et al. New development in enantioselec tive hydrogenation[ J ]. Pure Appl. Chem. 1996,68(1)131-138.
    [100] Yonehara, K.; Hashizume, T.; Mori, K.; Ohe, K.; Uemura, S. Novel Water-
     Soluble Bisphosphinite Chiral Ligands Derived from α,α-and β,β-Trehalose. Application to Asymmetric Hydrogenation of Dehydroamino Acids and Their Esters in Water or an Aqueous/Organic Biphasic Medium [J].J.Org. Chem. 1999, 64: 5593-5598.
    [101] Trinkhaus S, Kadyrov R, Selke R, et al. Internal vs external ionic functionality-a comparative study in the asymmetric hydrogenation in water as solvent[J]. J. of Mol. Cat. A: Chem., 1999, 144: 15-26.
    [102] Grassert I, Schmidt U, Ziegler S, et al. Use of rhodium complexes with amphiphilic and nonamphiphilic ligands for the preparation of chiral aminophosophonic acid asters by hydrogenation in micellar media[J]. Tetrahedron: Asymmetry, 1998, 9: 4193-4202.
    [103] 国家医药管理局信息中心.世界手性药物选集[M].北京:科学出版社,1994:156-158.
    [104] Pless Janos, Bauer Wilfried,Cardinaux Francis,et al. Synthesis, Opiate receptor binding and analgesic activity of enkephalin analogs[J]. Helv. Chim Acta 1979, 62(2): 398-411.
    [105] Jones Robert M, Bulaj Grzegorz. Conotoxins-new vistas for peptide therapeutic[J]. Current Pharmaceutical Design, 2000, 6(12): 1249-1285.
    [106] Kenichi Akaji, Yasunori Tamai, Yoshiaki Kiso. Efficient synthesis of peptaibol using a chloroimidazolidium coupling reagent, CIP [J]. Tetrahedron, 1997, 53(2): 567-584.
    [107] Yaeko Konda, Yukihiro Takahashi, Shiho Arima, et. al. First total synthesis of Mer-N5075A and a diastereomeric mixture of a and b-MAPI, new HIV-I protease inhibitors from a species ofStreptomyces[J]. Tetrahedron, 2001, 57: 4311-4321.
    [108] 林国强,陈耀全,陈新滋等著.手性合成——不对称反应及其应用[M].科学出版社,2000.
    [109] Corey E. J, Helal C. J. Reduction of carbonyl compounds with chiral oxazborolidine catalysts: A new paradigm for enantioselective catalysis and a powerful new synthetic method[J]. Angew. Chem. Int. Ed. Engl, 1998, 37(15): 1986-2021.
    [110] Jones T. K, Mohan J. J, Xavier L. C,et. al. An asymmetric synthesis of MK-0417. Observations on oxazaborolidine-catalyzed reductions[J]. J. Org. Chem, 1991, 56(2): 763-769.
    [111] Evans D. A, Faul M. M, Bilodeau M. T, et. al. Bis(oxazoline)-copper complexes as chiral catalysts for the enantioselective aziddination of olefins[J]. J. Am. Chem. Soc., 1993, 115(12): 5328-5329.
    [112] Evans D. A, Miller S. J, Lectka T. Bis(oxazoline)copper(Ⅱ) complexes as chiral catalysts for the enantioselective Diels-Alder reaction[J]. J. Am. Chem. Soc., 1993, 115(14): 6460-6461
    [113] 孙兰英,李卓荣,郭惠元.(S)-2-氨基丙醇的硼氢化钠制备[J].中国医药工业杂志,2000,31(11):512-513.
    [114] 杨运旭,敬永生.(S)-(+)-2-氨基丙醇的KBH4还原合成法[J].中国医药工业杂志,2003,34(2):65.
    [115] 陈坤,龚平.(S)-(+)2氨基丙醇合成工艺改进[J].精细化工,2004,21(4):188-190.
    [116] 韦丽红,李志远,陈治宇等.酶催化酯交换法拆分手性2-氨基丙醇光学异构体[J].中国药物化学杂志,2002,12(1):43-44.
    [117] Arzeno H B, Morgans D J. Selective amidination of diamines[P]. Syntex, Inc., EP 260118, 1988, June 7.
    [118] Kuo-Long Y, William E H. Synthesis of 1, 3-diamino-2-hydroxypropane derivatives as pseusymmetric HIV protease inhibitors[J]. Bioorganic & Medicinal Chemistry Letters, 1993, 3(4): 535-538.
    [119] Hans M, Manfred S, Wilfrid S, et al. Tetralaydroisoquinoline-3-carboxylate based matrix-metalloproteinase inhibitors: design aynthesis and structure-activity relationship[J]. Bioorganic and Medicinal Chemistry, 2002, 10(11): 3529-3544
    [120] Sambasivara K, Nampally S. Synthesis of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivateies by cycloaddition approaches[J]. Eur. J. Org. Chem., 2001, (17): 3375-3383.
    [121] 何立文 黄文龙 彭司勋等,立体选择性合成异喹啉生物碱的最新进展[J].药学进展,1997,21(1):31-35.
    [122] (a) Jame E T, Amy J P, Madeleine M J. Total synthesis of conformationally constrained didemnin B analogues,replacements of N.O.-dimethyltyrosine with L-1,2,3,4-tetrahydroisoquinoline and-1,2,3,4-tetrahydro-7-methoxyisoquinoline[J]. J. Org. Chem., 2001, 66(23): 7575-7587. (b) Amy J P, Matthew D V, Xiaobin D et al. Synthesis and biological activity of [Tic5]Didemnin B[J]. Bioorganic and Medicinal Chemstry Letters, 1998, 8(24): 3653-3656.
    [123] Subramaniyan G, Raghunathan R, Nethaji M. A facile entry into a new class of spiroheterocycles: synthesis of dispiro[oxindolechromanone/flavanone/tetralone]pymoloisoquinoline ring systems[J]. Tetrahydron, 2002, 58(44): 9075-9079
    [124] Kimiaki H, Yasuhiko O, Ken-ichi N, et al. Facile preparation of optically pure (3S) and (3R)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid [J]. Chem. Pharm. Bull., 1983, 31(1): 321-324.
    [125] Kammermeier B O T, Lench U. Effecient syntheisis of racemic and enantio-merically pure 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid and esters[J]. Synthesis, 1992,(11): 1157-60.
    [126] Sambasivarao K, Nampally S. A new synthetic appraoch to 1,2,3,4-tetrahy droisoquinoline-3-carboxylic acid derivatives by a [2+2+2] cycloadditiona reaction[J]. Bioorganic & Medicinal Chemistry Letters, 2000, 10: 1413-1415.
    [127] 李良助,宋艳玲,袁晋芳等.有机合成原理和技术[M].北京:高等教育出版社,1992:225-243。
    [128] Fryzuk M D, Bosnich B. Asymmetric synthesis. Production of optically active amino acids by catalytic hydrogenation [J]. J. Am. Chem. Soc., 1977, 99(19): 6262-6265.
    [129] Kangan H B, Dang T P. Asymmetric catalytic reduction with transition metal complexes. I. A catalytic system of Rhodium(I) with (-)2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphos-phino)butane, a new chiral diphosphine[J]. J. Am. Chem. Soc., 1972, 94(18): 6262-6265.
    [130] King R B, Bakos J, Marko L.1,2-Bis(diphenylphospino)-1-phenylethane: a chiral ditertiary phosphine derived from mandelic acid used as a ligand in asymmetric homogeneous hydrogenation catalysis[J]. J. Org. Chem. 1979, 44(10): 1729-1731
    [131] Kreuzfeld H.-J, Schimdt U, Dobler C, et al. Enantioselective hydrogenation of dehydroamino acid derivatives using PINDOPHOS-rhdium as chiral catalyst[J]. Tetrahedron: Asmmetry, 1996, 7(4): 1011-1018.
    [132] Dobler Ch, Schmidt U, Krause H W, et al. Enantioselective hydrogenation using a rigid bicyclic aminophosphine phosphinite ligand[J]. Tetrahedron: Asymmetry, 1995, 6(2): 385-388.
    [133] Agbossou F, Carpentier J.-F, Hatat C, et al. Neutral Rhdium(Ⅰ) aminophos-phinephosphinite complexes: synthesis, structure, and use in catalytic compounds[J]. Organom etallics, 1995, 14: 2480-2489.
    [134] Cobley C J, Lenno I C, McCague R, et al. On the economic application of DuPHOS rhodium(Ⅰ) catalysts: a comparison of COD versus NBD precatalysts[J]. Tetrahedron Lett. 2001, 42: 7481-7483.
    [135] Agbossou F, Carpentier J.-F, Hatat C, et al. Neutral Rhdium(Ⅰ) aminophos phine-phosphinite complexes :synthesis, structure, and use in catalytic compounds[J]. Organometallics, 1995, 14: 2480-2489.
    [136] Cobley C J, Lenno I C, McCague R, et al. On the economic application of DuPHOS rhodium(Ⅰ) catalysts: a comparison of COD versus NBD precatalysts[J]. Tetrahedron Lett. 2001, 42: 7481-7483.
    [137] Knowles W S. Asymmetric hydrogenation [J]. Acc. Chem. Res., 1983, 16(3): 106-112.
    [138] Scott W. Preparation of L-phenylanaline by asymmetric catalytic hydrogenation[J]. Ind. Chem. News, 1986, 7: 32-34.
    [139] Mashima K. Highly stereoselective asymmetric hydrogenation of α-benzamidomethyl-3-oxobutanoate catalyzed by cationic binap-ruthenium(Ⅱ) complexes[J]. Chem. Commun., 1991(9): 609-612.
    [140] Chrisp P, GoaK L. Preparation of α-amino acids[J]. Drugs, 1990, 39: 523-525
    [141] 张生勇,孙晓莉,李晓晔.手性磷-硼烷络合物的合成及其不对称氢化中的应用[P],CN1264706A,1999.2.23.
    [142] 杨海燕,张生日.阿力甜性质优良的甜味剂[J].中国食品添加剂,2000,(3):23-25.
    [143] Paulca M T,Flernani L S M, Lwis S M. Synthesis ofnon-proteinogenic amino acid from N-(4-toluenesulfonyl)dehydroamino acid derivatives[J]. Tetrahedron Lett., 2002, 43(25): 4495-4497.
    [144] Michael D G, Virander C, Yasuymki S, et al. Synthesis of dehydrolibrin[J]. J. Org. Chem., 1981, 41(13): 2671-2673.
    [145] Roger L, Christophe M. Unambiguous praparation of a chemodifferent tintiated-diaminopropionic ester through Michael addition onto a dehydroalanine derivative[J]. J. Org. Chem. 1986, 51(1): 249-251.
    [146] Nugent W, Aloysius D. Process for the efficient of N-substituted dehydroamino acid esters[P]. Wo 96/16021, 1996-5-30.
    [147] Ryszard A, Andrzej C. Dehydration of β-hydrooxyamino acids with N, N-carbomyldimidazole[J]. Synthesis 1982, (11): 968-969.
    [148] Karen G, Andrew F P. The synthesis of dehydroamino acid esters from hydroxyamino esters using haloactylalides[J]. J.. Chem. Research(s),2000,(2): 54-55
    [149] Cesaino B, Ermanno D, Leonardo M, et al. Steraospecific Synthesis of N-(diphenylmethylene) α, β-didedydroamino acid methylesters from β-hydroxy-aminoacids[J]. Synthesis, 1990,(9): 779-781.
    [150] Kolasa T. An effective synthesis of α, β-dehydro-amino acid derivatives from N-acy-N-hydroxy-α-amino acid[J]. Syn. Comm., 1983, 7: 539.
    [151] 世古,信三等,特开平8-27082,1996.1-30.
    [152] Aldern J K, Richard K O. A convenient, large-scale preparation of α-acetamidoaacrylic acid and its methyl ester[J]. Synthesis, 1977, (7): 450-453.
    [153] 樊能延.有机合成事典[M].北京:北京理工大学出版社,1995(第二版):39.
    [154] Fan Q-H, Deng G-J, Lin C-C, Chan A S C. [J]. Preparation of use of MeO-PEG-supported chiral diphosphine ligands: soluble polymer-supported atalysts for asymmetric hydrogenation[J]. Tetrahedron: Asymmetry, 2001(12), 1241-1247
    [155] Fan Q-H, Wang R., Chan A S C. Polymer-supported chiral catalysts with positive support effects[J]. Bioorganic & Medicinal Chemistry Letters 2002, 12: 1867-1871.
    [156] Fan Q-H, Liu G H, Deng G J, et al. New soluble bifunctional polymeric chiral ligands for enantioselectively catalytic reactions[J]. Tetrahedron Letters, 2001, 42: 9047-9050.
    [157] Deng G J, Fan Q-H, Chen X M, et al. Dendritic BINAP based system for asymmetric hydrogenation of simple arylketones[J]. J. of Mol. Cat. A: Chem., 2003, 193: 21-22.
    [158] Zhao D Y, Huo Q S, Feng J L, et al. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures[J]. J Am. Chem. Soc., 1998, 120(24): 6024-6036.
    [159] 黄惟德,陈常庆.多肽合成[M].北京:科学出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700