手性胺膦—铱络合物的制备及在不对称催化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不对称催化合成的核心问题是具有高对映选择性和催化活性的手性催化剂的设计与合成。本论文从手性四齿胺膦配体出发,首次制备了几种手性胺膦-铱络合物,并对其进行了EA、IR、NMR及CD等结构表征。进而将其用于催化酮的不对称转移氢化和消旋二级醇的氧化动力学拆分,获得了非常高的手性效率。
     1、将手性胺膦配体C_6P_2N_2、C_6P_2(NH)_2分别与铱化合物[IrCl(cod)]_2在室温下反应,方便地制备了一系列手性胺膦-铱络合物,并对其进行了EA、IR、NMR及CD等结构表征。该类络合物合成简便,对空气和水稳定。
     2、发现了自行制备的几种手性胺膦-铱络合物用于催化多种芳香酮的不对称转移氢化,其中手性胺膦-铱络合物[IrCI-C_6P_2(NH)_2]在温和条件下表现出非常高的催化活性和对映选择性。对于苯基环己基酮和1,1-二苯基丙酮,反应的转化率高达99%;对映选择性则分别高达98%和99%ee。手性胺膦.铱络合物[IrCl-C_6P_2(NH)_2]还能在温和条件下高效催化苯丙酮的不对称转移氢化反应。即便底物与催化剂的摩尔比高达5000:1,仍可获得96%转化率和88%ee,TOF高达1593 h~(-1)。这一结果充分说明手性胺膦-铱络合物[IrCl-C_6P_2(NH)_2]是芳香酮不对称转移氢化反应的优秀催化剂,具有潜在的应用前景。对于二烷基酮的不对称转移氢化反应,该络合物的催化结果不令人满意,说明催化剂对底物有严格的选择性。芳香酮分子中具有π电子的苯环是获得高活性和高对映选择性的重要因素之一。
     3、将自行制备的手性胺膦-铱络合物用于催化水溶液中芳香醇的不对称氧化反应,并考察了氧化剂种类及其用量、温度等对反应的影响。当叔丁基过氧化氢作为氧化剂时,1-苯丙醇的不对称氧化反应能够得到高达96%的产率,但几乎不具对映选择性。
     4、首次发现了手性胺膦-铱络合物[IrCl-C_6P_2(NH)_2]可用于催化多种消旋二级醇的动力学拆分反应,温和条件下表现出非常好的催化活性和对映选择性,ee值最高可达98%。碱对于消旋醇的动力学拆分有着重要的影响,加入适量的碱会提高反应的转化率和ee值。其原因可能是碱能够促使手性金属络合物生成金属氢化物催化活性中间体,从而加速反应进行。该实验结果是手性四齿胺膦配体C_6P_2(NH)_2及其金属络合物在消旋二级醇的氧化动力学拆分领域的首次应用,它的成功进一步拓宽了手性胺膦配体及其金属络合物在不对称催化中的应用范围,表明白行制备的手性胺膦.铱络合物[IrCl-C_6P_2(NH)_2]是一种高效、具一定通用性的新型手性催化剂
The design and synthesis of new chiral catalyst with high reactivity as well as excellent enantioselectivity have played a significant role in the development of the asymmetric catalytic reactions. In this dissertation, we first synthesized several chiral aminophosphine-Ir(I) complexes using the interaction of [IrCl(cod)]_2 with chiral tetradentate aminophosphine ligands. The new chiral iridium(I) complex catalysts were successfully applied to asymmetric transfer hydrogenation of various aromatic ketones and oxidative kinetic resolution of racemic secondary alcohols.
     1. The interaction of [IrCl(cod)]_2 with two equivalents chiral tetradentate aminophosphine ligands C_6P_2N_2 or CeP_2(NH)_2 in a 1:1 mixture of benzene-methanol at room temperature gave corresponding chiral aminophosphine-Ir(I) complexes, which were characterized by EA, IR, NMR and CD. The workup procedure is simple and the complexes are stable with respect to air and water.
     2. The new chiral iridium(I) complexes [IrCl-C_6P_2(NH)_2] were applied to catalyze the asymmetric transfer hydrogenation of various aromatic ketones. The results showed that the corresponding chiral alcohols could be obtained with high activity (up to 99% yield) and excellent enantioselectivities (up to 99% ee) under mild conditions. Propiophenone was a preferred substrate with respect to catalytic activity and enantioselectivity in the presence of base. The catalytic turnover reached 4780 mol product/mol iridium and the turnover frequency was as high as 1593 h~(-1). These results would provide a useful index for further designing practical chiral catalytic systems.
     However, when other dialkyl ketones were used as substrates, chiral diaminodiphosphine-Ir(I) catalyst did not exhibit a similar high enantioselectivity as found for aromatic ketones, which indicated that the activity and enantioselectivity of the chiral iridium catalyst are very sensitive to the substrate structure.
     3. We also investigated the enantioselective oxidation of aromatic alcohols catalyzed by chiral aminophosphine-Ir(I) complexes in water. With 'BuOOH as oxidant, the asymmetric oxidation of 1-phenylpropyl alcohol gave high reactivity but no enantioselectivity.
     4. Chiral diaminodiphosphine-Ir(I) complexes [IrCl-C_6P_2(NH)_2] were found to efficiently catalyze enantioselective oxidation of racemic secondary alcohols in acetone. In the presence of base, oxidative kinetic resolution of the alcohols proceeded smoothly with excellent enantioselectivity (up to 98% ee) under mild conditions. This work presents the first successful use of chiral diaminodiphosphine ligands C_6P_2(NH)_2 and their metal complex catalysts for the oxidative kinetic resolution of racemic secondary alcohols, which provides a valuable extension to the use of chiral diaminodiphosphine ligands in asymmetric catalysis.
引文
[1] Noyori R. Asymmetric catalysis in organic synthesis [M]. New York: John & Sons, 1994.
    
    [2] Nozaki H., Moriuti S., Takaya H., Noyori R. Asymmetric induction in carbenoid reaction bymeans of a dissymmetric copper chelate [J]. Tetrahedron Lett., 1966,7: 5239.
    
    [3] Knowles W. S., Sabacky M. J. Catalytic asymmetric hydrogenation employing a soluble,optically active, rhodium complex [J]. J. Chem. Soc. Chem. Comm., 1968,1445.
    
    [4] Horner L., Siegel H., Huthe H. Asymmetric catalytic hydrogenation with an optically activephosphinerhodium complex in homogeneous solution [J]. Angew. Chem. Int. Ed. Engl., 1968,7: 942.
    
    [5] Uozumi Y., Hayashi T. Catalytic asymmetric synthesis of optically active 2-alkanols viahydrosilylation of 1-alkenes with a chiral monophosphine-palladium catalyst [J]. J. Am. Chem.Soc, 1991,113:9887.
    
    [6] Uozumi Y., Tanahashi A., Lee S. Y., Hayashi T. Synthesis of optically active2-(diarylphosphino)-1,1'-binaphthyls, efficient chiral monodentate phosphine ligands [J]. J.Org.Chem., 1993,58: 1945.
    
    [7] Hayashi T, Iwamura H., Naito M., Matsumoto Y, Uozumi Y, Miki M., Yanagi K. Catalyticasymmetric reduction of allylic esters with formic acid catalyzed by palladium-MOPcomplexes [J]. J. Am. Chem. Soc., 1994,116: 775.
    
    [8] Brenchley G, Merifield E., Wills M., Fedouloff M. A new class of chiral phosphorus catalystfor asymmetric palladium catalysed allylic substitution reactions [J]. Tetrahedron Lett., 1994,35:2791.
    
    [9] Uozumi Y, Suzuki N., Ogiwara A., Hayashi T. Preparation of optically active binaphthyl-monophosphines (MOP's) containing various functional groups [J]. Tetrahedron, 1994, 50:4293.
    
    [10] Marinetti A. An investigation into a palladium catalyzed hydrosilylation of olefins [J]. Tetrahedron Lett., 1994, 35: 5861.
    
    [11] Marinetti A., Ricard L. Phosphetanes as chiral ligands for catalytic asymmetric reactions: hydrosilylation of olefins [J]. Organometallics, 1994,13: 3956.
    
    [12] Kitayama K., Uozumi Y, Hayashi T. Palladium-catalyzed asymmetric hydrosilylation ofstyrenes with a new chiral monodentate phosphine ligand [J]. J. Chem. Soc, Chem.Commun., 1995,1533.
    
    [13] Kitayama K, Tsuji H, Uozumi Y, Hayashi T. Asymmetric hydrosilylation of cyclic 1,3-dienescatalyzed by an axially chiral monophosphine-palladium complex [J]. Tetrahedron Lett.,1996, 37: 4169.
    
    [14] Hamada Y, Seto N., Ohmori H., Hatano K. New monodentate chiral phosphine2,6-dimethyl-9-phenyl-9-phosphabicyclo[3.3.1]nonane(9-PBN): Application to asymmetricallylic substitution reaction [J]. Tetrahedron Lett., 1996, 37: 7565.
    
    [15] Chen Z. G, Jiang Q. Z., Xiao D. M., Zhu G X., Cao P., Guo C, Zhang X. M. Syntheses ofnovel chiral monophosphines, 2,5-dialkyl-7-phenyl-7-phosphabicyclo- [2.2.1]heptanes, andtheir application in highly enantioselective Pd-catalyzed allylic alkylations [J]. J. Org. Chem.,1997,62:4521.
    
    [16] Zhu G X., Chen Z. G, Jiang Q. Z., Xiao D. M., Cao P., Zhang X. M. Asymmetric [3 + 2]cycloaddition of 2,3-butadienoates with electron-deficient olefins catalyzed by novel chiral2,5-dialkyl-7-phenyl-7- phosphabicyclo[2.2.1]heptanes [J]. J. Am. Chem. Soc, 1997, 119:3836.
    
    [17] Meek D. W. Homogeneous catalysis with metal phosphine complexes [M]. New York:Plenum Press, 1983.
    
    [18] Kagan H. B., Dang T. P. Asymmetric catalytic reduction with transition metal complexes. I.Catalytic system of rhodium(I) with (-)-2,3-O-isopropylidene-2,3-dihydroxy-l,4-bis(diphenyl-phosphino)butane, a new chiral diphosphine [J]. J. Am. Chem. Soc., 1972, 94:6429.
    
    [19] Fryzuk M. D., Bosnich B. Asymmetric synthesis. Production of optically active amino acidsby catalytic hydrogenation [J]. J. Am. Chem. Soc., 1977,99: 6262.
    
    [20] Behar D., Neta P. Mcneil P. A., Roberts N. K., Bonisch B. Intramolecular electron transferand dehalogenation of anion radicals. 4. Haloacetophenones and related compounds [J]. J.Am. Chem. Soc., 1981, 103: 2280.
    
    [21] Miyashita A., Yasuda A., Takaya H., Toriumi K., Ito T., Souchi T., Noyori R. Synthesis of2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), an atropisomeric chiral bis(triaryl)-phosphine, and its use in the rhodium(I)-catalyzed asymmetric hydrogenation of alpha-(acylamino)acrylic acids [J]. J. Am. Chem. Soc., 1980, 102: 7932.
    
    [22] Miyashita A., Takaya H., Souchi T., Noyori R. 2, 2'-bis(diphenylphosphino)-1,1'-binaphthyl(binap): A new atropisomeric bis(triaryl)phosphine. synthesis and its use in theRh(I)-catalyzed asymmetric hydrogenation of α-(acylamino)acrylic acids [J]. Tetrahedron,1984,40:1245.
    
    [23] Ikariya T., Ishii Y, Kawano H., Arai T., Saburi M., Yoshikawa S., Akutagawa S. Synthesis ofnovel chiral ruthenium complexes of 2, 2'-bis(diphenylphosphino)-1,1'-binaphthyl and theiruse as asymmetric catalysts [J]. J. Chem. Soc. Chem. Commun., 1985: 922.
    
    [24] Takaya H., Mashima K.., Koyano K., Yagi M., Kumobayashi H., Taketomi T., Akutagawa S.,Noyori R. Practical synthesis of (R)- or (S)-2,2'-bis(diarylphosphino)-1,1'-binaphthyls(BINAPs) [J]. J. Org. Chem., 1986, 51: 629.
    
    [25] Noyori R., Takaya H. BINAP: an efficient chiral element for asymmetric catalysis [J]. AcC.Chem. Res., 1990,23: 345.
    
    [26] Ohta T., Takaya H., Kitamura M., Nagai K., Noyori R. Asymmetric hydrogenation ofunsaturated carboxylic acids catalyzed by BINAP-ruthenium(II) complexes [J]. J. Org.Chem., 1987,52:3174.
    
    [27] Kitamura M., Ohkuma T., Inoue S., Sayo N., Kumobayashi H., Akutagawa S., Ohta T.,Takaya H., Noyori R. Homogeneous asymmetric hydrogenation of functionalized ketones [J].J. Am. Chem. Soc, 1988,110: 629.
    
    [28] Noyori R., Ikeda T., Ohkuma T., Widhalm M., Kitamura M., Takaya H., Akutagawa S., SayoN., Saito T., Taketomi T., Kumobayashis H. Stereoselective hydrogenation via dynamickinetic resolution [J]. J. Am. Chem. Soc, 1989, 111: 9134.
    
    [29] Burk M. J., Feaster J. E., Harlow R. L. New electron-rich chiral phosphines for asymmetriccatalysis [J]. Organometallics, 1990,9: 2653.
    
    [30] Burk M. J. C_2-symmetric bis(phospholanes) and their use in highly enantioselectivehydrogenation reactions [J]. J. Am. Chem. Soc, 1991, 113: 8518.
    
    [31] Burk M. J., Feaster J. E., Nugent W. A., Harlow R. L. Preparation and use of C2-symmetricbis(phospholanes): production of .alpha.-amino acid derivatives via highly enantioselectivehydrogenation reactions [J]. J. Am. Chem. Soc, 1993, 115: 10125.
    
    [32] Burk M. J., Lee J. R., Martinez J. P. A Versatile tandem catalysis procedure for thepreparation of novel amino acids and peptides [J]. J. Am. Chem. Soc, 1994,116: 10847.
    
    [33] Burk M. J., Gross M. F., Martinez J. P. Asymmetric catalytic synthesis of beta-branchedamino acids via highly enantioselective hydrogenation of alpha-enamides [J]. J. Am. Chem.Soc, 1995, 117:9375.
    
    [34] Fache F., Schulz E., Tommasino M. L., Lemaire M. Nitrogen-containing ligands forasymmetric homogeneous and heterogeneous catalysis [J]. Chem. Rev., 2000,100: 2159.
    
    [35] Gamez P., Fache F., Mangeney P., Lemaire M. Enantioselective catalytic reduction of ketonesusing C_2-symmetric diamines as chiral ligands [J]. Tetrahedron Lett., 1993,34: 6897.
    
    [36] Hashiguchi S., Fujii A., Takehara J., Ikariya T., Noyori R. Asymmetric transfer hydrogenationof aromatic ketones catalyzed by chiral ruthenium(II) complexes [J]. J. Am. Chem. Soc,1995,117:7562.
    
    [37] Temme O.,Taj S. A., Andersson P. G Highly enantioselective intermolecular Cu(I)-catalyzedcyclopropanation of cyclic enol ethers. Asymmetric total synthesis of (+)-quebrachamine [J].J.Org. Chem., 1998,63:6007.
    
    [38] Evans D. A., Butgey C. S., Paras N. A., Vojkovsky T., Tregay S. W. C_2-symmetric copper(II)complexes as chiral Lewis acids. Enantioselective catalysis of the glyoxylate-ene reaction [J].J. Am. Chem. Soc, 1998, 120: 5824.
    
    [39] Hanessian S., Yang R. Y. Enantioselective allylation of a-ketoester oximes with an externalchiral ligand: Asymmetric synthesis of allylglycines and allylalanine [J]. Tetrahedron Lett.,1996,37: 8997.
    
    [40] Honda Y, Date T., Hiramatsu H., Yamauchi M. Enantioselective catalytic Diels-Alderreaction of ethyl 2-benzoylacrylate with chiral bis(oxazoline)- ormono(oxazoline)-magnesium complex [J]. Chem. Commun., 1997: 1411.
    
    [41] Takada H., Nishibayashi Y, Ohe K., Uemura S., Baird C. P., Sparey T. J., Taylor P. C. Catalytic asymmetric sulfimidation [J]. J. Org. Chem., 1997,62:6512.
    [42] Bedekar A. V., Andersson P. G A new class of bis-oxazoline ligands for the Cu-catalysed asymmetric cyclopropanation of olefins [J]. Tetrahedron Lett., 1996,37: 4073.
    [43] Bedekar A. V, Koroleva E. B., Andersson P. G Investigation of the effects of the structure and chelate size of bis-oxazoline ligands in the asymmetric copper-catalyzed cyclopropanation of olefins: design of a new class of ligands [J]. J. Org. Chem., 1997, 62: 2518.
    [44] Imai Y, Zhang W., Kida T., Nakatsuji Y, Ikeda I. Novel C2-symmetric chiral bisoxazoline ligands in rhodium(I)-catalyzed asymmetric hydrosilylation [J]. Tetrahedron: Asymmetry, 1996, 7: 2453.
    [45] Uozumi Y, Kyota H., Kishi E., Kitayama K., Hayashi T. Homochiral 2,2'-bis(oxazolyl)-1,1'- binaphthyls as ligands for copper(I)-catalyzed asymmetric cyclopropanation [J]. Tetrahedron: Asymmetry, 1996, 7: 1603.
    [46] Kim S. G, Cho C. W., Ahn K. H. Synthesis of chiral bis(oxazolinyl)biferrocene ligands and their application to Cu(I)-catalyzed asymmetric cyclopropanation [J]. Tetrahedron: Asymmetry, 1997, 8: 1023.
    [47] Chelucci G, Medici S., Saba A. Chiral oxazolinylpyridines as ligands for enantioselective palladium catalysed allylic substitution [J]. Tetrahedron: Asymmetry, 1997, 8: 3183.
    [48] Nordstrom K., Macedo E., Moberg C. Enantioselective allylic substitutions catalyzed by [(hydroxyalkyl)pyridinooxazoline]- and [(alkoxyalkyl)pyridinooxazoline]palladium complexes [J]. J. Org. Chem., 1997,62: 1604.
    [49] Bremberg U., Rahm R, Moberg C. Palladium-catalyzed allylic alkylation using pyridino-oxazolines and quinolino-oxazolines as ligands - influence of steric factors [J]. Tetrahedron: Asymmetry, 1998,9: 3437.
    [50] Fritschi H., Leutenegger U., Pfaitz A. Chiral copper-semicorrin complexes as enantioselective catalysts for the cyclopropanation of olefins by diazo compounds [J]. Angew. Chem. Int. Ed. Engl., 1986,25: 1005.
    [51] Misun M., Pfaitz A. Enantioselective reduction of electrophilic C=C bonds with sodium tetrahydroborate and 'semicorrin' cobalt catalysts [J]. Helv. Chim. Acta., 1996, 79: 961.
    
    [52] Chelucci G, Pinna G A., Saba A. Enantioselective palladium catalyzed allylic substitution with 2,2 '-bipyridine ligands [J]. Tetrahedron: Asymmetry, 1998, 9: 531.
    [53] Gladiali S., Pinna L., Delogu G, De Martin S., Zassinovich G, Mestroni G Optically active phenanthrolines in asymmetric catalysis. III. Highly efficient enantioselective transfer hydrogenation of acetophenone by chiral rhodium/3-alkyl phenanthroline catalysts [J]. Tetrahedron: Asymmetry, 1990,1: 621.
    [54] Evans D. A., MacMillan D. W. C, Campos K. R. C2-symmetric tin(II) complexes as chiral Lewis acids. Catalytic enantioselective anti aldol additions of enolsilanes to glyoxylate and pyruvate esters [J]. J. Am. Chem. Soc, 1997, 119: 10859.
    
    
    
    [55] Evans D. A., Kozlowski M. C, Burgey C. S., MacMillan D. W. C. C_2-symmetric copper(II)complexes as chiral Lewis acids. Catalytic enantioselective aldol additions of enolsilanes topyruvate esters [J]. J. Am. Chem. Soc., 1997, 119: 7893.
    
    [56] Nishiyama H., Itoh Y., Matsumoto H., Park S. B., Itoh K. New chiral rutheniumbis(oxazolinyl)pyridine catalyst. Efficient asymmetric cyclopropanation of olefins withdiazoacetates [J]. J. Am. Chem. Soc., 1994,116: 2223.
    
    [57] Davies I. W., Gerena L., Cai D., Larsen R. D., Verhoeven T. R., Reider P. J. A conformationaltoolbox of oxazoline ligands [J]. Tetrahedron Lett., 1997, 38: 1145.
    
    [58] Jiang Y., Jiang Q., Zhang X. A new chiral bis(oxazolinlymethyl)amine ligand forRu-catalyzed asymmetric transfer hydrogenation of ketones [J]. J. Am. Chem. Soc, 1998,120:3817.
    
    [59] Bolm C, Kadereit D., Valacchi M. Enantioselective olefin epoxidation with chiralmanganese/1,4,7-triazacyclononane complexes [J]. Synlett, 1997: 687.
    
    [60] Williams D. R., Fromhold M. G Enantioselective alkylation of aldehydes with diethylzinccatalyzed by C-2-symmetric ligands [J]. Synlett., 1997: 523.
    
    [61] Dangel B. D., Polt R. Catalysis by amino acid-derived tetracoordinate complexes:Enantioselective addition of dialkylzincs to aliphatic and aromatic aldehydes [J]. Org. Lett.,2000, 2: 3003.
    
    [62] Fonseca M. H., Eibler E., Zabel M., Konig B. Synthesis, structure and catalytic activity ofnew chiral nitrogen-containing ligands [J]. Inorg. Chim. Acta, 2003,352: 136.
    
    [63] Fonseca M. H., Eibler E., Zabel M., Konig B. Synthesis of novel nitrogen-containing ligandsfor the enantioselective addition of diethylzinc to aldehydes [J]. Tetrahedron: Asymmetry,2003, 14: 1989.
    
    [64] Kaiser N. F., Bremberg U., Larhed M., Moberg C, Hallberg A. Fast, convenient, and efficientmolybdenum-catalyzed asymmetric allylic alkylation under noninert conditions: An exampleof microwave-promoted fast chemistry [J]. Angew. Chem. Int. Ed., 2000,39: 3595.
    
    [65] Belda O., Kaiser N. F., Bremberg U., Larhed M, Hallberg A., Moberg C. Highly stereo- andregioselective allylations catalyzed by Mo-pyridylamide complexes: Electronic and stericeffects of the ligand [J]. J. Org. Chem., 2000,65: 5868.
    
    [66] Malkov A., Spoor P., Vinader V., Kocovsky P. Asymmetric molybdenum(0)-catalyzed allylicsubstitution [J]. Tetrahedron Lett., 2001,42: 509.
    
    [67] Trost B. M., Dogra K., Hachiya I., Emura T., Hughes D. L., Krska S., Reamer R. A., PaluckiM., Yasuda N., Reider P. J. Designed ligands as probes for the catalytic binding mode inMo-catalyzed asymmetric allylic alkylation [J]. Angew. Chem. Int. Ed., 2002,41: 1929.
    
    [68] End N., Pfaltz A. Enantioselective epoxidation catalysed by ruthenium complexes with chiraltetradentate bisamide ligands [J]. Chem. Commun., 1998, 589.
    
    [69] Pastor I. M., Adolfsson H. Novel highly modular C_2-symmetric oxazoline ligands-applicationin titanium-catalyzed diethylzinc additions to aldehydes [J]. Tetrahedron Lett., 2002, 43: 1743.
    [70] Mizushima E., Ohi H., Yamaguchi M., Yamagishi T. Asymmetric transfer hydrogenation of aryl-alkyl ketones catalyzed by ruthenium(II) complexes having chiral pyridylmethylamine and phosphine ligands [J]. J. Mol. Catal. A: Chem., 1999, 149:43.
    [71] Dai H. C, Hu X. P., Chen H. L., Bai C. M., Zheng Z. New efficient P,N,O-tridentate ligands for Ru-catalyzed asymmetric transfer hydrogenation [J]. Tetrahedron: Asymmetry, 2003, 14: 1467.
    [72] Maj A. M., Pietrusiewicz K. M., Suisse I., Agbossou F., Mortreux A. P-chiral beta- aminophosphine oxides vs. beta-aminophosphines as auxiliaries for ruthenium catalysed enantioselective transfer hydrogenation of arylketones [J]. J. Organomet. Chem., 2001, 626: 157.
    [73] Braunstein P., Graiff C., Naud F., Pfaltz A., Tiripicchio A. Synthesis and crystal structures of Ru(II) complexes containing chelating (phosphinomethyl)oxazoline P,N-type ligands and asymmetric catalytic transfer hydrogenation of acetophenone in propan-2-ol [J]. Inorg. Chem., 2000, 39: 4468.
    [74] Braunstein P., Naud F., Pfaltz A., Rettig S. J. Ruthenium complexes with novel tridentate N,P,N ligands containing a phosphonite bridge between two chiral oxazolines. Catalytic activity in cyclopropanation of olefins and transfer hydrogenation of acetophenone [J]. Organometallics, 2000, 19: 2676.
    [75] Landis C. R., Sawyer R. A., Somsook E. Synthesis and characterization of a chiral, aza-15- crown-5-functionalized ferrocenyldiphosphine ligand for asymmetric catalysis [J]. Organometallics, 2000,19: 994.
    [76] Quirmbach M., Holz J., Tararov V. I., Borner A. Synthesis of heterofunctionalized multidentate diphosphines [J]. Tetrahedron, 2000, 56: 775.
    [77] Hayashi T., Konishi M., Fukushima M., Kanehira K., Hioki T., Kumada M. Chiral (beta-aminoalkyl)phosphines. Highly efficient phosphine ligands for catalytic asymmetric Grignard cross-coupling [J]. J. Org. Chem., 1983,48: 2195.
    [78] Anderson J. C, Cubbon R. J., Harling J. D. Investigation of the importance of nitrogen substituents in a N-P chiral ligand for enantioselective allylic alkylation [J]. Tetrahedron: Asymmetry, 2001, 12: 923.
    [79] Dahlenburg L., Gotz R. Functional phosphanes Part XI. Optically pure beta-aminophosphanes and beta-aminophosphinites for complex-catalyzed reduction of organic carbonyl compounds. Molecular structure of [(1R,2R)-Ph_2PCH(Ph)CH(Me)NH_2Me]Cl, (1R,2S)-Ph_2PCH(Ph)CH(Me)NHSO_2Me and [{(1R,2R)-Ph_2PCH(Ph)CH(Me)NHMe-κN,κP}Rh(η~4-1,5-C_8H_(12))]BF_4 [J]. J. Organomet. Chem., 2001,619: 88.
    [80] Hayashi T., Yamamoto K.., Kumada M. Asymmetric catalytic hydrosilylation of ketones preparation of chiral ferrocenylphosphines as chiral ligands [J]. Tetrahedron Lett., 1974,
    
    ??4405.
    
    [81] Hayashi T., Konishi M., Fukushima M., Mise T., Kagotani M., Tajika M., Kumada M.Asymmetric synthesis catalyzed by chiral ferrocenylphosphine-transition metal complexes. 2.Nickel- and palladium-catalyzed asymmetric Grignard cross-coupling [J]. J. Am. Chem. Soc.,1982, 104: 180.
    
    [82] Uemura M., Miyake R., Nishimura H., Matsumoto Y., Hayashi T. New chiral phosphineligands containing (η~6-arene)chromium and catalytic asymmetric cross-coupling reactions [J].Tetrahedron: Asymmetry, 1992, 3:213.
    
    [83] Hayashi T., Sakai H., Kaneta N., Uemura M. New chiral chelating phosphine complexescontaining tricarbonyl(η~6-arene) chromium for highly enantioselective allylic alkylation [J]. J.Organomet. Chem., 1995, 503: 143.
    
    [84] Jedlicka B., Kratky C, Weissensteiner W., Widhahn M. Palladium-catalyzed enantioselectiveGrignard cross coupling with use of a new ferrocenylaminophosphine ligand [J]. J. Chem.Soc. Chem. Commun., 1993, 1329.
    
    [85] Baker K.V., Brown J. M., Cooley N. A., Hughes G D., Taylor R. J. Reactive intermediates inasymmetric cross-coupling catalysed by palladium P-N chelates [J]. J. Organomet. Chem.,1993,370:397.
    
    [86] Jedlicka B., Weissensteiner W., Kegl T., Kollar L. Carbonylation (hydroformylation andhydroalkoxycarbonylation) of styrene in the presence of transition metal ferrocene-basedaminophosphine systems [J]. J. Organomet. Chem. 1998, 563,37.
    
    [87] Vyskocil S., Smrcina M., Hanus V., Polasek M., Kocovsky P. Derivatives of2-amino-2'-diphenylphosphino-1,1'-binaphthyl (MAP) and their application in asymmetricpalladium(0)-catalyzed allylic substitution [J]. J. Org. Chem., 1998,63: 7738.
    
    [88] Wang Y., Guo H., Ding K L. Synthesis of novel N,P chiral ligands for palladium-catalyzedasymmetric allylations: the effect of binaphthyl backbone an the enantioselectivity [J].Tetrahedron: Asymmetry, 2000,11:4153.
    
    [89] Hu X. Q., Chen H. L., Zhang X. M. Development of new chiral P,N ligands and theirapplication in the Cu-catalyzed enantioselective conjugate addition of diethylzinc to enones[J]. Angew. Chem. Int. Ed., 1999,38: 3518.
    
    [90] Guiry P. J., Hennessy A. J., Cahill J. P. The asymmetric Heck reaction: recent developmentsand applications of new palladium diphenylphosphinopyrrolidine complexes [J]. Top. Catal.,1997,4:311.
    
    [91] Cahill J. P., Lightfoot A. P., Goddard R., Rust J., Guiry P. J. The application of Ir-complexesof trans-2,5-dialkylpyrrolidinyl-benzyldiphenylphosphines to the enantioselective reductionof imines [J]. Tetrahedron: Asymmetry, 1998,9:4307.
    
    [92] Cahill J. P., Guiry P. J. The application of Pd-complexes of trans-2,5-dialkylpyrrolidinyl-benzyldiphenylphosphines to enantioselective allylic alkylation [J]. Tetrahedron: Asymmetry,1998,9:4301.
    
    [93] Farrell A., Goddard R., Guiry P. J. Preparation of ferrocene-containing phosphinamine ligands possessing central and planar chirality and their application in palladium-catalyzed asymmetric allylic alkylation [J]. J. Org. Chem., 2002,67:4209.
    
    [94] Mino T., Tanaka Y., Sakamoto M., Fujita T. Palladium-catalyzed asymmetric allylicalkylation using chiral P,N-ligands [J]. Heterocycles, 2000,53: 1485.
    
    [95] Okuyama Y., Nakano H., Hongo H. New chiral ligands, pyrrolidinyl- and 2-azanorbornylphosphinooxazolidines for palladium-catalyzed asymmetric allylation [J]. Tetrahedron: Asymmetry, 2000, 11: 1193.
    
    [96] Nakano H., Okuyama Y., Suzuki Y., Fujita R., Kabuto, C. A novel and efficient chiral palladium-phosphinooxazolidine catalyst for the enantioselective Diels-Alder reaction [J]. Chem. Commun., 2002,1146.
    
    [97] Kubota H., Koga K. Enantioselective palladium catalyzed allylic alkylatrion with phosphorus-containing C2-symmetric chiral amine ligands [J]. Tetrahedron Lett., 1994, 35: 6689.
    
    [98] Wimmer P., Widhalm M. New chiral aminophosphines and their use in asymmetric catalysis[J]. Tetrahedron: Asymmetry, 1995,6: 657.
    
    [99] Kohara T., Hashimoto Y., Saigo K. Palladium-catalyzed allylic alkylation using a novelchiral imino-phosphine ligand derived from 1-mesitylethylamine [J]. Synlett, 2000, 517.
    
    [100] Fukuda T., Takehara A., Iwao M. Palladium-catalyzed asymmetric allylic alkylation using iminophosphine ligands derived from chiral primary 1-ferrocenylalkylamines [J]. Tetrahedron: Asymmetry, 2001,12: 2793.
    
    [101] Hayashi T., Hayashi C, Uozumi Y. Catalytic asymmetric hydrosilylation of ketones with new chiral ferrocenylphosphine-imine ligands [J]. Tetrahedron: Asymmetry, 1995,6: 2503.
    
    [102] Hu X. P., Dai H. G., Hu X. Q., Chen H. L., Wang J. W., Bai C. M., Zheng Z. Ferrocenylphosphine-imine ligands for Pd-catalyzed asymmetric allylic alkylation [J]. Tetrahedron: Asymmetry, 2002,13: 1687.
    
    [103] Jang H. Y., Seo H., Han J. W., Chung Y. K. Role of the planar chirality of imine-phosphine hybrid ligands bearing chromium tricarbonyl in the palladium-catalyzed asymmetric allylic alkylation [J]. Tetrahedron Lett., 2000,41: 5083.
    
    [104] von Matt P., Pfaltz A. Chiral phosphinoaryldihydrooxazoles as ligands in asymmetriccatalysis: Pd-catalyzed allylic substitution [J]. Angew. Chem. Int. Ed. Engl., 1993, 32: 566.
    
    [105] Sprinz J., Helmchen G. Phosphinoaryl- and phosphinoalkyloxazolines as new chiral ligands for enantioselective catalysis: Very high enantioselectivity in palladium catalyzed allylic substitutions [J]. Tetrahedron Lett., 1993, 34, 1769.
    
    [106] Dawson G. J., Frost C. G., Williams J. M. J., Coote S. J. Asymmetric palladium catalysed allylic substitution using phosphorus containing oxazoline ligands [J]. Tetrahedron Lett., 1993,34:3149.
    
    [107] Helmchen G., Pfaltz A. Phosphinooxazolines - A new class of versatile, modular??P,N-ligands for asymmetric catalysis [J]. Acc. Chem. Res., 2000,33: 336.
    
    [110] Wiese B., Helmchen G. Chiral phosphinooxazolines with a bi- or tricyclic oxazoline moiety- Applications in Pd-catalyzed allylic alkylations [J]. Tetrahedron Lett., 1998, 39: 5727.
    
    [111] Kudis S., Helmchen G. Enantioselective allylic substitution of cyclic substrates by catalysiswith palladium complexes of P,N-chelate ligands with a cymantrene unit [J]. Angew. Chem.Int. Ed., 1998, 37: 3047.
    
    [112] Schleich S., Helmchen G. Pd-catalyzed asymmetric allylic alkylation of 3-acetoxy-N-(tert-butyloxycarbonyl)-l,2,3,6-tetrahydropyridine - Preparation of key intermediates for naturalproduct synthesis [J]. Eur. J. Org. Chem., 1999,2515.
    
    [113] Patti A., Lotz M., Knochel P. Synthesis of alpha,beta-disubstituted ferrocenes via aferrocenylepoxide intermediate. Preparation and catalytic activity of a new chiralferrocenyloxazoline [J]. Tetrahedron: Asymmetry, 2002, 12: 3375.
    
    [114] Moreno R. M., Bueno A., Moyano A. 4-ferroceny1-1,3-oxazoline derivatives as ligands forcatalytic asymmetric allylation reactions [J]. J. Organomet. Chem., 2002,660: 62.
    
    [115] Sudo A., Saigo K. A widely applicable chiral auxiliary, cis-2-amino-3,3-dimethyl-l-indanol:Conversion to a novel phosphorus-containing oxazoline and its application as a highlyefficient ligand for the palladium-catalyzed enantioselective allylic amination reaction [J]. J.Org. Chem., 1997,62: 5508.
    
    [116] Hashimoto Y., Horie Y., Hayashi M., Saigo K. An efficient phosphorus-containingoxazoline ligand derived from cis-2-amino-3,3-dimethyl-l-indanol: application to thepalladium-catalyzed asymmetric Heck reaction [J]. Tetrahedron: Asymmetry, 2000, 11:2205.
    
    [117] Sudo A., Yoshida H., Saigo K. An efficient phosphorous-containing oxazoline ligandderived from cis-2-amino-3,3-dimethy1-1-indanol: application to the rhodium-catalyzedenantioselective hydrosilylation of ketones [J]. Tetrahedron: Asymmetry, 1997,8: 3205.
    
    [118] Nishibayashi Y., Segawa K., Ohe K., Uemura S. Chiral oxazolinylferrocene-phosphinehybrid ligand for the asymmetric hydrosilylation of ketones [J]. Organometallics, 1995, 12:5486.
    
    [119] Nishibayashi Y, Segawa K., Takada H., Ohe K., Uemura S. Iridium (I)-catalysedasymmetric hydrosilylation of ketones using a chiral oxazolylferrocene-phosphine hybridligand [J]. J. Chem. Soc., Chem. Commun., 1996: 847.
    
    [120] Puntener K., Schwink L., Knochel P. New efficient catalysts for enantioselective transferhydrogenations [J]. Tetrahedron Lett., 1996,37: 8165.
    
    [121] Sammakia T., Stangeland E. Transfer hydrogenation with ruthenium complexes of chiral(phosphinoferrocenyl)oxazolines [J]. J. Org. Chem., 1997,62: 6104.
    
    [122] Nishibayashi Y., Takei I., Uemura S., Hidai M. Ruthenium-catalyzed asymmetrichydrosilylation of ketones and imine [J]. Organometallics, 1998, 17: 3420
    
    [123] Takei I., Nishibayashi Y., Ishii Y., Mizobe Y., Uemura S., Hidai M. Ruthenium-catalyzed??asymmetric hydrosilylation of ketoximes using chiral oxazolinylferrocenylphosphines [J].Chem. Commun., 2001,2360.
    
    [124] Zhang W., Yoneda Y. I., Kida T., Nakatsuji Y, Ikeda I. Novel chiral P,N-ferrocene ligands inpalladium-catalyzed asymmetric allylic alkylations [J]. Tetrahedron: Asymmetry, 1998, 9:3371.
    
    [125] Park J., Quan Z., Lee S., Ahn K. H., Cho C. W. Synthesis of chiral 1'-substitutedoxazolinylferrocenes as chiral ligands for Pd-catalyzed allylic substitution reactions [J]. J.Organomet. Chem., 1999,584: 140.
    
    [126] Imai Y, Zhang T., Kida T., Nakatsuji Y, Ikeda I. Diphenylphosphinooxazoline ligands witha chiral binaphthyl backbone for Pd-catalyzed allylic alkylatio [J]. Tetrahedron Lett., 1998,39:4343.
    
    [127] Ogasawara M., Yoshida K., Kamei H., Kato K., Uozumi Y, Hayashi T. Synthesis andapplication of novel chiral phosphino-oxazoline ligands with 1,1'-binaphthyl skeleton [J].Tetrahedron: Asymmetry, 1998,9: 1779.
    
    [128] Yamada I., Yamaguchi M., Yamagishi T. A novel chiral phosphinediamine ligand andasymmetric hydrogenation of acrylic acid derivatives [J]. Tetrahedron: Asymmetry, 1996, 7:3339.
    
    [129] Clarke M. L., Cole-Hamilton D. J., Foster D. F., Slawin A. M. Z., Woollins J. D.Co-ordiantion chemistry and metal catalyzed carbonylation reactions using 8-(diphenylphosphino) methylaminoquinoline: a ligand that displays monodentate, bidentate andtridentate co-ordination modes [J]. J. Chem. Soc, Dalton Trans., 2002: 1618.
    
    [130] Jiang Y. T., Jiang Q. Z., Zhu G X., Zhang X. M. Highly effective NPN-type tridentateligands for asymmetric transfer hydrogenation of ketones [J]. Tetrahedron Lett., 1997, 38:215.
    
    [131] Sablong R., Osborn J. A. The asymmetric hydrogenation of imines using tridentate C_2diphosphine complexes of iridium(I) and rhodium(I) [J]. Tetrahedron Lett., 1996,37:4937.
    
    [132] Achiwa I., Yamazaki A., Achiwa K. Synthesis of a novel type of chiral bisphosphine ligand(NORPHOS-7-NEt_2) with an amino group for neighboring participation in asymmetricallylic alkylation [J]. Synlett., 1998:45.
    
    [133] Trost B. M., Kruegger A. C, Bunt R. C, Zambrano J. On the question of asymmetricinduction with acyclic allylic substrates. An asymmetric synthesis of (+)-polyoxamic acid[J]. J. Am. Chem. Soc., 1996,118: 6520.
    
    [134] Trost B. M., Bunt R. C. On ligand design for catalytic outer sphere reactions: A simpleasymmetric synthesis of vinylglycinol [J]. Angew. Chem. Int. Ed. Engl., 1996,35: 99.
    
    [135] Gao J.-X., Ikariya T, Noyori R. A ruthenium (Ⅱ) complex with a C2-symmetricdiphosphine/diamine tetradentate ligand for asymmetric transfer hydrogenation of aromaticketones [J]. Organometallics, 1996, 15: 1087.
    
    [136] Gao J.-X., Yi X.-D., Xu P.-P., Tang C.-L., Wan H.-L., Ikariya T. New chiral cationic??rhodium-aminophosphine complexes for asymmetric transfer hydrogenation of aromaticketones [J]. J. Organomet. Chem., 1999,592: 290.
    
    [137] Gao J.-X., Xu P.-R, Yi X.-D., Yang C.-B., Zhang H., Cheng S.-H., Wan H.-L., Tsai K.-R.,Ikariya T. Asymmetric transfer hydrogenation of prochiral ketones catalyzed by chiralruthenium complexes with aminophosphine ligands [J]. J. Mol. Catal. A: Chemical, 1999,147: 105.
    
    [138] Gao J.-X., Yi X.-D., Xu P.-R, Tang C.-L., Zhang H., Wan H.-L., Ikariya T. Cationic rhodiumcomplexes with chiral tetradentate ligands as catalysts for enantioselective reduction ofsimple ketones [J]. J. Mol. Catal. A: Chemical, 2000, 159: 3.
    
    [139] Gao J.-X., Zhang H., Yi X.-D., Xu P.-R, Tang C.-L., Wan H.-L., Tsai K.-R., Ikariya T. Newchiral catalysts for reduction of ketones [J]. Chirality, 2000,5: 383.
    
    [140] Zhang H., Yang C.-B., Li Y.-Y, Dong Z.-R., Gao J.-X., Nakamura H., Murata K., Ikariya T.Highly efficient chiral metal cluster systems derived from Ru_3(CO)_(12) and chiraldiiminodiphosphines for the asymmetric transfer hydrogenation of ketones [J]. Chem.Comm., 2003: 142.
    
    [141] Stoop R. M., Bachmann S., Valentini M., Mezzetti, A. Ruthenium(Ⅱ) complexes with chiraltetradentate P_2N_2 ligands catalyze the asymmetric epoxidation of olefins with H_2O_2 [J].Organometallics, 2000,19:4117.
    
    [142] Zheng Z., Yao X.-Q., Li C, Chen H.-L., Hu X.-Q. Asymmetric cyclopropanation of styrenewith ethyl diazoacetate using a N_2P_2-ligand ruthenium(Ⅱ) catalyst: axial ligand controlledenantioselectivity [J]. Tetrahedron Lett., 2001,42:2847.
    
    [143] Bachmann S., Furler M., Mezzetti, A. Cis-selective asymmetric cyclopropanation of olefinscatalyzed by five-coordinate [RuCl(PNNP)]~+ complexes [J]. Organometallics, 2001, 20:2102.
    
    [144] Bonaccorsi C, Mezzetti, A. Optimization or breakthrough? The first highly cis- andenantioselective asymmetric cyclopropanation of 1-octene by "electronic and counterion"tuning of [RuCl(PNNP)]~+ catalysts [J]. Organometallics, 2005,24:4953.
    
    [145] Widhalm M., Wimmer P., Klintschar G Macrocyclic diphosphine ligands in asymmetriccarbon-carbon bond-forming reactions [J]. J. Organomet. Chem., 1996, 523: 167.
    
    [146] Reetz M. T, Bohres E., Goddard R. Chiral diiminophosphoranes: a new class of ligands forenantioselective transition metal catalysis [J]. Chem. Commun., 1998: 935.
    
    [147] Zhang W., Hirao T, Ikeda I. Interesting and effective P,N-chelation of tetrasubstitutedferrocene ligands for palladium-catalyzed asymmetric allylic substitution [J]. TetrahedronLett., 1996, 37:4545.
    
    [148] Perea J. J. A., Lotz M., Knochel P. Synthesis and application of C_2-symmetric diaminoFERRIPHOS as ligands for enantioselective Rh-catalyzed preparation of chiral α-aminoacids [J]. Tetrahedron: Asymmetry, 1999, 10: 375.
    
    [1] Newkome G R. Pyridylphosphines [J]. Chem. Rev., 1993, 93: 2067.
    
    [2] Jiang Y., Jiang Q., Zhu G, Zhang, X. Highly effective NPN-type tridentate ligands forasymmetric transfer hydrogenation of ketones [J]. Tetrahedron Lett., 1997,38: 215.
    
    [3] Jiang Q., Plew D. V., Murtuza S., Zhang, X. Synthesis of (1R,1R')-2,6-bis[1-(diphenylphosphino)ethyl]pyridine and its application in asymmetric transfer hydrogenation[J]. Tetrahedron Lett., 1996, 37: 797.
    
    [4] Sablong R., Osborn, J. A. The asymmetric hydrogenation of imines using tridentate C_2diphosphine complexes of iridium(I) and rhodium(I) [J]. Tetrahedron Lett., 1996,37: 4937.
    
    [5] Rahman M. S., Prince P. D., Steed J. W., Hii, K. K. Coordination chemistry and catalyticactivity of ruthenium complexes of terdentate phosphorus-nitrogenphosphorus (PNP) andbidentate phosphorus-nitrogen (PNH) ligands [J]. Organometallics, 2002,21: 4927.
    
    [6] Flores-Lopez C. Z., Flores-Lopez L. Z., Aguirre G, Hellberg L. H., Parra-Hake M,Somanathan R. Ruthenium(II)-assisted asymmetric hydrogen transfer reduction ofacetophenone using chiral tridentate phosphorus-containing ligands derived from (1R,2R)-1,2-diaminocyclohexane [J]. J. Mol. Catal. A: Chemical, 2004,215: 73.
    
    [7] Trost B. M., Van Vranken D. L., Bingle C. A modular approach for ligand design forasymmetric allylic alkylations via enantioselective palladium-catalyzed ionizations [J]. J. Am.Chem.Soc., 1992, 114:9327.
    
    [8] Trost B. M., Patterson, D. E. Enhanced enantioselectivity in the desymmetrization ofmeso-biscarbamates [J]. J. Org. Chem., 1998,63: 1339.
    
    [9] Kless A., Kadyrov R., Bdrner A., Holz J., Kagan H. B. A new chiral multidentate ligand forasymmetric catalysis [J]. Tetrahedron Lett., 1995,36:4601.
    
    [10] Gao J.-X., Ikariya T, Noyori R. A ruthenium (II) complex with a C_2-symmetricdiphosphine/diamine tetradentate ligand for asymmetric transfer hydrogenation of aromaticketones [J]. Organometallics, 1996, 15: 1087.
    
    [11] Gao J.-X., Xu P.-R, Yi X.-D., Yang C.-B., Zhang H., Cheng S.-H., Wan H.-L., Tsai K.-R., Ikariya T. Asymmetric transfer hydrogenation of prochiral ketones catalyzed by chiral ruthenium complexes with aminophosphine ligands [J]. J. Mol. Catal. A: Chemical, 1999, 147: 105.
    
    [12] Gao J.-X., Yi X.-D., Xu P.-R, Tang C.-L., Wan H.-L., Ikariya T. New chiral cationicrhodium-aminophosphine complexes for asymmetric transfer hydrogenation of aromaticketones [J]. J. Organomet. Chem., 1999, 592: 290.
    
    [13] Gao J.-X., Yi X.-D., Xu P.-R, Tang C.-L., Zhang H., Wan H.-L., Ikariya T. Cationic rhodiumcomplexes with chiral tetradentate ligands as catalysts for enantioselective reduction ofsimple ketones [J]. J. Mol. Catal. A: Chemical, 2000, 159: 3.
    
    [14] Gao J.-X., Zhang H., Yi X.-D., Xu P.-R, Tang C.-L., Wan H.-L., Tsai K.-R., Ikariya T. New??chiral catalysts for reduction of ketones [J]. Chirality, 2000, 5: 383.
    
    [15] Muller D., Umbricht G, Weber B., Pfaltz A. C_2-symmetrical 4,4',5,5'-tetrahydrobi(oxazoles)and 4,4',5,5'-tetrahydro-2,2'-methylenebis[oxazoles] as chiral ligands for enantioselectivecatalysis [J]. Helv. Chim. Acta., 1991,74: 232.
    
    [16] Murata K., Ikariya T., Noyori R. New chiral rhodium and indium complexes with chiraldiamine ligands for asymmetric transfer hydrogenation of aromatic ketones [J]. J. Org.Chem., 1999,64:2186.
    
    [17] Halle R., Breheret E., Schulz E., Pinel C, Lemaire M. Chiral nitrogen-metal complexes forthe asymmetric reduction of ketones [J]. Tetrahedron: Asymmetry, 1997, 8: 2101.
    
    [18]自国甫,尹承烈.铱(I)联萘胺Schiff碱(BPMBNDI)配合物催化苯乙酮的不对称氢转移反 应[J].Acta Chim.Sinica.,1998,56:484.
    
    [19] Fackler J. P. Inorganic Syntheses, Vol XXI, John Wiley & Sons, Inc. New York, 1982: 176.
    
    [20] Larrow J. R, Jacobsen E. N., A practical method for the large-scale preparation of [N,N'-Bis(3,5-di-tert-butylsalicylidene)-l ,2-cyclohexanediaminato(2-)] managenese (Ⅲ) chloride, a highly enantioselective epoxidation catalyst [J]. J. Org. Chem., 1994,59: 1939.
    
    [21] Kirschner S. Inorganic Syntheses, Vol 23, John Wiley & Sons, Inc. New York, 1985: 128.
    
    [1] Gladiali S., Alberico E. Asymmetric transfer hydrogenation: chiral ligands and applications [J]. Chem. Soc. Rev., 2006,35: 226.
    
    [2] Samec J. S. M, Backvall J.-E., Andersson P. G., Brandt P. Mechanistic aspects of transitionmetal-catalyzed hydrogen transfer reactions [J]. Chem. Soc. Rev., 2006,35: 237.
    
    [3] Clapham S. E., Hadzovic A., Morris R. H. Mechanisms of the H2-hydrogenation and transferhydrogenation of polar bonds catalyzed by ruthenium hydride complexes [J]. Coord. Chem.Rev., 2004,248: 2201.
    
    [4] Blaser H. U., Malan C, Pugin B., Spindler F., Steiner H., Studer M. Selective hydrogenationfor fine chemicals: Recent trends and new developments [J]. Adv. Synth. Catal., 2003, 345:103.
    
    [5] Fan Q. H., Li Y. M., Chan A. S. C. Recoverable catalysts for asymmetric organic synthesis [J].Chem. Rev., 2002, 102: 3385.
    
    [6] Backvall J. E. Transition metal hydrides as active intermediates in hydrogen transfer reactions[J]. J. Organomet. Chem., 2002,652: 105.
    
    [7] Palmer M. J., Wills M. Asymmetric transfer hydrogenation of C=O and C=N bonds [J].Tetrahedron: Asymmetry, 1999, 10: 2045.
    
    [8] Noyori R., Hashiguchi S. Asymmetric transfer hydrogenation catalyzed by chiral rutheniumcomplexes [J]. Acc. Chem. Res., 1997, 30: 97.
    
    [9] Hashiguchi S., Fujii A., Takehara J., Ikariya T., Noyori R. Asymmetric transfer hydrogenationof aromatic ketones catalyzed by ruthenium (II) complexes [J]. J. Am. Chem. Soc., 1995, 117:7562.
    
    [10] Jiang Y., Jiang Q., Zhang X. A new chiral bis(oxazolinylmethyl)amine ligand forRu-catalyzed asymmetric transfer hydrogenation of ketones [J]. J. Am. Chem. Soc, 1998, 120:3817.
    
    [11] Sammakia T., Stangeland E. Transfer hydrogenation with ruthenium complexes of chiral (phosphinoferrocenyl)oxazolines [J]. J. Org. Chem., 1997, 62: 6104.
    
    [12] Gao J.-X., Ikariya T., Noyori R. A ruthenium (II) complex with a C2-symmetricdiphosphine/diamine tetradentate ligand for asymmetric transfer hydrogenation of aromaticketones [J]. Organometallics, 1996, 15: 1087.
    
    [13] Gao J.-X., Yi X.-D., Xu P.-R, Tang C.-L., Wan H.-L., Ikariya T. New chiral cationicrhodium-aminophosphine complexes for asymmetric transfer hydrogenation of aromaticketones [J]. J. Organomet. Chem., 1999, 592: 290.
    
    [14] Gao J.-X., Zhang H., Yi X.-D., Xu P.-R, Tang C.-L., Wan H.-L., Tsai K.-R., Ikariya T. Newchiral catalysts for reduction of ketones [J]. Chirality, 2000, 5: 383.
    
    [15] Zhang H., Yang C.-B., Li Y.-Y., Dong Z.-R., Gao J.-X., Nakamura H., Murata K., Ikariya T.Highly efficient chiral metal cluster systems derived from Ru_3(CO)_(12) and chiral??diiminodiphosphines for the asymmetric transfer hydrogenation of ketones [J]. Chem.Commun., 2003,142.
    
    [16] Chen J.-S., Li Y.-Y., Dong Z.-R., Li B.-Z., Gao J.-X. Asymmetric transfer hydrogenation ofaromatic ketones catalyzed by the iridium hydride complex under ambient conditions [J].Tetrahedron Lett., 2004,45: 8415.
    
    [17] Takehara J., Hashiguchi S., Fujii A., Inoue S., Ikariya T., Noyori R. Amino alcohol effects onthe ruthenium (Ⅱ)-catalyzed asymmetric transfer hydtogenation of ketones in propan-2-ol [J].J. Chem. Soc, Chem. Commun., 1996: 233.
    
    [18] Palmer M., Walsgrove T., Wills M. (1R,2S)-(+)-cis-1-amino-2-indanol: An effective ligandfor asymmetric catalysis of transfer hydrogenations of ketones [J]. J. Org. Chem., 1997, 62:5226.
    
    [19] Alonso D. A., Guijarro D., Pinho P., Temme O., Andersson P. G. (1S,3R,4R)-2-azanorbornyl-methanol, an efficient ligand for ruthenium-catalyzed asymmetric transfer hydrogenation ofketones [J]. J. Org. Chem. 1998,63: 2749.
    
    [20] Haack K. J., Hashiguchi S., Fujii A., Ikariya T., Noyori R. The catalyst precursor, catalyst,and intermediate in the Ru(Ⅱ)-promoted asymmetric hydrogen transfer between alcohols andketones [J]. Angew. Chem. Int. Ed. Engl., 1997,36: 285.
    
    [21] Dong Z.-R., Li Y.-Y., Chen J.-S., Li B.-Z., Xing Y, Gao J.-X. Highly efficient iridium catalystfor asymmetric transfer hydrogenation of aromatic ketones under base-free conditions [J].Org. Lett., 2005, 7:1043.
    
    [1] Gao J.-X., Ikariya T., Noyori R. A ruthenium (Ⅱ) complex with a C_2-symmetric diphosphine/diamine tetradentate ligand for asymmetric transfer hydrogenation of aromatic ketones [J]. Organometallics, 1996, 15: 1087.
    
    [2] Gao J.-X., Yi X.-D., Xu P.-P., Tang C.-L., Wan H.-L., Ikariya T. New chiral cationicrhodium-aminophosphine complexes for asymmetric transfer hydrogenation of aromaticketones [J]. J. Organomet. Chem., 1999, 592: 290.
    
    [3] Li Y.-Y., Zhang H., Chen J.-S., Liao X.-L., Dong Z.-R., Gao J.-X. A new efficient chiralindium catalyst for asymmetric transfer hydrogenation of ketones [J]. J. Mol. Catal. A:Chemical, 2004,218: 153.
    
    [4] Stoop R. M., Mezzetti A. Asymmetric epoxidation of olefins: The first enantioselectiveepoxidation of unfunctionalised olefins catalysed by a chiral ruthenium complex with H_2O_2asoxidant [J]. Green Chemistry, 1999, 1: 39.
    
    [5] Stoop R. M., Bachmann S., Valentini M., Mezzetti A. Ruthenium(Ⅱ) complexes with chiraltetradentate P_2N_2 ligands catalyze the asymmetric epoxidation of olefins with H_2O_2 [J].Organometallics, 2000,19:4117.
    
    [6] Zheng Z., Yao X.-Q., Li C, Chen H.-L., Hu X.-Q. Asymmetric cyclopropanation of styrenewith ethyl diazoacetate using a N_2P_2-ligand ruthenium(Ⅱ) catalyst: axial ligand controlledenantioselectivity [J]. Tetrahedron Lett., 2001,42:2847.
    
    [7] Bachmann S., Furler M., Mezzetti A. Cis-selective asymmetric cyclopropanation of olefinscatalyzed by five-coordinate [RuCl(PNNP)]~+ complexes [J]. Organometallics, 2001,20: 2102.
    
    [8] Bonaccorsi C, Bachmann S., Mezzetti A. Electronic tuning of the PNNP ligand for theasymmetric cyclopropanation of olefins catalysed by [RuCl(PNNP)] [J]. Tetrahedron:Asymmetry, 2003, 14: 845.
    
    [9] Bonaccorsi C, Mezzetti A. Optimization or breakthrough? The first highly cis- andenantioselective asymmetric cyclopropanation of 1-octene by "electronic and counterion"tuning of [RuCl(PNNP)]~+ catalysts [J]. Organometallics, 2005,24:4953.
    
    [10] Bonaccorsi C, Mezzetti A. Ruthenium complexes with chiral tetradentate PNNP Ligands in asymmetric catalytic atom-transfer reactions [J]. Curr. Org. Chem., 2006,10: 225.
    
    [11] Li C. J., Chan T. H. Organic Reactions in Aqueous Media [M]. New York: Wiley, 1997.
    
    [12] Grieco P. A. Organic Synthesis in Water [M]. London: Blackie Academic and Professional,1998.
    
    [13] Cornils B., Hermann W. A. Aqueous-Phase Organometallic Catalysis [M]. Weinheim: Wiley-VCH, 2004.
    
    [14]陈华,黎耀忠,李东文,程溥明,李贤均.水溶性均相络合催化研究进展[J].化学进展, 1998.10:146.
    [1] Stecher H., Faber K. Biocatalytic deracemization techniques: Dynamic resolutions and stereoinversions [J]. Synthesis, 1997, 1.
    
    [2] Martin V. S., Woodard S. S., Katsuki T., Yamada Y., Ikeda M., Sharpless K. B. Kinetic resolution of racemic allylic alcohols by enantioselective epoxidation. A route to substances of absolute enantiomeric purity [J]. J. Am. Chem. Soc, 1981, 103: 6237.
    [3] Keith J. M., Larrow J. F., Jacobsen E. N. Practical considerations in kinetic resolution reactions [J]. Adv. Synth. Catal., 2001,343: 5.
    [4] Robinson D. E. J. E., Bull S. D. Kinetic resolution strategies using non-enzymatic catalysts [J]. Tetrahedron: Asymmetry, 2003, 14: 1407.
    [5] Sigman M. S., Jensen D. R. Ligand-modulated palladium-catalyzed aerobic alcohol oxidations [J]. Acc. Chem. Res., 2006,39: 221.
    [6] Stoltz B. M. Palladium catalyzed aerobic dehydrogenation: From alcohols to indoles and asymmetric catalysis [J]. Chem. Lett., 2004, 33: 362.
    [7] Nishibayashi Y., Yamauchi A., Onodera G, Uemura S. Oxidative kinetic resolution of racemic alcohols catalyzed by chiral ferrocenyloxazolinylphosphine-ruthenium complexes [J]. J. Org. Chem., 2003,68: 5875.
    [8] Sun W., Wang H., Xia C, Li J., Zhao P. Chiral-Mn(salen)-complex-catalyzed kinetic resolution of secondary alcohols in water [J]. Angew. Chem., Int. Ed., 2003,42: 1042.
    [9] Faller J. W., Lavoie A. R. Enantioselective routes to both enantiomers of aryl alcohols with a single catalyst antipode: Ru and Os transfer hydrogenation catalysts [J]. Org. Lett., 2001, 3: 3703.
    [10] Masutani K., Uchida T, Irie R., Katsuki T. Catalytic asymmetric and chemoselective aerobic oxidation: kinetic resolution of sec-alcohols [J]. Tetrahedron Lett., 2000,41: 5119.
    
    [11] Nishibayashi Y, Takei I., Uemura S., Hidai M. Extremely high enantioselective redox reaction of ketones and alcohols catalyzed by RuCl_2(PPh_3)(oxazolinylferrocenylphosphine) [J]. Organometallics, 1999, 18: 2291.
    
    [12] Gross Z., Ini S. Asymmetric catalysis by a chiral ruthenium porphyrin: Epoxidation, hydroxylation, and partial kinetic resolution of hydrocarbons [J]. Org. Lett., 1999,1: 2077.
    [13] Hamada T., Irie R., Mihara J., Hamachi K., Katsuki T. Highly enantioselective benzylic hydroxylation with concave type of (salen)manganese(III) complex [J]. Tetrahedron, 1998, 54:10017.
    [14] Hashiguchi S., Fujii A., Haack K.-J., Matsumura K., Ikariya T., Noyori R. Kinetic resolution of racemic secondary alcohols by Ru(II)-catalyzed hydrogen transfer [J]. Angew. Chem., Int. Ed. Engl., 1997,36:288.
    [15] Robinson S. J., Shaw B. L. Transition-metal-carbon bonds. Part V. Hydrido-cyclo-octa-1, 5-diene complexes of indium (III) [J]. J. Chem.Soc., 1965, 9: 4997.
    
    
    
    [16] William L. J. Inorganic Syntheses, Vol XI, John Wiley & Sons, Inc. New York, 1968: 88.
    
    [17]Cotton F.A.无机合成[M],第十三卷,科学出版社,1977:107.
    
    [18]陈寿山,张正之,王序昆等.金属有机化合物合成手册[M].化学工业出版社,1986:289.
    
    [19] Evans I. P., Spencer A., Wilkinson G Dichlorotetrbis(dimethylsulphoxied) ruthenium (Ⅱ) andits use as a source material for some new ruthenium (Ⅱ) complexes [J]. J. Chem. Soc.,Dalton. Trans., 1973:204.
    
    [20] Hallman P. S., Stephenson T. A., Wilkinson G Inorganic Syntheses, Vol Ⅻ, John Wiley &Sons, Inc. New York, 1972: 238.
    
    [21] Li Y.-Y, Zhang H., Chen J.-S., Liao X.-L., Dong Z.-R., Gao J.-X. A new efficient chiraliridium catalyst for asymmetric transfer hydrogenation of ketones [J]. J. Mol. Catal. A:Chemical, 2004, 218: 153.
    
    [22] Rautenstrauch V, Hoang-Cong X., Churlaud R. Hydrogenation versus transfer hydrogenationof ketones: Two established ruthenium systems catalyze both [J]. Chem. Eur. J., 2003, 9:4954.
    
    [23] Albrecht M., Miecznikowshi J. R., Samuel A. Chelated iridium(Ⅲ) bis-carbene complexes asair-stable catalysts for transfer hydrogenation [J]. Organometallics, 2002,21: 3596.
    
    [24] Jiang Y, Jiang Q., Zhang X. A new chiral bis(oxazolinylmethyl)amine ligand forRu-catalyzed asymmetric transfer hydrogenation of ketones [J]. J. Am. Chem. Soc, 1998,120:3817.
    
    [25] Dong Z.-R., Li Y.-Y, Chen J.-S., Li B.-Z., Xing Y, Gao J.-X. Highly efficient iridium catalystfor asymmetric transfer hydrogenation of aromatic ketones under base-free conditions [J].Org. Lett., 2005,7: 1043.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700