五种手性农药在动物体内的选择性代谢行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以动物模型作为研究对象,研究了手性农药在动物中的选择性代谢行为,并对选择性代谢的机理进行了探讨。
     实验中利用大鼠肝微粒体代谢体系研究了手性农药戊唑醇、己唑醇的选择性降解行为并测定了其对大鼠原代肝细胞的毒性。对戊唑醇的研究结果显示其外消旋体以及单体的代谢均符合一级动力学。外消旋体(15μmol L-1的降解过程中,两单体代谢速率有较大差异,S体半衰期为22.35min,R体半衰期为48.80min。但是单体降解过程(7.5μmol L-1)的两单体的降解速率无显著差异。研究发现戊唑醇单体之间存在竞争性抑制作用,IC50S/R为9.67μmol L-1,而IC50R/S为48.12μmol L-1。单体间相互抑制程度不同造成在外消旋体降解过程中单体的代谢速率的差异,导致这一差异的原因为对映体与代谢酶的结合常数存在差异。对己唑醇在来自不同性别的大鼠肝微粒体中的代谢研究表明其外消旋体以及单体在肝微粒体中的降解过程均符合一级动力学,并且对映体之间的代谢速率存在显著差异,(+)-己唑醇代谢较快。己唑醇在雄性大鼠微粒体中的代谢速率高于在雌性大鼠中的代谢速率。通过抑制试验表明导致性别差异的原因为相关代谢酶的性别差异。而通过测定戊唑醇与己畔醇对原代大鼠肝细胞的毒性发现外消旋体与对映体单体对细胞的急性毒性存在差异。
     以雄性和雌性家兔为试验动物研究了粉唑醇对映体的药代动力学及在各组织中的残留。实验采用耳静脉给药的方式注射粉唑醇外消旋体(5.0mgkg-1b.w.)。研究发现,对于两种性别,给药后前期血浆中S-粉唑醇含量高于其对映体,但随时间增长其含量逐渐低于R体。药物与血浆蛋白结合的选择性差异导致了分布速率不同。药代动力学参数反映了粉唑醇两对映体在家兔体内代谢、分布及消除上均存在差异,并且存在性别差异。
     实验研究了经口一次暴露以及长期暴露后alpha-六六六(α-HCH)在蛋鸡体内的消解以及分布。结果显示蛋鸡对α-HCH的吸收与分布过程十分迅速,分布半衰期为0.92h,排泄过程是造成蛋鸡体内α-HCH偏离外消旋的重要因素。实验中采用了自制的有机改性蒙脱土作为吸附剂吸附饲料中的α-HCH,结果显示改性蒙脱土可以有效地减少蛋鸡通过饲料吸收的α-HCH,从而可以降低相关产品中α-HCH的含量,进而保证食品安全。
     在研究氯氰菊酯在蛋鸡体内的代谢时,发现α-氯氰菊酯在提取及检测过程中容易发生异构化现象造成测定结果不准确。针对这一问题,利用GC-ECD开发了保持构型稳定的对α-氯氰菊酯及其主要酸性代谢物同时检测的残留分析方法,并对实际样本进行了检测。结果显示本方法有较好的精密度,平行性好。同时样品中的α-CP异构化率较低,准确度较高。在此方法的基础上,对蛋鸡经口暴露α-氯氰菊酯后的血浆中α-氯氰菊酯以及代谢物进行了分析,结果显示α-氯氰菊酯主要在血浆中分布,代谢物顺式菊酸的浓度在血浆中较高,实验过程中未发现反式菊酸。
     由于蒙脱土具有良好的吸附能力,通过对蒙脱土进行改性,制备成了一种新型的磁固相吸附材料,并将其成功的应用于水中三唑类农药的分析。基于磁性分离技术开发的低密度磁流体液相微萃取方法提出了新的相分离以及萃取剂回收方法,简化了密度比水小的轻萃取剂的回收过程,提高了方法易用性,并将方法应用到实际样本的分析,得到了较好的实验结果。
In this paper, we investigated the metabolism of the chiral pesticides in animal models.
     The enantioselective disappearance of tebuconazole and hexaconazole were incestigated in rat liver microsomes system and the cytotoxicity to the rat primary hepatocytes were determinedby the MTT assay. The degradation of rac-tebuconazole and the enantiomer followed first-order kinetics. The result demonstrated that rac-tebuconazole (15μmol L-1) degradation in vitro assay was selective, but no significant difference between the enantiomers was found in the respective incubation (7.5μmol L-1for each). The interaction results revealed that there was competitive inhibition between S-and R-form, and the inhibition was a significant difference. This means that the interaction effect between the two enantiomers contributed to the selective degradation in the rat liver microsomes. The metabolism rate of hexaconazole in male and female rat hepatic microsomes was enantioselective and the degradation rate of hexaconazole metabolism in male rat hepatic microsomes was faster than that in female. The inhibition experiments with CYP inhibitors showed that the inhibitory effect of inhibitors was enantioselective and affected by sex, suggesting that the enantioselective metabolism of hexaconazole was determined by the amount of hepatic cytochrome P450and the expression of individual isoforms of CYPs.
     The enantioselective pharmacokinetics and degradation of flutriafol enantiomers in rabbits were investigated by a single ear intravenous (i.v.) administration at doses of5.0mgkg-1b.w. of racemate. At the beginning the concentration of S-flutriafol in plasma was higher than its antipide, but it became lower than its antipide gone with time. The protein binding was an important factor in modulating the disposition of flutriafol. The pharmacokinetic parameters showed that the metabolism, distribution and elimination were gender-related and stereoselective.
     The enantioselective metabolism, distribution and elimination of alpha-HCH in hens were studied through the oral route. The results showed that processes of the absorption and distribution were quickly and the excretion process was one of the important causes of the stereoselectivity. The organic modified montmorillonite showed a good adsorption capacity to alpha-HCH and used as feed additive to reduce the alpha-HCH uptake.
     An analysis method was developed to analyse a-cypermethrin and its main acid metabolites. In this method, the isomerization of a-cypermethrin was reduced to an acceptable level. This method was very sensitive for the quantitative determination of a-CP and its major acid metabolites in animal foods.Baesed on this method, the behavior of a-CP in the plasma of hens after oral exposure. The results showed that the a-CP was mainly distributed in plasma and only cis-DCVA was detected in the experiment.
     Two novel pretreatment methods was developed based on the magnetic separation technology. First we a prepared a new magnetic material based on montmorillonite (MMT) through a two-step reaction. In this work, a MSPE method was developed for the extraction of five triazole pesticides residues in water samples to evaluate the applicability of this new material. The second method was low-density magnetofluid dispersive liquid-liquid microex-traction. Comparing with the existing low density solvents micro-extractionmethods, no special devices and complicated operations were required during the whole extraction process. Under the optimal extraction condition, the two novel pretreatment methods offered good LOD, as well as good linearity and acceptable repeatability.
引文
[1]中国农业百科全书总编辑委员会农药卷编辑委员会.中国农业百科全书农药卷.中国农业百科全书总辑委员会,editor::农业出版社;1993.
    [2]韩熹莱.农药概论.北京:北京农业大学出版社;1994.
    [3]Metcalf RL. Changing role of insecticides in crop protection. Annual Review of Entomology,1980,25(1):219-256.
    [4]林玉锁.农药与生态环境保护:化学工业出版社;2003.
    [5]Pimentel D, Acquay H, Biltonen M and et al. Assessment of environmental and economic impacts of pesticide use. The Pesticide Question:Springer; 1993. p 47-84.
    [6]Kurihara N, Miyamoto J. Chirality in agrochemicals:John Wiley & Sons; 1998.
    [7]Williams A. Opportunities for chiral agrochemicals. Pesticide Science,1996,46(1):3-9.
    [8]张一宾.全球主要农药品种的发展概况,特点及主要作物的农药使用概况.今日农药,2010,12:23-27.
    [9]Bentley R. Chiral:a confusing etymology. Chirality,2010,22(1):1-2.
    [10]周政,邢其毅,斐伟伟.基础有机化学.北京:高等教育出版社;2003.
    [11]Kallenborn R, Oehme M, Vetter W and et al. Enantiomer selective separation of toxaphene congeners isolated from seal blubber and obtained by synthesis. Chemosphere, 1994,28(1):89-98.
    [12]Harner T, Wiberg K, Norstrom R. Enantiomer fractions are preferred to enantiomer ratios for describing chiral signatures in environmental analysis. Environmental science & technology,2000,34(1):218-220.
    [13]Ulrich EM, Helsel DR, Foreman WT. Complications with using ratios for environmental data:comparing enantiomeric ratios (ERs) and enantiomer fractions (EFs). Chemosphere,2003,53(5):531-538.
    [14]Mueller MD, Buser H-R. Environmental behavior of acetamide pesticide stereoisomers.2. Stereo-and enantioselective degradation in sewage sludge and soil. Environmental science & technology,1995,29(8):2031-2037.
    [15]徐逸楣.光学活性农药开发的现状与展望农药译丛,1998.
    [16]Tombo GMR, Bellus D. Chirality and crop protection. Angewandte Chemie International Edition in English,1991,30(10):1193-1215.
    [17]刘博宏,叶非.芳氧苯氧基丙酸酯类除草剂的应用进展.农药科学与管理,2011,32(2):20-25.
    [18]包文娟,吴永果,毛春晖and et al.芳氧苯氧羧酸类旋光性除草剂的研究进展.精细化工中间体,2007,37(4):9-13.
    [19]刘维屏.农药环境化学:化学工业出版社;2006.
    [20]Kurihara N, Miyamoto J, Paulson G and et al. Chirality in synthetic agrochemicals: bioactivity and safety consideration. Pure Appl Chem,1997,69(9):2007-2025.
    [21]Nakahira K, Uchiyama M, Ikai T and et al. Effect of (R)-(+)-and (S)-(-)-quizalofop-ethyl on lipid metabolism in excised corn stem-base meristems. Journal of Pesticide Science, 1988,13.
    [22]Huff H, Buttner B, Ebert E and et al. HOE 046360-The optical active isomer of fenoxaprop-ethyl for broad spectrum grass-weed control in dicotyledonous crops.1989.
    [23]Mueller-Warrant G W. Enhanced activity of single-isomer fenoxaprop on cool-season grasses. Weed Technology,1991:826-833.
    [24]Stuart DA, McCall CM. Induction of somatic embryogenesis using side chain and ring modified forms of phenoxy acid growth regulators. Plant physiology,1992,99(1):111-118.
    [25]Garrison AW. Probing the enantioselectivity of chiral pesticides. Environmental science & technology,2006,40(1):16-23.
    [26]Fayez K, Kristen U. The influence of herbicides on the growth and proline content of primary roots and on the ultrastructure of root caps. Environmental and experimental botany, 1996,36(1):71-81.
    [27]Couderchet M, Bocion PF, Chollet R and et al. Biological Activity of Two Stereoisomers of the N-Thienyl Chloroacetamide Herbicide Dimethenamid. Pesticide Science, 1997,50(3):221-227.
    [28]Whittington J, Jacobsen S, Rose A. Optically pure (-) clethodim, compositions and methods for controlling plant growth comprising the same. U.S. Patent 6,300,281; 2001.
    [29]Grossmann K, Tresch S, Plath P. Triaziflam and diaminotriazine derivatives affect enantioselectively multiple herbicide target sites. ZEITSCHRIFT FUR NATURFORSCHUNG C,2001,56(7/8):559-569.
    [30]华纯.拟除虫菊酯类农药的进展和剂型世界农药,2009,31(5):3944.
    [31]薛振祥.立体异构体与农药.江苏化工,1995,5.
    [32]Elliott M, Janes N, Potter C. The future of pyrethroids in insect control. Annual Review of Entomology,1978,23(1):443-469.
    [33]薛振祥.拟除虫菊酯与立体化学.现代农药,2002,5(1):1-9.
    [34]Liu W, Gan JJ, Qin S. Separation and aquatic toxicity of enantiomers of synthetic pyrethroid insecticides. Chirality,2005.17(S1):S127-S133.
    [35]Leader H, Casida JE. Resolution and biological activity of the chiral isomers of O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate (profenofos insecticide). Journal of Agricultural and Food Chemistry,1982,30(3):546-551.
    [36]杨光富,袁继伟,刘钊杰.合成农用化学品的手性——生物活性及安全性的思考.世界农药,1999,2:000.
    [37]Zhou S, Lin K, Li L and et al. Separation and toxicity of salithion enantiomers. Chirality,2009,21(10):922-928.
    [38]Ohkawa H, Mikami N, Kasamatsu K and et al. Stereoselectivity in toxicity and acetylcholinesterase inhibition by the optical isomers of. Agricultural and Biological Chemistry, 1976,40.
    [39]Lee PW, Allahyari R, Fukuto TR. Studies on the chiral isomers of fonofos and fonofos oxon:I. Toxicity and antiesterase activities. Pesticide Biochemistry and Physiology, 1978,8(2):146-157.
    [40]张帅.鱼藤酮光学异构体杀虫活性及其作用机理研究[博士学位论文].广州:华南农业大学;2007.
    [41]柏再苏.氟虫腈的对映异构体(R和S体)的分离及药效世界农药,2004,26(1):14-15.
    [42]Lahm GP, McCann SF, Harrison CR and et al. Evolution of the sodium channel blocking insecticides:the discovery of indoxacarb.2000. ACS Publications, p 20-34.
    [43]ANNIS G, MCCANN S, SHAPIRO R. Preparation of arthropodicidal oxadiazines. WO Patent 1,995,029,171; 1995.
    [44]曹克广,杨夕强.三唑类化合物杀菌剂的发展现状与展望.精细石油化工,2007,24(6):82-86.
    [45]Sugavanam B. Diastereoisomers and enantiomers of paclobutrazol:their preparation and biological activity. Pesticide Science,1984,15(3):296-302.
    [46]Gadher P, Mercer E, Baldwin B and et al. A comparison of the potency of some fungicides as inhibitors of sterol 14-demethylation. Pesticide Biochemistry and Physiology, 1983,19(1):1-10.
    [47]杨丽萍,李树正,李煜昶and et al.三种三唑类杀菌剂对映体生物活性的研究.农药学学报,2002,4(2):67-70.
    [48]Nuninger C, Watson G, Leadbitter N and et al. CGA329351:introduction of the enantiomeric form of the fungicide metalaxyl.1996.
    [49]刘西莉,马安捷.林吉柏and et al.精甲霜灵与外消旋体甲霜灵对掘氏疫霉菌的抑菌活性比较.农药学学报,2003,5(3):45-49.
    [50]刘丰茂,王素利.韩丽君.农药质量与残留实用检测技术.北京:化学工业出版社:2011.
    [51]Liu H, Dasgupta PK. Analytical chemistry in a drop. Solvent extraction in a microdrop. Analytical chemistry,1996,68(11):1817-1821.
    [52]He Y, Lee H. Liquid-phase microextraction in a single drop of organic solvent by using a conventional microsyringe. Analytical chemistry,1997,69(22):4634-4640.
    [53]Theis AL, Waldack AJ, Hansen SM and et al. Headspace solvent microextraction. Analytical chemistry,2001.73(23):5651-5654.
    [54]Liu J-f, Chi Y-g, Jiang G-b and et al. Ionic liquid-based liquid-phase microextraction, a new sample enrichment procedure for liquid chromatography. Journal of Chromatography A, 2004,1026(1):143-147.
    [55]Qian L-l, He Y-z. Funnelform single-drop microextraction for gas chromatography-electron-capture detection. Journal of Chromatography A,2006,1134(1):32-37.
    [56]Rezaee M, Assadi Y, Milani Hosseini M-R and et al. Determination of organic compounds in water using dispersive liquid-liquid microextraction. Journal of Chromatography A,2006,1116(1):1-9.
    [57]Liu Y, Zhao E, Zhu W and et al. Determination of four heterocyclic insecticides by ionic liquid dispersive liquid-liquid microextraction in water samples. Journal of Chromatography A,2009,1216(6):885-891.
    [58]Pena MT, Casais MC, Mejuto MC and et al. Development of an ionic liquid based dispersive liquid-liquid microextraction method for the analysis of polycyclic aromatic hydrocarbons in water samples. Journal of Chromatography A,2009,1216(36):6356-6364.
    [59]Saleh A, Yamini Y, Faraji M and et al. Ultrasound-assisted emulsification microextraction method based on applying low density organic solvents followed by gas chromatography analysis for the determination of polycyclic aromatic hydrocarbons in water samples. Journal of Chromatography A,2009,1216(39):6673-6679.
    [60]Yiantzi E, Psillakis E, Tyrovola K and et al. Vortex-assisted liquid-liquid microextraction of octylphenol, nonylphenol and bisphenol-A. Talanta,2010,80(5):2057-2062.
    [61]Zhang P-P, Shi Z-G, Yu Q-W and et al. A new device for magnetic stirring-assisted dispersive liquid-liquid microextraction of UV filters in environmental water samples. Talanta, 2011,83(5):1711-1715.
    [62]Yang Z-H, Wang P, Zhao W-t and et al. Development of a home-made extraction device for vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction with lighter than water organic solvents. Journal of Chromatography A,2013.
    [63]Guo L, Lee HK. Low-density solvent-based solvent demulsification dispersive liquid-liquid microextraction for the fast determination of trace levels of sixteen priority polycyclic aromatic hydrocarbons in environmental water samples. Journal of Chromatography A,2011,1218(31):5040-5046.
    [64]Kocurova L, Balogh IS, Skrlikova J and et al. A novel approach in dispersive liquid-liquid microextraction based on the use of an auxiliary solvent for adjustment of density:UV-VIS spectrophotometrie and graphite furnace atomic absorption spectrometric determination of gold based on ion pair formation. Talanta,2010,82(5):1958-1964.
    [65]Chen H, Chen R, Li S. Low-density extraction solvent-based solvent terminated dispersive liquid-liquid microextraction combined with gas chromatography-tandem mass spectrometry for the determination of carbamate pesticides in water samples. Journal of Chromatography A,2010,1217(8):1244-1248.
    [66]Balogh I, Rusnakova L, Skrlilcova J and et al. A spectrophotometric method for manganese determination in water samples based on ion pair formation and dispersive liquid-liquid microextraction. International Journal of Environmental Analytical Chemistry, 2012,92(9):1059-1071.
    [67]Leong M-I, Huang S-D. Dispersive liquid-liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection. Journal of Chromatography A,2008,1211(1):8-12.
    [68]Xu H, Ding Z, Lv L and et al. A novel dispersive liquid-liquid microextraction based on solidification of floating organic droplet method for determination of polycyclic aromatic hydrocarbons in aqueous samples. Analytica chimica acta,2009,636(1):28-33.
    [69]Lee J, Lee HK, Rasmussen KE and et al. Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction:a review. Analytica chimica acta,2008,624(2):253-268.
    [70]Yavuz CT, Prakash A, Mayo J and et al. Magnetic separations:from steel plants to biotechnology. Chemical Engineering Science,2009,64(10):2510-2521.
    [71]Chen L, Zhang X, Sun L and et al. Fast and selective extraction of sulfonamides from honey based on magnetic molecularly imprinted polymer. Journal of Agricultural and Food Chemistry,2009,57(21):10073-10080.
    [72]Daniel-da-Silva AL, Trindade T, Goodfellow BJ and et al. In situ synthesis of magnetite nanoparticles in carrageenan gels. Biomacromolecules,2007,8(8):2350-2357.
    [73]Yang H-H, Zhang S-Q, Chen X-L and et al. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Analytical chemistry,2004,76(5):1316-1321.
    [74]Pu X, Jiang Z, Hu B and et al. y-MPTMS modified nanometer-sized alumina micro-column separation and preconcentration of trace amounts of Hg, Cu, Au and Pd in biological, environmental and geological samples and their determination by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry,2004,19(8):984-989.
    [75]Zhao X, Shi Y, Wang T and et al. Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples. Journal of Chromatography A,2008,1188(2):140-147.
    [76]Aguilar-Arteaga K, Rodriguez J, Miranda J and et al. Determination of non-steroidal anti-inflammatory drugs in wastewaters by magnetic matrix solid phase dispersion-HPLC. Talanta,2010,80(3):1152-1157.
    [77]Jang J, Lim H. Characterization and analytical application of surface modified magnetic nanoparticles. Microchemical Journal,2010,94(2):148-158.
    [78]Chen L, Wang T, Tong J. Application of derivatized magnetic materials to the separation and the preconcentration of pollutants in water samples. TrAC Trends in Analytical Chemistry,2011,30(7):1095-1108.
    [79]Zhao X, Shi Y, Cai Y and et al. Cetyltrimethylammonium bromide-coated magnetic nanoparticles for the preconcentration of phenolic compounds from environmental water samples. Environmental science & technology,2008,42(4):1201-1206.
    [80]Ding J, Zhao Q, Sun L and et al. Magnetic mixed hemimicelles solid - phase extraction of xanthohumol in beer coupled with high - performance liquid chromatography determination. Journal of separation science,2011,34(12):1463-1468.
    [81]Bagheri H, Zandi O, Aghakhani A. Extraction of fluoxetine from aquatic and urine samples using sodium dodecyl sulfate-coated iron oxide magnetic nanoparticles followed by spectrofluorimetric determination. Analytica chimica acta,2011,692(1):80-84.
    [82]Zhu L, DI P, Ding L and et al. Mixed hemimicelles SPE based on CTAB-coated Fe3O4/SiO2 NPs for the determination of herbal bioactive constituents from biological samples. Talanta,2010,80(5):1873-1880.
    [83]Sun L, Zhang C, Chen L and et al. Preparation of alumina-coated magnetite nanoparticle for extraction of trimethoprim from environmental water samples based on mixed hemimicelles solid-phase extraction. Analytica chimica acta,2009,638(2):162-168.
    [84]Wu Q, Zhao G, Feng C and et al. Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples. Journal of Chromatography A,2011,1218(44):7936-7942.
    [85]Luo Y-B, Shi Z-G, Gao Q and et al. Magnetic retrieval of graphene:extraction of sulfonamide antibiotics from environmental water samples. Journal of Chromatography A, 2011,1218(10):1353-1358.
    [86]Ding J, Gao Q, Li XS and et al. Magnetic solid-phase extraction based on magnetic carbon nanotube for the determination of estrogens in milk. Journal of separation science, 2011,34(18):2498-2504.
    [87]Pardasani D, Kanaujia PK, Purohit AK and et al. Magnetic multi-walled carbon nanotubes assisted dispersive solid phase extraction of nerve agents and their markers from muddy water. Talanta,2011,86:248-255.
    [88]Zhao Q, Wei F, Luo Y-B and et al. Rapid magnetic solid-phase extraction based on magnetic multiwalled carbon nanotubes for the determination of polycyclic aromatic hydrocarbons in edible oils. Journal of Agricultural and Food Chemistry,2011,59(24):12794-12800.
    [89]Katsumata H, Asai H, Kaneco S and et al. Determination of linuron in water samples by high performance liquid chromatography after preconcentration with octadecyl silanized magnetite. Microchemical Journal,2007,85(2):285-289.
    [90]Liu Y, Li H, Lin J-M. Magnetic solid-phase extraction based on octadecyl functionalization of monodisperse magnetic ferrite microspheres for the determination of polycyclic aromatic hydrocarbons in aqueous samples coupled with gas chromatography-mass spectrometry. Talanta,2009,77(3):1037-1042.
    [91]Ji Y, Liu X, Guan M and et al. Preparation of functionalized magnetic nanoparticulate sorbents for rapid extraction of biphenolic pollutants from environmental samples. Journal of separation science,2009,32(12):2139-2145.
    [92]Qing LS, Xiong J, Xue Y and et al. Using baicalin-functionalized magnetic nanoparticles for selectively extracting flavonoids from Rosa chinensis. Journal of separation science,2011,34(22):3240-3245.
    [93]Li Q, Lam MH, Wu RS and et al. Rapid magnetic-mediated solid-phase extraction and pre-concentration of selected endocrine disrupting chemicals in natural waters by poly (divinylbenzene- co-methacrylic acid) coated Fe 3O 4 core-shell magnetite microspheres for their liquid chromatography-tandem mass spectrometry determination. Journal of Chromatography A,2010,1217(8):1219-1226.
    [94]Yu X, Sun Y, Jiang C and et al. Magnetic solid-phase extraction of five pyrethroids from environmental water samples followed by ultrafast liquid chromatography analysis. Talanta,2012.
    [95]Gao Q, Luo D, Bai M and et al. Rapid determination of estrogens in milk samples based on magnetite nanoparticles/polypyrrole magnetic solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 2011,59(16):8543-8549.
    [96]Meng J, Bu J, Deng C and et al. Preparation of polypyrrole-coated magnetic particles for micro solid-phase extraction of phthalates in water by gas chromatography-mass spectrometry analysis. Journal of Chromatography A,2011,1218(12):1585-1591.
    [97]Guan Y, Jiang C, Hu C and et al. Preparation of multi-walled carbon nanotubes functionalized magnetic particles by sol-gel technology and its application in extraction of estrogens. Talanta,2010,83(2):337-343.
    [98]Moliner-Martinez Y, Ribera A, Coronado E and et al. Preconcentration of emerging contaminants in environmental water samples by using silica supported Fe 3 O4 magnetic nanoparticles for improving mass detection in capillary liquid chromatography. Journal of Chromatography A,2011,1218(16):2276-2283.
    [99]Zhang X, Niu H, Pan Y and et al. Chitosan-coated octadecyl-functionalized magnetite nanoparticles:preparation and application in extraction of trace pollutants from environmental water samples. Analytical chemistry,2010,82(6):2363-2371.
    [100]Le Zhang X, Niu HY, Zhang SX and et al. Preparation of a chitosan-coated C18-functionalized magnetite nanoparticle sorbent for extraction of phthalate ester compounds from environmental water samples. Analytical and bioanalytical chemistry,2010,397(2):791-798.
    [101]Yashima E. Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation. Journal of Chromatography A,2001,906(1):105-125.
    [102]Lipkowitz KB. Theoretical studies of type Ⅱ-Ⅴ chiral stationary phases. Journal of Chromatography A,1995,694(1):15-37.
    [103]Pirkle WH, House DW, Finn JM. Broad spectrum resolution of optical isomers using chiral high-performance liquid chromatographic bonded phases. Journal of Chromatography A,1980,192(1):143-158.
    [104]Tang M, Zhang J, Zhuang S and et al. Development of chiral stationary phases for high-performance liquid chromatographic separation. TrAC Trends in Analytical Chemistry, 2012.
    [105]丁国生,黄晓佳,刘学良and et a1.新型高效液相色谱手性固定相选择剂——大环抗生素.色谱,2002,20(6):519-525.
    [106]柏正武,黄少华.高效液相色谱中的低相对分子质量型手性固定相.武汉化工学院学报,2004,26(3):4-10.
    [107]Aboul-Enein H, Ali I. Macrocyclic antibiotics as effective chiral selectors for enantiomeric resolution by liquid chromatography and capillary electrophoresis. Chromatographia,2000,52(11-12):679-691.
    [108]赵峰,祁岑,袁黎明.混合型多糖手性固定相的制备及其应用.曲阜师范大学学报:自然科学版,2012(2):81-84.
    [109]李爱峰,刘道杰.多糖衍生物类固定相在高效液相色谱手性分离中的应用进展.理化检验:化学分册,2005,41(7):525-529.
    [110]金召磊,汪一波,高建荣and et al.键合型多糖类手性固定相的研究进展.分析测试学报,2012,31(7):881-890.
    [111]Kurganov A. Chiral chromatographic separations based on ligand exchange. Journal of Chromatography A,2001,906(1):51-71.
    [112]Haginaka J. Protein-based chiral stationary phases for high-performance liquid chromatography enantioseparations. Journal of Chromatography A,2001,906(1):253-273.
    [113]穆惠英,敦惠娟,苗凤智and et a1.高效液相色谱中的蛋白质手性固定相.河北师范大学学报(自然科学版),2009,3:020.
    [114]Stewart KK, Doherty RF. Resolution of DL-tryptophan by affinity chromatography on bovine-serum albumin-agarose columns. Proceedings of the National Academy of Sciences,1973,70(10):2850-2852.
    [115]徐晓白,戴树桂,黄玉瑶.典型化学污染物在环境中的变化及生态效应:科学出版社;1998.
    [116]牟树森,青长乐.环境土壤学:农业出版社;1993.
    [117]Marucchini C, Zadra C. Stereoselective degradation of metalaxyl and metalaxyl-M in soil and sunflower plants. Chirality,2002,14(1):32-38.
    [118]Buser H-R, Muller MD, Poiger T and et al. Environmental behavior of the chiral acetamide pesticide metalaxyl:enantioselective degradation and chiral stability in soil. Environmental science & technology,2002,36(2):221-226.
    [119]Jarman JL, Jones WJ, Howell LA and et al. Application of capillary electrophoresis to study the enantioselective transformation of five chiral pesticides in aerobic soil slurries. Journal of Agricultural and Food Chemistry,2005,53(16):6175-6182.
    [120]Chen S, Liu W. Enantioselective degradation of metalaxyl in anaerobic activated sewage sludge. Bulletin of environmental contamination and toxicology,2009,82(3):327-331.
    [121]Monkiedje A, Spiteller M, Bester K. Degradation of racemic and enantiopure metalaxyl in tropical and temperate soils. Environmental science & technology, 2003,37(4):707-712.
    [122]Buerge IJ, Poiger T, Muller MD and et al. Enantioselective degradation of metalaxyl in soils:chiral preference changes with soil pH. Environmental science & technology, 2003,37(12):2668-2674.
    [123]李朝阳,张智超,张玲and et al.土壤中高效氟氯氰菊酯对映体选择性降解的研究.农业环境科学学报,2006,25(6):1640-1643.
    [124]李朝阳.土壤中手性农药对映体选择性环境行为的研究:[博士学位论文].天津:南开大学;2003.
    [125]Qin S, Budd R, Bondarenko S and et al. Enantioselective degradation and chiral stability of pyrethroids in soil and sediment. Journal of Agricultural and Food Chemistry, 2006,54(14):5040-5045.
    [126]Li Z, Zhang Z, Zhang L and et al. Isomer-and enantioselective degradation and chiral stability of fenpropathrin and fenvalerate in soils. Chemosphere,2009,76(4):509-516.
    [127]Zipper C, Bolliger C, Fleischmann T and et al. Fate of the herbicides mecoprop, dichlorprop, and 2,4-D in aerobic and anaerobic sewage sludge as determined by laboratory batch studies and enantiomer-specific analysis. Biodegradation,1999,10(4):271-278.
    [128]Bewick DW. Stereochemistry of fluazifop-butyl transformations in soil. Pesticide Science,1986,17(4):349-356.
    [129]Diao J, Xu P, Wang P and et al. Environmental behavior of the chiral aryloxyphenoxypropionate herbicide diclofop-methyl and diclofop:Enantiomerization and enantioselective degradation in soil. Environmental science & technology,2010,44(6):2042-2047.
    [130]Faller J, Huehnerfuss H, Koenig WA and et al. Do marine bacteria degrade. alpha.-hexachlorocyclohexane stereoselectively? Environmental science& technology. 1991,25(4):676-678.
    [131]Falconer RL, Bidleman TF, Gregor DJ and et al. Enantioselective Breakdown of alpha-Hexachlorocyclohexane in a Small Arctic Lake and its Watershed. Environmental science & technology,1995,29(5):1297-1302.
    [132]Law SA, Diamond ML, Helm PA and et al. Factors affecting the occurrence and enantiomeric degradation of hexachlorocyclohexane isomers in northern and temperate aquatic systems. Environmental Toxicology and Chemistry,2001,20(12):2690-2698.
    [133]Harner T, Kylin H, Bidleman TF and et al. Removal of a-and γ-hexachlorocyclohexane and enantiomers of a-hexachlorocyclohexane in the eastern Arctic Ocean. Environmental science & technology,1999,33(8):1157-1164.
    [134]Jantunen LM, Bidleman T. Air-water gas exchange of hexachlorocyclohexanes (HCHs) and the enantiomers of α-HCH in Arctic regions. Journal of Geophysical Research:Atmospheres (1984-2012),1996,101(D22):28837-28846.
    [135]Zipper C, Suter MJ-F, Haderlein SB and et al. Changes in the enantiomeric ratio of (R)-to (S)-mecoprop indicate in situ biodegradation of this chiral herbicide in a polluted aquifer. Environmental science & technology,1998,32(14):2070-2076.
    [136]Williams G, Harrison I, Carlick C and et al. Changes in enantiomeric fraction as evidence of natural attenuation of mecoprop in a limestone aquifer. Journal of contaminant hydrology,2003,64(3):253-267.
    [137]Bidleman T, Jantunen L, Harner T and et al. Chiral pesticides as tracers of air-surface exchange. Environmental Pollution,1998,102(1):43-49.
    [138]Sundqvist KL, Wingfors H, Brorstom-Lunden E and et al. Air-sea gas exchange of HCHs and PCBs and enantiomers of a-HCH in the Kattegat Sea region. Environmental Pollution,2004,128(1):73-83.
    [139]Ridal JJ, Bidleman TF, Kerman BR and et al. Enantiomers of a-hexachlorocyclohexane as tracers of air-water gas exchange in Lake Ontario. Environmental science & technology,1997,31(7):1940-1945.
    [140]Wang X, Jia G, Qiu J and et al. Stereoselective degradation of fungicide benalaxyl in soils and cucumber plants. Chirality,2007,19(4):300-306.
    [141]Wang X, Wang X, Zhang H and et al. Enantioselective degradation of tebuconazole in cabbage, cucumber, and soils. Chirality,2012,24(2):104.
    [142]Dong F, Cheng L, Liu X and et al. Enantioselective analysis of triazole fungicide myclobutanil in cucumber and soil under different application modes by chiral liquid chromatography/tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 2012.60(8):1929-1936.
    [143]Dong F, Li J, Chankvetadze B and et al. Chiral triazole fungicide difenoconazole: absolute stereochemistry, stereoselective bioactivity, aquatic toxicity, and environmental behavior in vegetables and soil. Environmental science & technology,2013,47(7):3386-3394.
    [144]Wang X, Zhang H, Xu H and et al. Enantioselective residue dissipation of hexaconazole in cucumber (Cucumis sativus L.), head cabbage (Brassica oleracea L. var. caulorapa DC.), and soils. Journal of Agricultural and Food Chemistry,2012,60(9):2212-2218.
    [145]Li Y, Dong F, Liu X and et al. Studies of Enantiomeric Degradation of the Triazole Fungicide Hexaconazole in Tomato, Cucumber, and Field Soil by Chiral Liquid Chromatography-Tandem Mass Spectrometry. Chirality,2013.
    [146]Wang M, Zhang Q, Cong L and et al. Enantioselective degradation of metalaxyl in cucumber, cabbage, spinach and pakchoi. Chemosphere,2014,95:241-246.
    [147]Li J, Dong F, Xu J and et al. Enantioselective determination of triazole fungice tetraconazole by chiral high - performance liquid chromatography and its application to pharmacokinetic study in cucumber, muskmelon, and soils. Chirality,2012,24(4):294.
    [148]Liang H, Li L, Qiu J and et al. Stereoselective transformation of triadimefon to metabolite triadimenol in wheat and soil under field conditions. Journal of hazardous materials, 2013,260:929-936.
    [149]Liu D, Wang P, Zhu W and et al. Enantioselective degradation of fipronil in Chinese cabbage (Brassica pekinensis). Food Chemistry,2008,110(2):399-405.
    [150]Gu X, Wang P, Liu D and et al. Stereoselective degradation of diclofop-methyl in soil and Chinese cabbage. Pesticide Biochemistry and Physiology,2008,92(1):1-7.
    [151]Gu X, Lu Y, Wang P and et al. Enantioselective degradation of diclofop-methyl in cole (Brassica chinensis). Food Chemistry,2010,121(1):264-267.
    [152]Hegeman WJ, Laane RW. Enantiomeric enrichment of chiral pesticides in the environment. Reviews of Environmental Contamination and Toxicology 173,2001,173:85-116.
    [153]朱立勤,娄建石.细胞色素P450与药物代谢的研究现状.中国临床药理学与治疗学,2005,9(10):1081-1086.
    [154]Kato R, Yamazoe Y. Sex-specific cytochrome P450 as a cause of sex-and species-related differences in drug toxicity. Toxicology letters,1992,64:661-667.
    [155]Kalow W. Genetic variation in the human hepatic cytochrome P-450 system. European journal of clinical pharmacology,1987,31(6):633-641.
    [156]Hu Y, Kupfer D. Enantioselective metabolism of the endocrine disruptor pesticide methoxychlor by human cytochromes P450 (P450s):major differences in selective enantiomer formation by various P450 isoforms. Drug metabolism and disposition, 2002,30(12):1329-1336.
    [157]Kenneke JF, Ekman DR, Mazur CS and et al. Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout. Chirality,2010,22(2):183-192.
    [158]Zhang P, Zhu W, Dang Z and et al. Stereoselective metabolism of benalaxyl in liver microsomes from rat and rabbit. Chirality,2011,23(2):93-98.
    [159]Zhu W, Dang Z, Qiu J and et al. Species differences for stereoselective metabolism of ethofumesate and its enantiomers in vitro. Xenobiotica,2009,39(9):649-655.
    [160]Huang H, Fleming CD, Nishi K and et al. Stereoselective hydrolysis of pyrethroid-like fluorescent substrates by human and other mammalian liver carboxylesterases. Chemical research in toxicology,2005,18(9):1371-1377.
    [161]Wiberg K, Letcher RJ, Sandau CD and et al. The enantioselective bioaccumulation of chiral chlordane and α-HCH contaminants in the polar bear food chain. Environmental science & technology,2000,34(13):2668-2674.
    [162]Fisk A, Moisey J, Hobson K and et al. Chlordane components and metabolites in seven species of Arctic seabirds from the Northwater Polynya:relationships with stable isotopes of nitrogen and enantiomeric fractions of chiral components. Environmental Pollution, 2001,113(2):225-238.
    [163]Karlsson H, Oehme M, Skopp S and et al. Enantiomer ratios of chlordane congeners are gender specific in cod (Gadus morhua) from the Barents Sea. Environmental science & technology,2000,34(11):2126-2130.
    [164]Herzke D, Kallenborn R, Nygard T. Organochlorines in egg samples from Norwegian birds of prey:congener-, isomer-and enantiomer specific considerations. Science of the total environment,2002,291(1):59-71.
    [165]Qiu J, Wang Q, Wang P and et al. Enantioselective degradation kinetics of metalaxyl in rabbits. Pesticide Biochemistry and Physiology,2005,83(1):1-8.
    [166]Wang Q, Qiu J, Zhu W and et al. Stereoselective degradation kinetics of theta-cypermethrin in rats. Environmental science & technology,2006,40(3):721-726.
    [167]Wang QX, Qiu J, Wang P and et al. Stereoselective kinetic study of hexaconazole enantiomers in the rabbit. Chirality,2005,17(4):186-192.
    [168]Zhu W, Qiu J, Dang Z and et al. Stereoselective degradation kinetics of tebuconazole in rabbits. Chirality,2007,19(2):141-147.
    [169]Ma Y, Chen L, Lu X and et al. Enantioselectivity in aquatic toxicity of synthetic pyrethroid insecticide fenvalerate. Ecotoxicology and Environmental Safety,2009,72(7):1913-1918.
    [170]Xu C, Wang J, Liu W and et al. Separation and aquatic toxicity of enantiomers of the pyrethroid insecticide lambda - cyhalothrin. Environmental Toxicology and Chemistry, 2008,27(1):174-181.
    [171]Liu H, Liu J, Xu L and et al. Enantioselective cytotoxicity of isocarbophos is mediated by oxidative stress-induced JNK activation in human hepatocytes. Toxicology, 2010,276(2):115-121.
    [172]Lin K, Liu W, Li L and et al. Single and joint acute toxicity of isocarbophos enantiomers to Daphnia magna. Journal of Agricultural and Food Chemistry, 2008,56(11):4273-4277.
    [173]Lu D, Huang L, Diao J and et al. Enantioselective toxicological response of the green alga Scenedesmus obliquus to isocarbophos. Chirality,2012,24(6):481-485.
    [174]Liu HJ, Cai WD, Huang RN and et al. Enantioselective toxicity of metolachlor to scenedesmus obliquus in the presence of cyclodextrins. Chirality,2012,24(2):181.
    [175]Wu T, Li X, Huang H and et al. Enantioselective Oxidative Damage of Chiral Pesticide Dichlorprop to Maize. Journal of Agricultural and Food Chemistry,2011,59(8):4315-4320.
    [176]Cai X, Liu W, Sheng G. Enantioselective degradation and ecotoxicity of the chiral herbicide diclofop in three freshwater alga cultures. Journal of Agricultural and Food Chemistry,2008,56(6):2139-2146.
    [177]叶璟.除草剂禾草灵对水稻与蓝藻的对映选择性毒理研究:[博士学位论文].杭州:浙江大学;2010.
    [178]Chen S, Liu W. Toxicity of chiral pesticide rac-metalaxyl and r-metalaxyl to Daphnia magna. Bulletin of environmental contamination and toxicology,2008,81(6):531-534.
    [179]刘萍.手性杀菌剂甲霜灵在土壤中的吸附和对绿藻水生毒理的对映体差异:[硕士学位论文].大连:大连理工大学;2009.
    [180]Xu P, Diao J, Liu D and et al. Enantioselective bioaccumulation and toxic effects of metalaxyl in earthworm< i> Eisenia foetida. Chemosphere,2011,83(8):1074-1079.
    [181]刘德英,张剑波,丁剑.我国农药类环境内分泌干扰物使用现状和对策.环境保护,2005,6:45-50.
    [182]Jin Y, Chen R, Sun L and et al. Enantioselective induction of estrogen-responsive gene expression by permethrin enantiomers in embryo-larval zebrafish. Chemosphere, 2009,74(9):1238-1244.
    [183]Wang L, Liu W, Yang C and et al. Enantioselectivity in estrogenic potential and uptake of bifenthrin. Environmental science & technology,2007,41(17):6124-6128.
    [184]Liu J, Yang Y, Zhuang S and et al. Enantioselective endocrine-disrupting effects of bifenthrin on hormone synthesis in rat ovarian cells. Toxicology,2011,290(1):42-49.
    [185]Hoekstra PF, Burnison BK, Neheli T and et al. Enantiomer-specific activity of o, p'-DDT with the human estrogen receptor. Toxicology letters,2001,125(1):75-81.
    [186]Miyashita M, Shimada T, Nakagami S and et al. Enantioselective recognition of mono-demethylated methoxychlor metabolites by the estrogen receptor. Chemosphere, 2004,54(8):1273-1276.
    [187]Hussien HM, Abdou HM, Yousef MI. Cypermethrin induced damage in genomic DNA and histopathological changes in brain and haematotoxicity in rats:The protective effect of sesame oil. Brain research bulletin,2013,92:76-83.
    [188]杨丽萍,李树正.三种三唑类杀菌剂对映体生物活性的研究.农药学学报,2002,4(2):67-70.
    [189]Strickland TC, Potter TL, Joo H. Tebuconazole dissipation and metabolism in Tifton loamy sand during laboratory incubation. Pest management science,2004,60(7):703-709.
    [190]Rial-Otero R, Gonzalez-Rodriguez RM, Cancho-Grande B and et al. Parameters affecting extraction of selected fungicides from vineyard soils. Journal of Agricultural and Food Chemistry,2004,52(24):7227-7234.
    [191]Rial-Otero R, Arias-Estevez M, Lopez-Periago E and et al. Variation in concentrations of the fungicides tebuconazole and dichlofluanid following successive applications to greenhouse-grown lettuces. Journal of Agricultural and Food Chemistry, 2005,53(11):4471-4475.
    [192]Garland SM, Davies NW, Menary RC. The dissipation of tebuconazole and propiconazole in boronia (Boronia megastigma Nees). Journal of Agricultural and Food Chemistry,2004,52(20):6200-6204.
    [193]Jin Y, Zheng S, Pu Y and et al. Cypermethrin has the potential to induce hepatic oxidative stress, DNA damage and apoptosis in adult zebrafish (Danio rerio). Chemosphere, 2011,82(3):398-404.
    [194]Filipov NM, Lawrence DA. Developmental toxicity of a triazole fungicide: consideration of interorgan communication. Toxicological Sciences,2001,62(2):185-186.
    [195]Ohhira S, Enomoto M, Matsui H. Sex difference in the principal cytochrome P-450 for tributyltin metabolism in rats. Toxicology and applied pharmacology,2006,210(1):32-38.
    [196]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 1976,72(1):248-254.
    [197]Shapovalova E, Shpigun O, Nesterova L and et al. Determination of the optical purity of fungicides of the triazole series. Journal of Analytical Chemistry,2004,59(3):255-259.
    [198]Zarn JA, Bruschweiler BJ, Schlatter JR. Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14 alpha-demethylase and aromatase. Environmental Health Perspectives,2003,111(3):255.
    [199]den Tonkelaar E vK-VM. Hexaconazole evaluations.Evaluation for acceptable daily intake. Bilthoven, Netherlands:National Institute of Public Health and Environmental Protection;,1990.
    [200]Sanderson JT, Boerma J, Lansbergen GW and et al. Induction and inhibition of aromatase (CYP19) activity by various classes of pesticides in H295R human adrenocortical carcinoma cells. Toxicology and applied pharmacology,2002,182(1):44-54.
    [201]王秋霞.手性农药对映体在动物体内立体选择性行为研究[博士学位论文].北京:中国农业大学;2006.
    [202]Zaphiropoulos PG, Mode A, Norstedt G and et al. Regulation of sexual differentiation in drug and steroid metabolism. Trends in pharmacological sciences, 1989,10(4):149-153.
    [203]Nicholas J, Barron D. The use of sodium amytal in the production of anesthesia in the rat. Journal of Pharmacology and Experimental Therapeutics,1932,46(1):125-129.
    [204]Liu L, Jiang Z, Liu J and et al. Sex differences in subacute toxicity and hepatic microsomal metabolism of triptolide in rats. Toxicology,2010,271(1):57-63.
    [205]Peng SX, Henson C, Wilson LJ. Simultaneous determination of enantioselective plasma protein binding of aminohydantoins by ultrafiltration and chiral high-performance liquid chromatography. Journal of Chromatography B:Biomedical Sciences and Applications, 1999,732(1):31-37.
    [206]Chang M, Kim TH, Kim H-D. Stereoselective synthesis of (+)-flutriafol. Tetrahedron:Asymmetry,2008,19(12):1504-1508.
    [207]PSD. Food and Environment Protection Act,1985, Part Ⅲ. Evaluationon: Flutriafol.1996.
    [208]Santana M, Rodrigues K, Duran R and et al. Evaluation of the effects and mechanisms of action of flutriafol, a triazole fungicide, on striatal dopamine release by using in vivo microdialysis in freely moving rats. Ecotoxicology and Environmental Safety, 2009,72(5):1565-1571.
    [209]周高信.两种手性农药在蚯蚓体内的对映体选择性代谢和毒理差异研究:[硕士学位论文].北京:中国农业大学;2012.
    [210]Covaci A, Gheorghe A, Schepens P. Distribution of organochlorine pesticides, polychlorinated biphenyls and a-HCH enantiomers in pork tissues. Chemosphere, 2004,56(8):757-766.
    [211]Luurtsema G, de Lange E, Lammertsma AA and et al. Transport across the blood-brain barrier:stereoselectivity and PET-tracers. Molecular Imaging & Biology, 2004,6(5):306-318.
    [212]Lee SM, Tiwari D. Organo and inorgano-organo-modified clays in the remediation of aqueous solutions:An overview. Applied Clay Science,2012,59:84-102.
    [213]Jaynes W, Vance G. BTEX sorption by organo-clays:cosorptive enhancement and equivalence of interlayer complexes. Soil Science Society of America Journal, 1996,60(6):1742-1749.
    [214]Lemke SL, Grant PG, Phillips TD. Adsorption of zearalenone by organophilic montmorillonite clay. Journal of Agricultural and Food Chemistry,1998,46(9):3789-3796.
    [215]Wong CS, Lau F, Clark M and et al. Rainbow trout (Oncorhynchus mykiss) can eliminate chiral organochlorine compounds enantioselectively. Environmental science& technology,2002,36(6):1257-1262.
    [216]朱骞,赵茹茜.蛋黄的形成及其调控.畜牧与兽医,2003,35(9):3941.
    [217]Qin S, Gan J. Abiotic enantiomerization of permethrin and cypermethrin:Effects of organic solvents. Journal of Agricultural and Food Chemistry,2007,55(14):5734-5739.
    [218]Liu W, Qin S, Gan J. Chiral stability of synthetic pyrethroid insecticides. Journal of Agricultural and Food Chemistry,2005,53(10):3814-3820.
    [219]You J, Lydy MJ. A solution for isomerization of pyrethroid insecticides in gas chromatography. Journal of Chromatography A,2007,1166(1):181-190.
    [220]Lu S, Forcada J. Preparation and characterization of magnetic polymeric composite particles by miniemulsion polymerization. Journal of Polymer Science Part A: Polymer Chemistry,2006,44(13):4187-4203.
    [221]Yan H, Wang H, Qin X and et al. Ultrasound-assisted dispersive liquid-liquid microextraction for determination of fluoroquinolones in pharmaceutical wastewater. Journal of pharmaceutical and biomedical analysis,2011,54(1):53-57.
    [222]Zhang Y, Lee HK. Application of ultrasound-assisted emulsification microextraction based on applying low-density organic solvent for the determination of organochlorine pesticides in water samples. Journal of Chromatography A,2012,1252:67-73.
    [223]Shi Z-G, Lee HK. Dispersive liquid-liquid microextraction coupled with dispersive μ-solid-phase extraction for the fast determination of polycyclic aromatic hydrocarbons in environmental water samples. Analytical chemistry,2010,82(4):1540-1545.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700