手性布朗斯特酸与过渡金属催化的不对称碳氢官能化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C-H键的直接官能化反应为结构复杂多样的有机化合物提供了一种更为高效的合成方法,因此它一直是有机化学界研究的热点和难点,也吸引着越来越多化学家的关注。本论文主要研究了手性布朗斯特酸和过渡金属催化的的sp3、sp2C-H官能化反应,合成了一系列手性含氮杂环化合物。
     我们发现手性磷酸可以很好的实现与氮相邻的sp3C-H的不对称官能化反应。在磷酸的催化作用下,α-酮酸酯和芳香胺首先脱水形成亚胺,之后经历[1,5]-氢迁移/关环反应,形成一系列的缩醛胺类化合物。实验过程中发现双磷酸能够很好的催化该反应,对各种底物都能得到较好的结果,能够得到高达90%的收率和86%的对映选择性。
     我们将金属催化剂和有机小分子多催化剂的体系成功运用到C-H官能化的反应中,实现了以前运用单一催化剂无法完成的反应,而且符合绿色化学中“原子经济性”的概念。
     我们成功实现了金配合物与布朗斯特酸接力催化的不活泼炔类化合物的[1,5]-氢迁移反应。在金和三氟甲磺酸的接力催化作用下,3-烯烃-1-炔类化合物分别经历氢胺化/还原反应以高达99%收率和95/5的非对映选择性得到一系列的环状缩醛胺类化合物。研究还发现运用手性磷酸可以实现该反应的不对称催化。通过加大手性磷酸的量至200mol%,可以得到高达99%对映选择性的产物。
     我们发现钯(Ⅱ)/手性配体/手性磷酸能够很好地兼容,并可以很好地实现烯烃的不对称官能化反应。在多催化剂的催化作用下N-(2,2-二苯基己-5-烯-1-基)丙烯酰胺类化合物发生不对称的氧化串联环化反应,可以一步直接构建6,5-双环含氮杂环化合物,并得到中等的收率和很高的对映选择性。通过动力学研究可以发现钯(Ⅱ)配合物与手性磷酸存在协同效应。手性配体和阴离子共同控制产物的立体选择性。
Direct functionalization of C-H bonds has been a research topic that has been receiving increasing interest in organic chemistry because it provides a strategically new opportunity for the creation of structurally complex and diverse organic molecules. In this dissertation, we have developed several sp3and sp2C-H functionalization reactions catalyzed by Br(?)nsted acid and transition metal and furnished a serious of nitrogen-containing heterocyclic compounds.
     We have disclosed that chiral phosphoric acid could fulfill sp3C-H adjacent to nitrogen functionlization well. The reaction proceeds initially with the condensation of o-aminobenzoketone with aniline in the presence of a chiral Br(?)nsted acid to generate an iminium species, which is presumably able to undergo an asymmetric1,5-hydride shift process and a subsequent ring closing reaction to give a cyclic aminal. Bisphosphoric acid showed much better stereoselectivity than other PA and gave cyclic aminals in fairly good diastereo-and enantioselectivities.
     We have successfully applied muti-catalysts system with metal catalysts and organocatalysts to C-H functionalization reactions which could not complete well using single catalyst previous. This was also in accordance with the concept of "atom economic" in green chemistry
     we have developed a relay catalytic hydroamination/redox reaction, which is able to directly assemble the tertiary amine-substituted3-en-1-ynes derivatives and various amines into cyclic aminals in excellent yields (up to99%) and moderate to high diastereoselectivities (up to95/5dr) by using gold(I) complex and trifluoromethanesulfonic acid as the combined catalyst. This method provides an alternative strategy to make the unactivated alkynes undergo the1,5-hydride transfer redox reaction. The enantioselective variant of this process has been realized by using excess amounts of chiral BINOL-derived phosphoric acid capable of delivering the corresponding products with up to99%ee.
     we have demonstrated that the combined use of a palladium(II) complex of chiral Bu-QUOX ligand and a chiral phosphoric acid enabled a highly enantioselective oxi-dative cascade cyclization reaction of N-(2,2-disubstituted hex-5-en-1-yl)acrylamides, providing a straightforward method to access chiral6,5-bicyclic nitrogeneous hetero-cycles in moderate to good yields and with excellent enantioselectivities. A synergistic effect between the palladium(II) complex and the chiral phosphoric acid was found in the catalysis. The chiral ligand and anion cooperatively control the stereoselectivity.
引文
[1]For recent reviews of C-H activation, see:(a) Kakiuchi, F.; Chatani, N. Catalytic Methods for C-H Bond Functionalization:Application in Organic Synthesis Adv. Synth. Catal.2003,345,1077-1101. (b) Godula, K.; Sames, D. C-H Bond Functionalization in Complex Organic Synthesis. Science 2006,312,67-72. (c) Bergman, R. G. Organometallic chemistry:C-H activation. Nature 2007,446, 391-393. (d) Alberico, D.; Scott, M. E.; Lautens, M. Aryl-Aryl Bond Formation by Transition-Metal-Catalyzed Direct Arylation. Chem. Rev.2007,107,174-238. (e) Davies, H. M. L.; Manning, J. R. Catalytic C-H functionalization by metal carbenoid and nitrenoid insertion. Nature 2008,451,417-424. (f) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Palladium(II)-Catalyzed C-H Activation/C-C Cross-Coupling Reactions:Versatility and Practicality. Angew. Chem., Int. Ed.2009,48,5094-5115. (g) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Functionalization of Organic Molecules by Transition-Metal-Catalyzed C(sp3)-H Activation. Chem. Eur. J.2010,16, 2654-2672. (h) Lyons, T. W.; Sanford, M. S. Palladium-Catalyzed Ligand-Directed C-H Functionalization Reactions. Chem. Rev.2010,110, 1147-1169. (i) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Direct C-H Transformation via Iron Catalysis. Chem. Rev.2011,111,1293-1314. (j) Davies, H. M. L.; Du Bois, J.; Yu, J.-Q. C-H Functionalization in organic synthesis. Chem. Soc. Rev.2011, 40,1855-1856.
    [2]For recent reviews of enantioselective C-H activation, see:(a) Davies, H. M. L. Recent Advances in Catalytic Enantioselective Intermolecular C-H Functionalization. Angew. Chem., Int. Ed. 2006,45,6422-6425. (b) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Transition metal-catalyzed C-H activation reactions:diastereoselectivity and enantioselectivity. Chem. Soc. Rev. 2009,38,3242-3272.
    [3]For Reviews on C-H bond functionalization via hydride shifts:(a) Meth-Cohn, O.; Suschitzky, H. Heterocycles by Ring Closure of Ortho-Substituted t-Anilines (The t-Amino Effect). Adv. Heterocycl. Chem. 1972,14,211-278. (b) Verboom, W.; Reinhoudt, D. N. "Tert-amino effect" in heterocyclic synthesis. Ring closure reactions of N,N-dialkyl-1,3-dien-1-amines. Recl. Trav. Chim. Pays-Bas 1990,109,311-324. (c) Meth-Cohn, O. The t-Amino Effect:Heterocycles Formed by Ring Closure of ortho-Substituted t-Anilines. Adv. Heterocycl. Chem.1996,65,1-37.
    [4]For comprehensive reviews, see:(a) Katritzky, A. R.; Rachwal, S.; Rachwal,B. Tetrahedron,1996,52,15031. (b) Zhou, Y.-G. Acc. Chem. Res.2007,40,1357. For recent example, see:(c) Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem. Int. Ed. 2006,45,3683.
    [5]For selected examples, see:(a) Verboom, W.; Reinhoudt, D. N.; Visser, R.; Harkema, S. J. Org. Chem.1984,49,269. (b) Nijhuis, W. H. N.; Verboom, W.; Reinhoudt, D. N.; Harkema, S. J. Am. Chem. Soc.1987,109,3136. (c) Nijhuis, W. H. N.; Verboom, W.; Reinhoudt, D. N. Synthesis,1987,641. (d) Nijhuis, W. H. N.; Verboom, W.; Abu El-Fadl, A.; Harkema,S.; Reinhoudt, D. N. J. Org. Chem.1989,54,199. (e) Nijhuis, W. H. N.; Verboom, W.; Abu El-Fadl, A.; Van Hummel, G. J.; Reinhoudt, D. N. J. Org. Chem.1989,54,209. (f) De Boeck, B.; Jiang, S.; Janousek, Z.; Viehe, H. G. Tetrahedron,1994,50,7075. (g) De Boeck, B.; Janousek, Z.; Viehe, H. G. Tetrahedronm,1995,51,13239. (h) Ojea, V; Muinelo, I.; QuintelaJ. M. Tetrahedron,1998,54,927. (i) Kaval, N.; Halasz-Dajka, B.; Vo-Thanh, G.; Dehaen, W.; Van der Eycken, J.; Matyus, P.; Loupy, A.; Vander Eycken, E. Tetrahedron,2005,61,9052. (j) Zhang, C.; Kanta De, C.; Mal, R.; Seidel, D. J. Am. Chem. Soc.2008,130,416. (k) Barluenga, J.; Fananas-Mastral, M.; Aznar, F.; Valdes, C. Angew. Chem., Int. Ed.2008,47, 6594.
    [6]Verboom, W.; Van Dijk, B. G.; Reinhoudt, D. N. Novel applications of the "t-amino effect" in heterocyclic chemistry; synthesis of 5//-pyrrolo-and 1H,6H-pyrido[1,2-a][3,1]benzoxazines. Tetrahedron Lett.1983,24,3923-3926.
    [7]Verboom, W.; Hamzink, M. R. J.; Reinhoudt, D. N. Novel applications of the "t-amino effect" in heterocyclic chemistry. Synthesis of a pyrrolo[1,2-a]quinazoline and 5H-pyrrolo[1,2-a][3,1]benzothiazines. Tetrahedron Lett.1984,25,4309-4312.
    [8]Zhang, C.; Murarka, S.; Seidel, D. Facile Formation of Cyclic Aminals through a Br(?)nsted Acid-Promoted Redox Process.J.Org. Chem.2009,74,419-422.
    [9]Mori, K.; Ohshima, Y.; Ehara, K.; Akiyama, T. Expeditious Construction of Quinazolines via Br(?)sted Acid-induced C-H Activation:Further Extension of "tert-Amino Effect". Chem. Lett.2009,38,524-525.
    [10]Murarka, S.; Zhang, C.; Konieczynska, M. D; Seidel, D. Lewis Acid Catalyzed Formation of Tetrahydroquinolines via an Intramolecular Redox Process. Org. Lett.2009,11,129-132.
    [11]Ruble, J. C.; Hurd, A. R.; Johnson, T. A.; Sherry, D. A.; Barbachyn, M. R.; Toogood, P. L.; Bundy, G. L.; Graber, D. R.; Kamilar, G. M. Synthesis of (-)-PNU-286607 by Asymmetric Cyclization of Alkylidene Barbiturates. J. Am. Chem. Soc.2009,131,3991-3997.
    [12]Pastine, S. J.; McQuaid, K. M.; Sames, D. Room Temperature Hydroalkylation of Electron-Deficient Olefins:□ sp3 C-H Functionalization via a Lewis Acid-Catalyzed Intramolecular Redox Event. J. Am. Chem. Soc.2005,127, 12180-12181.
    [13]Pastine, S. J.; Sames, D. Room Temperature Intramolecular Hydro-O-alkylation of Aldehydes:□ sp3C-H Functionalization via a Lewis Acid Catalyzed Tandem 1,5-Hydride Transfer/Cyclization. Org. Lett,2005,7,5429-5431.
    [14]McQuaid, K. M.; Sames, D. C-H Bond Functionalization via Hydride Transfer: Lewis Acid Catalyzed Alkylation Reactions by Direct Intramolecular Coupling of sp3 C-H Bonds and Reactive Alkenyl Oxocarbenium Intermediates. J. Am. Chem. Soc.2009,131,402-403.
    [15]Vadola P. A.; Sames, D. C-H Bond Functionalization via Hydride Transfer: Direct Coupling of Unactivated Alkynes and sp3 C-H Bonds Catalyzed by Platinum Tetraiodide. J. Am. Chem. Soc.2009,131,16525-16528.
    [16]McQuaid, K. M.; Long, J. Z.; Sames, D. Synthesis of Chromans via [3+3] Cyclocoupling of Phenols with Allylic Alcohols Using a Mo/o-Chloranil Catalyst System. Org. Lett,2009,11,2972-2975.
    [17]Mori, K.; Kawasaki, T.; Sueoka, S.; Akiyama, T. Expeditious Synthesis of Benzopyrans via Lewis Acid-Catalyzed C-H Functionalization:Remarkable Enhancement of Reactivity by an Ortho Substituent. Org. Lett,2010,12, 1732-1735.
    [18]Bolte, B.; Odabachian, Y.; Gagosz, F. Gold(I)-Catalyzed Rearrangement of Propargyl Benzyl Ethers:A Practical Method for the Generation and in Situ Transformation of Substituted Allenes. J. Am. Chem. Soc.2010,132, 7294-7296.
    [19]Bolte, B.; Gagosz, F. Gold and Br(?)nsted Acid Catalyzed Hydride Shift onto Allenes:Divergence in Product Selectivity. J. Am. Chem. Soc.2010,133, 7696-7699.
    [20]Mahoney, S. J.; Moon, D. T.; Hollinger,J.; Fillion, E. Functionalization of Csp3 Functionalization of Csp3-H bond-Sc(OTf)3-catalyzed domino 1,5-hydride shift/cyclzation/Friedel-Crafts acylation reaction of benzylidene Meldrum's acid. Tetrahedron Lett.2009,50,4706-4709.
    [21]Mori, K.; Sueoka, S.; Akiyama, T. Expeditious Construction of a Carbobicyclic Skeleton via sp3 C-H Functionalization:Hydride Shift from an Aliphatic Tertiary Position in an Internal Redox Process. J. Am. Chem. Soc.2011,133, 2424-2426.
    [22]Mori, K.; Sueoka, S.; Akiyama, T. Rapid Access to 3-Aryltetralin Skeleton via C(sp3)-H Bond Functionalization:Investigation on the Substituent Effect of Aromatic Ring Adjacent to C-H Bond in Hydride Shift/Cyclization Sequence. Chem. Lett.2011,40,1386-1387.
    [23]Mori, K.; Kawasaki, T.; Akiyama, T. Concise Route to 3-Arylisoquinoline Skeleton by Lewis Acid Catalyzed C(sp3)-H Bond Functionalization and Its Application to Formal Synthesis of (±)-Tetrahydropalmatine. Org. Lett.2012, 14,1436-1439.
    [24]Murarka, S.; Deb, I.; Zhang, C.; Seidel, D. Catalytic Enantioselective Intramolecular Redox Reactions:Ring-Fused Tetrahydroquinolines. J. Am. Chem. Soc.2009,131,13226-13227.
    [25]Kang, Y. K.; Kim, S. M.; Kim, D. Y. Enantioselective Organocatalytic C-H Bond Functionalization via Tandem 1,5-Hydride Transfer/Ring Closure: Asymmetric Synthesis of Tetrahydroquinolines. J. Am. Chem. Soc.2010,132, 11847-11849.
    [26]Jiao, Z.-W.; Zhang, S.-Y; He, C; Tu, Y.-Q.; Wang, S.-H.; Zhang, F.-M; Zhang, Y.-Q.; Li, H. Organiccatalytic Asymmetric Direct Csp3-H Functionalization of Ethers:A Highly Efficient Approach to Chiral Spiroethers. Angew. Chem. Int. Ed 2012,51,8811-8815.
    [27]Mori, K.; Ehara, K.; Kurihara, K.; Akiyama, T. Selective Activation of Enantiotopic C(sp3)-Hydrogen by Means of Chiral Phosphoric Acid: Asymmetric Synthesis of Tetrahydroquinoline Derivatives. J. Am. Chem. Soc. 2011,133,6166-6169.
    [28]Cao, W.-D.; Liu, H.-H; Wang, W.-T.; Lin, L.-L.; Feng, X-M. Highly Enantioselective Synthesis of Tetrahydroquinolines via Cobalt(II)-Catalyzed Tandem 1,5-Hydride Transfer/Cyclization. Org Lett.2011,13,600-603.
    [29]Zhou, G.-H.; Liu, F.; Zhang, J.-L. Enantioselective Gold-Catalyzed Functionalization of Unreactive sp3 C-H Bonds through a Redox-Neutral Domino Reaction. Chem. Eur. J.2011,17,3101-3104.
    [30](a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Br(?)nsted acid. Angew. Chem. Int. Ed. 2004,43,1566-1568. (b) Uraguchi, D.; Terada, M. Chiral Br(?)nsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc.2004,126,5356-5357. (c) Storer, R.I.; Carrera, D.E.; Ni, Y.; MacMillan, D.W.C. Enantioselective organocatalytic reductive amination. J. Am. Chem. Soc.2006,128,84-86. (d) Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe, K. Chiral Br(?)nsted acid catalyzed enantioselective hydrophosphonylation of imines:asymmetric synthesis of a-amino phosphonates. Org. Lett.2005,7, 2583-2585.
    [1](a) Hashmi, A. S. K.; Hutchings, G. J. Gold Catalysis. Angew. Chem. Int. Ed. 2006,45,7896-7936. (b) Hashmi, A. S. K. Gold Catalysis 2. Chem. Rev.2007, 107,3180-3211. (c) Furstner, A.; Davies, P. W. Catalytic Carbophilic Activation: Catalysis by Platinum and Gold π□Acids. Angew. Chem. Int. Ed.2007,46, 3410-3449. (d) Gorin, D. J.; Toste, F. D. Relativistic effects in homogeneous gold catalysis. Nature 2007,446,395-403. (e) Muzart, J. Gold-catalysed reactions of alcohols:isomerisation, inter-and intramolecular reactions leading to C-C and C-heteroatom bonds Tetrahedron 2008,64,5815-5849. (f) Li, Z.; Brouwer, C., He, C.Gold-Catalyzed Organic Transformation. Chem. Rev.2008,108, 3239-3265. (g) Arcadi, A. Alternative Synthetic Methods through New Developments in Catalysis by Gold. Chem. Rev.2008,108,3266-3325. (h) Jimenez-Nunez, E.; Echavarren, A. M. Gold-Catalyzed Cycloisomerizations of Enynes:A Mechanistic Perspective. Chem. Rev.2008,108,3326-3350. (i) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Ligand Effects in Homogeneous Au Catalysis. Chem. Rev.2008,108,3351-3378.(j) Skouta, R.; Li, C.-J. Gold-catalyzed reactions of C-H bonds Tetrahedron 2008,64,4917-4938. (k) Widenhoefer, R. A.; Recent Developments in Enantioselective Gold(I) Catalysis. Chem. Eur. J.2008, 14,5382-5391. (1) Kirsch, S. F. Construction of Heterocycles by the Strategic Use of Alkyne π-Activation in Catalyzed Cascade Reactions. Synthesis 2008, 3183-3204. (m) Bongers, N.; Krause, N. A. Golden Opportunities in Stereoselective Catalysis. Angew. Chem. Int. Ed.2008,47,2178-2181. (n) Furstner, A. Gold and platinum catalysis-a convenient tool for generating molecular complexity. Chem. Soc. Rev.2009,38,3208-3221. (o) Shapiro, N.; Toste, F. D. A Reactivity-Driven Approach to the Discovery and Development of Gold-Catalyzed Organic Reactions. Synlett 2010,675-691. (p) Sengupta, S.; Shi, X. Chem Cat Chem 2010,2,609-619. (q) Hashmi, A. S. K. Homogeneous Gold Catalysis Beyond Assumptions and Proposals-Characterized Intermediates. Angew. Chem. Int. Ed.2010,49,5232-5241. (r) Bandini, M. Gold-catalyzed decorations of arenes and heteroarenes with C-C multiple bonds. Chem. Soc. Rev. 2011,40,1358-1367. (s) Krause, N.; Winter, C. Gold-Catalyzed Nucleophilic Cyclization of Functionalized Allenes:A Powerful Access to Carbo-and Heterocycles.Chem. Rev.2011,111,1994-2009. (t) Pradal, A.; Toullec, P. Y.; Michelet, V. Recent Developments in Asymmetric Catalysis in the Presence of Chiral Gold Complexes. Synthesis 2011,1501-1514. (u) Corma, A.; Leyva-Perez, A.; Sabater, M. J. Gold-Catalyzed Carbon-Heteroatom Bond-Forming Reactions. Chem. Rev.2011,111,1657-1712. (v) Rudolph, M.; Hashmi, A. S. K. Heterocycles from gold catalysis. Chem. Commun.2011,47,6536-6544. (w) Liu, L.-P.; Hammond, G.-B. Recent advances in the isolation and reactivity of organogold complexes. Chem. Soc. Rev.2012,41,3129-3139.
    [2](a) Akiyama, T. Stronger Br(?)nsted Acids. Chem. Rev.2007,107,5744-5758. (b) Terada, M. Synthesis,2010,1929. (c) Yu, J.; Shi, F.; Gong, L.-Z. Br(?)nsted-Acid-Catalyzed Asymmetric Multicomponent Reactions for the Facile Synthesis of Highly Enantioenriched Structurally Diverse Nitrogenous Heterocycles. Acc. Chem. Res.,2011,44,1156-1171.
    [3](a) Han, Z.-Y. Ph.D. Dissertation, University of Science and Technology of China, Hefei,2011 (in Chinese) (韩志勇,博士论文,中国科学技术大学,合肥,2011).(b) Chao, W. Ph.D. Dissertation, University of Science and Technology of China, Hefei,2012 (in Chinese)(王超,博士论文,中国科学技术大学,合肥,2012).
    [4]Han, Z.-Y.; Xiao, H.; Chen, X.-H.; Gong, L.-Z. Consecutive Intramolecular Hydroamination/Asymmetric Transfer Hydrogenation under Relay Catalysis of an Achiral Gold Complex/Chiral Br(?)nsted Acid Binary System. J. Am. Chem. Soc.,2009,131,9182-9183.
    [5]Liu, X.-Y.; Che, C.-M. Highly Enantioselective Synthesis of Chiral Secondary Amines by Gold(I)/Chiral Br(?)nsted Acid Catalyzed Tandem Intermolecular Hydroamination and Transfer Hydrogenation Reaction. Org. Lett.,2009,11, 4204-4207.
    [6]Wang, C.; Han, Z.-Y.; Luo, H.-W; Gong, L.-Z. Highly Enantioselective Relay Catalysis in the Three-Component Reaction for Direct Construction of Structurally Complex Heterocycles. Org. Lett.,2010,12,2266-2269.
    [7]Wu, H.; He, Y.-P.; Gong, L.-Z. The Combination of Relay and Cooperative Catalysis with a Gold/Palladium/Br(?)nsted Acid Ternary System for the Cascade Hydroamination/Allylic Alkylation Reaction. Adv. Synth. Catal.,2012,354, 975-980.
    [8]Patil, N. T.; Mutyala, A. K.; Konala, A.; Tella, R. B. Tuning the reactivity of Au-complexes in an Au(I)/chiral Br(?)nsted acid cooperative catalytic system:an approach to optically active fused 1,2-dihydroisoquinolines. Chem. Commun., 2012,48,3094-3096.
    [9]Muratore, M. E.; Holloway, C. A.; Pilling, A. W.; Storer, R. I.; Trevitt G.; Dixon, D. J. Enantioselective Br(?)nsted Acid-Catalyzed N-Acyliminium Cyclization Cascades. J. Am. Chem. Soc.2009,131,10796-10797.
    [10]Han, Z.-Y.; Guo, R.; Wang, P.-S.; Chen, D.-F.; Xiao, H.; Gong, L.-Z. Enantioselective concomitant creation of vicinal quaternary stereogenic centers via cyclization of alkynols triggered addition of azlactones. Tetrahedron Lett., 2011,52,5963-5967.
    [11]Han, Z.-Y.; Chen, D.-F.; Wang, Y.-Y.; Guo, R.; Wang, P.-S.; Wang, C.; Gong, L.-Z. Hybrid Metal/Organo Relay Catalysis Enables Enynes To Be Latent Dienes for Asymmetric Diels-Alder Reaction. J. Am. Chem. Soc.,2012,134,6532-6535.
    [12]For a recent review, see:Xiao, J.; Li, X. Gold a-Oxo Carbenoids in Catalysis: Catalytic Oxygen-Atom Transfer to Alkynes. Angew. Chem. Int. Ed.2011,50, 7226-7236.
    [13](a) Cui, L.; Peng, Y.; Zhang, L.-M. A Two-Step, Formal [4+2] Approach toward Piperidin-4-ones via Au Catalysis. J. Am. Chem. Soc.2009,131, 8394-8295. (b) Vasu, D.; Hung, H. H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu, R.-S. Gold-Catalyzed Oxidative Cyclization of 1,5-Enynes Using External Oxidants. Angew. Chem. Int. Ed.2011,50,6911-6914.
    [14]Chen, D.-F., Han, Z.-Y., He, Y.-P., Yu, J., Gong L.-Z., Metal-Free Oxidation/C(sp3)-H Functionalization of Unactivated Alkynes Using Pyridine-N-Oxide as the External Oxidant. Angew. Chem. Int. Ed.2012,51, 12307-12310.
    [15](a) Mezailles, N.; Ricard, L.; Gagosz. F. Phosphine Gold(I) Bis-(trifluoromethanesulfonyl)imidate Complexes as New Highly Efficient and Air-Stable Catalysts for the Cycloisomerization of Enynes. Org. Lett.2005,7, 4133-4136. (b) Jafarpour, L.; Stevens, E. D.; Nolan. S. P. Expedient syntheses of the N-heterocyclic precursor imidazolium salts IPr.HCl, IMes.HCl and Ixy.HCl. J. Organ. Chem.2000,606,49-54. (c) Oberhuber, C. N.; Munoz, M. P.; Lopez, S.; Nunez, E. J.; Nevado, C.; Gomez, E. H.; Raducan, M.; Echavarren. A. M. Gold(I)-Catalyzed Cyclizations of 1,6-Enynes:Alkoxycyclizations and exolendo Skeletal Rearrangements. Chem. Eur. J.2006,12,1677-1693.
    [16](a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Br(?)nsted Acid. Angew. Chem. Int. Ed.2004,43,1566-1568. (b) Uraguchi, D.; Terada, M. Chiral Br(?)nsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc.2004,126,5356-5357. (c) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. Enantioselective organocatalytic reductive amination. J. Am. Chem. Soc.2006,128,84-86. (d) Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe, K. Chiral Br(?)nsted acid catalyzed enantioselective hydrophosphonylation of imines: asymmetric synthesis of a-amino phosphonates. Org. Lett.2005,7,2583-2585.
    1. Alper, H.; Hamel, N., Asymmetric-Synthesis of Acids by the Palladium-Catalyzed Hydrocarboxylation of Olefins in the Presence of (R)-(-)-1,1-Binaphthyl-2,2'-Diyl or (S)-(+)-1,1'-Binaphthyl-2,2'-Diyl Hydrogen Phosphate. J. Am. Chem. Soc.1990, 112,2803-2804.
    2. Chai, Z.; Rainey, T. J. Pd(II)/Br(?)nsted Acid Catalyzed Enantioselective Allylic C-H Activation for the Synthesis of Spirocyclic Rings. J. Am. Chem. Soc.2012, 134,3615-3618.
    3. Yu, S.-Y.; Zhang, H.; Gao, Y.; Mo, L.; Wang, S.-Z.; Yao, Z.-J. Asymmetric Cascade Annulation Based on Enantioselective Oxa-Diels-Alder Cycloaddition of in Situ Generated Isochromenyliums by Cooperative Binary Catalysis of Pd(OAc)2and (S)-Trip. J. Am. Chem. Soc.2013,135,11402-11407.
    4. Mukherjee, S.; List, B. Direct Asymmetric a-Allylation of Aldehydes with Simple Allylic Alcohols Enabled by the Concerted Action of Three Different Catalysts. J. Am. Chem. Soc.2007,129,11336-11337.
    5. Jiang, G.; List, B. Direct Asymmetric a-Allylation of Aldehydes with Simple Allylic Alcohols Enabled by the Concerted Action of Three Different Catalysts. Angew. Chem., Int. Ed.2011,50,9471-9474.
    6. Tao, Z.-L.; Zhang, W.-Q.; Chen, D.-F.; Adele, A.; Gong, L.-Z. Pd-Catalyzed Asymmetric Allylic Alkytlation of Pyrazol-5-ones with Allylic Alcohols:The Role of the Chiral Phosphoric Acid in C-O Bond Cleavage and Stereocontrol. J. Am. Chem. Soc.2013,135,9255-9258.
    7. (a) Tietze, L. F.; Ha, H.; Bell, H. P. Enantioselective Palladium-Catalyzed Transformations. Chem. Rev.2004,104,3453-3516. (b) Trend, R. M.; Ramtohul, Y. K.; Stoltz, B. M. Oxidative Cyclizations in a Nonpolar Solvent Using Molecular Oxygen and Studies on the Stereochemistry of Oxypalladation. J. Am. Chem. Soc.2005,127,17778-17788. (c) Liu, G. S.; Stahl, S. S. Two-Faced Reactivity of Alkenes:□ cis-versus trans-Aminopalladation in Aerobic Pd-Catalyzed Intramolecular Aza-Wacker Reactions. J. Am. Chem. Soc.2007,129, 6328-6335. (d) Mcdonald, R. I.; Liu, G. S.; Stahl, S. S. Palladium(II)-Catalyzed Alkene Functionalization via Nucleopalladation:Stereochemical Pathways and Enantioselective Catalytic Applications. Chem. Rev.2011,111,2981-3019.
    8. (a) Negishi, E. I.; Coperet, C.; Ma, S.; Liou, S. Y.; Liu, F. Cyclic Carbopalladation. A Versatile Synthetic Methodology for the Construction of Cyclic Organic Compounds. Chem. Rev.1996,96,365-394. (b) Poli, G.; Giambastiani, G.; Heumann, A. Palladium in Organic Synthesis:Fundamental Transformations and Domino Processes. Tetrahedron 2000,56,5959-5989. (c) Battistuzzi, G.; Cacchi, S.; Fabrizi, G. The Aminopalladation/Reductive Elimination Domino Reaction in the Construction of Functionalized Indole Rings. Eur. J. Org. Chem.2002, 2671-2681.
    9. Midori, A. A.; Minori, K.; Takayoshi, A. Palladium-Catalyzed Oxidative Wacker Cyclizations in Nonpolar Organic Solvents with Molecular Oxygen:AStepping Stone to Asymmetric Aerobic Cyclizations. J. Am. Chem. Soc.2001,123, 2907-2908.
    10. Yip, K. T.; Yang, M.; Law, K. L.; Zhu, N. Y.; Yang, D. Pd(II)-Catalyzed Enantioselective Oxidative Tandem Cyclization Reactions. Synthesis of Indolines through C-N and O-C Bond Formation. J. Am. Chem. Soc.2006,128,3130-3131.
    11. He, W.; Yip, K. T.; Zhang, N. Y; Yang, D. Pd(II)/'Bu-quinolineoxazoline:An Air-Stable and Modular Chiral Catalyst System for Enantioselective Oxidative Cascade Cyclization. Org. Lett.2009,11,5626-5628.
    12. Scarborough, C. C.; Bergant, A.; Sazama, G. T.; Guzei, I. A.; Stahl, S. S. Synthesis of Pd(II) complexes bearing an enantiomerically resolved seven-menbered N-heterocyclic carbine ligand and intial studies of their use in asymmetric Wacker-type oxidative cyclization reactions. Tetrahedron,2009,65, 5084-5092.
    13. Ramalingan, C.; Takenaka, K.; Sasai, H. Pd(II)-SPRIX catalyzed enantioselective construction of pyrrolizines/pyrroloindoles employing molecular oxygen as the sole oxidant. Tetrahedron,2011,67,2889-2894.
    14. (a) He, W.; Yip, K.; Zhu, N.; Yang, D. Pd(Ⅱ)Bu-quinolineoxazoline:An Air-Stable and Modular Chiral Catalyst System for Enantioselective Oxidative Cascade Cyclization. Org. Lett.2011,11,5626-5628. (b) Kikushima, K.; Holder, J. C.; Gatti, M.; Stoltz; B. M. Palladium-Catalyzed Asymmetric Conjugate Addition of Arylboronic Acids to Five-, Six-, and Seven-Memberedβ-Substituted Cyclic Enones:Enantioselective Construction of All-Carbon Quaternary Stereocenters. J. Am. Chem. Soc,2011,133,6902-6905. (c) Schifmer, J. A.; Woste, T. H.; Oestreich, M.; Enantioselective Fujiwara-Moritani Indole and Pyrrole Annulations Catalyzed by Chiral Palladium(II)-NicOx Complexes. Eur. J. Org. Chem.2010,174-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700