布朗斯特酸催化的不对称环加成及路易斯酸催化的Darzens反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含多个手性中心的四氢吡咯衍生物是合成许多天然产物、生物活性物质和手性药物的重要中间体,这类化合物的合成一直是有机合成领域研究的热点。1,3-偶极环加成反应是构成多取代五元环的重要方法之一。更具意义的是,甲亚胺叶立德和贫电子烯烃的1,3-偶极环加成反应是合成四氢吡咯衍生物的一个高效简洁的方法,可以合成结构多样的四氢吡咯环化合物。
     本文报道了手性布朗斯特酸2.1催化的不对称1,3-偶极环加成反应,详细研究了如:催化剂结构与反应的关系,考察了反应温度,催化剂用量、反应溶剂等反应条件对化学收率和对映选择性的影响。在最佳反应条件下,苯甘氨酸甲酯、苯丙氨酸甲酯都可以取得好的催化结果,得到最高98%ee的对映选择性,同时对于脂肪族的氨基丁酸甲酯也可以取得94%ee的对映选择性。研究还发现双磷酸2.1催化的醛、α-氨基丙二酸二乙酯和端基烯烃的环加成反应也可以得到好的非对映选择性和对映选择性,通过改变反应溶剂,双磷酸2.1催化的醛、α-氨基丙二酸二乙酯和富马酸二甲酯的环加成反应,也可以得到中等的非对映选择性和最高98%ee的对映选择性。
     通过对反应机理的研究,我们认为双磷酸2.1中的二个羟基氢原子与马来酸二甲酯的二个酯羰基形成氢键,活化亲偶极体;磷氧羰基与叶立德中氮上氢原子形成氢键,活化偶极体。通过对双磷酸2.1的母体芳环和连接链修饰,合成了双磷酸2.12-2.17,并将其应用于环加成反应,得到比2.1差的催化结果。
     本文还研究了对空气和湿度稳定的手性ZrMS催化剂催化的重氮乙酰苯胺与醛的不对称Darzens反应,得到单一构型的顺式环氧化合物。对于芳香醛可以得到76-96%的化学收率和94->99%ee的对映选择性,脂肪醛可以得到最高98%ee的对映选择性。与钛-联二萘酚催化剂相比,手性ZrMS催化剂催化的反应操作简单,并得到相反绝对构型的顺式环氧化合物,对于合成高对映选择性的顺式环氧化合物,提供了一种与钛-联二萘酚络合物相互补充的一种方法,同时底物规模放大到克级时,反应的对映选择性没有明显的变化。
Optically active substituted pyrrolidine derivatives are very important building blocks for the synthesis of many natural products, bioactive substrates and chiral pharmaceuticals. 1,3-Dipolar cycloaddition reactions is an extremely powerful synthetic methodology to access these structural motifs. In particular, the 1,3-dipolar cycloaddition reaction of azomethine ylides(AMY) with electron-deficient olefins is an efficient and straightforward method for the stereoselective construction of pyrrodine compounds.
     In this paper, we have established a chiral Br?nsted acid catalyzed asymmetric 1,3-dipolar cycloaddition reaction. Studies on the relationship between the structure of Br?nsted acid and the catalytic performance have revealed that Br?nsted acid 2.1 is the optimal catalyst, tolerating a wide spectrum of substrates. Up to 98% ee has been obtained for different phenyl glycine ester under the optimal conditions. The cycloaddition reaction of phenylalaine ester also delivered the products in good yields and with excellent enantioselectivity. We also found that bisphosphoric acids 2.1, showed excellent levels of both diastereo and enantioselectivities for the reaction of aldehyde, diethyl aminomalonate, and terminal alkenes. In addition, the three-component 1,3-dipolar cycloaddition reaction of aldehyde, diethyl aminomalonate and dimethyl fumarate was also successful, affording moderate dr value and high enantioselectivity (up to 98% ee) by using the toluene as the solvent.
     Theoretical calculations were performed to explore the intrinsic factors for the 1,3-dipolar cycloaddition reaction, revealing that the two carbonyl groups of the dimethyl maleate forms two hydrogen bonds with the hydroxyl groups of the bisphosphoric acid 2.1 and concomitantly, the phosphoryl oxygen forms an additional hydrogen bonds with N-H of azomethine ylides. We also synthesized a series of bisphosphoric acids through structural modification of phosphoric acid 2.1, and the catalytic performance reveals that 2.1 shows superior catalytic efficiency to its structural anologues.
     In addition, we also developed an asymmetric Darzens reaction of aldehydes with diazo-N,N-dimethylacetamide catalyzd by an air-stable and storable chiral zirconium Lewis acid catalyst, which is formed from 3,3’-diiodobinaphthol and tetrabutoxyzirconium, giving solely cis-glycidic amides in high yields and with excellent enantioselectivity (76-96% yield, up to >99% ee) for aromatic aldehydes and 98% ee for aliphatic aldehydes. In contrast to the reaction using titanium complex of (R)-binaphthol, the current protocol is easier to operate than the titanium complex and thus provides an important alternative to prepare epoxyamides with high enantiomeric purity. The Darzens reaction could be carried out smoothly on gram-scale under mild conditions with a very subtle erosion of the stereoselectivity.
引文
[1] For reviews about synthesis an applications of pyrrolidine derivatives, see: (a) Pearson, W. H. In Studies in Natural Product Chemistry; Atta-Ur-Rahman, Ed.; Elsevier: New York, 1998; Vol. 1, p 323. (b) Sardina, F. J.; Rapoport, H. Enantiospecific Synthesis of Heterocycles from α-Amino Acids. Chem. Rev. 1996, 96, 1825-1872. (c) Coldham, I.; Hufton, R. Intramolecular Dipolar Cycloaddition Reactions of Azomethine Ylides. Chem. Rev. 2005, 105, 2765-2809. (d) Pandey, G.; Banerjee, P.; Gadre, S. R. Construction of Enantiopure Pyrrolidine Ring System via Asymmetric [3+2]-Cycloaddition of Azomethine Ylides. Chem. Rev. 2006, 106, 4484-4517. (e) Nair, V.; Suja, T. D. Intramolecular 1,3-dipolar cycloaddition reactions in targeted syntheses. Tetrahedron 2007, 63, 12247-12275. (f) Cheng, Y.; Huang, Z. T.; Wang, M. X. Heterocyclic Enamines: The Versatile Intermediates in the Synthesis of Heterocyclic Compounds and Natural Products. Curr. Org. Chem. 2004, 8, 325-351. (g) Felpin, F. X.; Lebreton, J. Recent Advances in the Total Synthesis of Piperidine and Pyrrolidine Natural Alkaloids with Ring-Closing Metathesis as a Key Step. Eur. J. Org. Chem. 2003, 19, 3693-3712. (h) Pearson, W. H.; Stoy, P. Cycloadditions of Nonstabilized 2-Azaallyllithiums (2-Azaallyl Anions) and Azomethine Ylides with Alkenes: [3+2] Approaches to Pyrrolidines and Application to Alkaloid Total Synthesis. Synlett. 2003, 903-921. (i) Pearson, W. H. Alkaloid synthesis via [3+2] cycloadditions. Pure Appl. Chem. 2002, 74, 1339-1347. (j) Gothelf, K. V.; Jorgensen, K. A. Asymmetric 1,3-Dipolar Cycloaddition Reactions. Chem. Rev. 1998, 98, 863-909.
    [2] For highlights, see: Nájera, C.; Sansano, J. M. Catalytic Enantioselective 1,3-Dipolar Cyclo- addition Reaction of Azomethine Ylides and Alkenes: The Direct Strategy To Prepare Enantioenriched Highly Substituted Proline Derivatives.Angew. Chem. Int. Ed. 2005, 44, 6272-6276.
    [3] (a) Denhart, D. J.; Griffith, D. A.; Heathcock, C. H. Synthesis of the Tricyclic Core of Sarain A. Use of Formaldehyde in an Intramolecular Grigg Azomethine Ylide Cyclization. J. Org. Chem. 1998, 63, 9616-9617. (b) Garner, P.; Cox, P. B.; Anderson, J. T.; Protasiewicz, J.; Zaniewski, R. Use of Silicon-Based Tethers to Control Diastereofacial Selectivity in Azomethine Ylide Cycloadditions. J. Org. Chem. 1997, 62, 493-498. (c) Garner, P.; Kaniskan, H. U.; Hu, J.; Youngs, W. J.; Panzner, M. Asymmetric Multicomponent [C+NC+CC] Synthesis of Highly Functionalized Pyrrolidines Catalyzed by Silver(I). Org. Lett. 2006, 8, 3647-3650. (d) Garner, P.; Hu, J.; Parker, C. G.; Youngs, W. J.; Medvetz, D. TheCuI-catalyzed exo-selective asymmetric multicomponent [C+NC+CC] coupling reaction. Tetrahedron Lett. 2007, 48, 3867-3870. (e) Kaniskan, H. U.; Garner, P. An Efficient Synthetic Approach to Cyanocycline A and Bioxalomycinβ2 via [C+NC+CC] Coupling. J. Am. Chem. Soc. 2007, 129, 15460-15461.
    [4] Padwa, A.; Chen, Y.-Y.; Chlacchio, U.; Dent, W. Diastereofacial Selectivity in Azomethine Ylide Cycloaddition Reactions Derived From Chiralα-Cyanoaminosilanes. Tetrahedron 1985, 41, 3529-3535.
    [5] For example: (a) Deprez, P.; Rouden, J.; Chiaroni, A.; Riche, C.; Royer, J.; Husson, H.-P. Diastereofacial Selectivity in the 1,3-dipolar Cycloaddition of Chiral Azomethine Ylides. Tetrahedron Lett. 1991, 32, 7531-7534. (b) Anslow, A. S.; Harwood, L. M.; Lilley, I. A. Synthesis ofα-phenyl Proline Derivatives via 1,3- dipolar Cycloaddition of Chiral Stabilised Azomethine Ylids. Tetrahedron: Asymmetry 1995, 6, 2465-2468. (c) Garner, P.; Ho, W. B.; Shin, H. The Asymmetric Synthesis of (-)-quinocarcin via a 1,3-dipolar Cycloadditive Strategy. J. Am. Chem. Soc. 1993, 115, 10742-10753. (d) Garner, P.; Dogan, O. Auxiliary controlled 1,3-dipolar cycloadditions of chiral stabilized azomethine ylides. J. Org. Chem. 1994, 59, 4-6. (e) Takano, S.; Moriya, M.; Ogasawara, K. Auxiliary Controlled 1,3-dipolar Cycloadditions of Chiral Stabilized Azomethine Ylides. Tetrahedron: Asymmetry 1992, 3, 681-684.
    [6] Wee, A. G. H. pi-facial selectivity of the 1,3-dipolar cyclo-addition of the parent azomethine ylide to homochiral dipolarophiles. J. Chem. Soc., Perkin. Trans. I. 1989, 1363-1364.
    [7] (a) Nájera, C.; Gracia, R. M. D.; Sansano, J. M. 1,3-Dipolar cycloadditions of azomethine ylides chiral acrylates derived from methyl (S)- and (R)-lactate: diastereo- and enantio- selective synthesis of polysubstituted pralines. Tetrahedron: Asymmetry 2006, 17, 1985-1989. (b) Nájera, C.; Gracia, R. M. D.; Sansano, J. M.; Cossio, F. P. Diastereoselective 1,3-Dipolar Cycloaddition Reactions between Azomethine Ylides and Chiral Acrylates Derived from Methyl (S)- and (R)-Lactate–Synthesis of Hepatitis C Virus RNA-Dependent RNA Polyme- rase Inhibitors. Eur. J. Org. Chem. 2007, 5038-5049.
    [8] (a) Allway, P.;Grigg, R. Chiral Co(II) and Mn(II) Catalysts for the 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides Derived from Arylidene Imines of Glycine. Tetrahedron Lett. 1991, 32, 5817-5820. (b) Grigg, R. Asymmetric Cascade 1,3-Dipolar Cycloaddition Reactions of Imines. Tetrahedron: Asymmetry 1995, 6, 2475-2486.
    [9] Longmire, J. M.; Wang, B.; Zhang, X. Highly Enantioselective Ag(I)-Catalyzed [3 + 2] Cyclo- addition of Azomethine Ylides. J. Am. Chem. Soc. 2002, 124, 13400-13401.
    [10] Chen, C.; Li, X.; Schreiber, S. L. Catalytic Asymmetric [3+2] Cycloaddition of AzomethineYlides. Development of a Versatile Stepwise, Three-Component Reaction for Diversity- Oriented Synthesis. J. Am. Chem. Soc. 2003, 125, 10174-10175.
    [11] Kn?pfel, T. F.; Aschwanden, P.; Ichikawa, T.; Watanabe, T.; Carreira, E. M. Readily Available Biaryl P, N Ligands for Asymmetric Catalysis. Angew. Chem., Int. Ed. 2004, 43, 5971-5973.
    [12] Alemparte, C.; Blay, G.; J?rgensen, K. A. A Convenient Procedure for the Catalytic Asymm- etric 1,3-Dipolar Cycloaddition of Azomethine Ylides and Alkenes.Org Lett. 2005, 7, 4569-4572.
    [13] Stohler, R.;Wahl, F.; Pfaltz, A. Enantio- and Diastereoselective [3+2] Cycloadditions of Azomethine Ylides with Ag(I)-Phosphinooxazoline Catalysts . Synthesis. 2005, 1431-1436.
    [14] Zeng, W.; Zhou, Y. G. Bifunctional AgOAc-Catalyzed Asymmetric [3 + 2] Cycloaddition of Azomethine Ylides. Org. Lett. 2005, 7, 5055-5058.
    [15] Zeng, W.; Chen, G. Y.; Zhou, Y. G.; Li, Y. X. Hydrogen-Bonding Directed Reversal of Enantioselectivity. J. Am. Chem. Soc. 2007, 129, 750-751.
    [16] Zeng, W.; Zhou, Y. G. AgOAc catalyzed asymmetric [3+2] cycloaddition of azomethine ylides with chiral ferrocene derived P,S ligands. Tetrahedron Lett. 2007, 48, 4619-4622.
    [17] (a) Nájera, C.; Gracia Retamosa, M. D.; Sansano, J. M. Catalytic Enantioselective 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides and Alkenes by Using Phos- phoramidite–Silver(I) Complexes. Angew. Chem., Int. Ed. 2008, 47, 6055- 6058. (b) Nájera, C.; Gracia Retamosa, M. D.; Martín-Rodríguez, M.; Sansano, J. M. Cózar, A. D.; Cossio, F. P. Synthesis of Prolines by Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Ylides and Alkenes Catalyzed by Chiral Phosphoramidite-Silver(I) Complexes. Eur. J. Org. Chem. 2009, 5622-5634.
    [18] (a) Wang, C. J.; Liang, G.; Xue, Z. Y.; Gao, F. Highly Enantioselective 1,3-Dipolar Cyclo- addition of Azomethine Ylides Catalyzed by Copper(I)/TF- BiphamPhos Complexes. J. Am. Chem. Soc. 2008, 130, 17250-17251. (b) Wang, C. J.; Xue, Z. Y.; Liang, G.; Lu, Z. Highly enantioselective 1,3-dipolar cycloaddition of azomethine ylides catalyzed by AgOAc/TF- BiphamPhos. Chem Commun. 2009, 2905-2907. (c) Xue, Z. Y.; Liu, T. L.; Lu, Z.; Huang, H.; Tao, H. Y.; Wang, C. J. exo-Selective asymmetric 1,3-dipolar cycloaddition of azomethine ylides with alkylidene malonates catalyzed by AgOAc/TF-BiphamPhos. Chem Commun. 2010, 46, 1717-1729. (d) Liang, G.; Tong, M. C.; Wang, C. J. Silver Acetate/ TF-BiphamPhos- Catalyzed endo-Selective Enantioselective 1,3-Dipolar Cycloaddi- tion of Azomethine Ylides with Vinyl Phenyl Sulfone. Adv Syn & Catal. 2009, 351, 3101-3106.
    [19] Yu, S, B.; Hu, X. P.; Deng, J.; Wang, D. Y.; Duan, Z. C.; Zheng, Z. Enantioselective Ag(I)- catalyzed [3+2] cycloaddition of azomethine ylides using a chiral ferrocene-based phosphine–phosphoramidite ligand having a stereogenic P-center. Tetrahedron: Asymmetry 2009, 20, 621-625.
    [20] Kim, H. Y.; Shih, H. J.; Knabe, W. E.; Oh, K. Reversal of Enantioselectivity between the Copper(I)- and Silver(I)-Catalyzed 1,3-Dipolar Cycloaddition Reactions Using a Brucine- Derived Amino Alcohol Ligand. Angew.Chem., Int. Ed. 2009, 48, 7420-7423.
    [21] Gothelf, A. S.; Gothelf, K. V.; Hazell, R. G.; J?rgensen, K. Catalytic Asymmetric 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides–A Simple Approach to Optically Active Highly Functionalized Proline Derivatives. Angew.Chem., Int. Ed. 2002, 41, 4236-4238.
    [22] Dogan, O.; Koyuncu, H.; Garner, P.; Bulut, A.; Youngs, W. J.; Panzner, M. New Zinc(II)- Based Catalyst for Asymmetric Azomethine Ylide Cycloaddition Reactions. Org Lett. 2006, 8, 4687-4690.
    [23] Oderaotoshi, Y.; Cheng, W.; Fujitomi, S.; Kasano, Y.; Minakata, S.; Komatsu, M. exo- and Enantioselective Cycloaddition of Azomethine Ylides Generated from N-Alkylidene Glycine Esters Using Chiral Phosphine-Copper Complexes. Org Lett. 2003, 5, 5043-5046.
    [24] Gao, W.; Zhang, X.; Raghunath, M. Cu(I)-Catalyzed Highly Exo-selective and Enantioselec- tive [3 + 2] Cycloaddition of Azomethine Ylides with Acrylates. Org Lett. 2005, 7, 4241- 4244.
    [25] (a) Cabrera, S.; Arrayás, R. G.; Carretero, J. C. Highly Enantioselective Copper(I)- Fesulphos-Catalyzed 1,3-Dipolar Cycloaddition of Azomethine Ylides. J. Am. Chem. Soc. 2005, 127, 16394-16395. (b) López-Pérez, A.; Adrio, J.; Carretero, J. C. Bis-Sulfonyl Ethylene as Masked Acetylene Equivalent in Catalytic Asymmetric [3 + 2] Cycloaddition of Azomethine Ylides. J. Am. Chem. Soc. 2008, 130, 10084-10085. (c) Llamas, T.; Arrayás, R. G.; Carretero, J. C. Catalytic Enantioselective 1,3-Dipolar Cyclo- addition of Azomethine Ylides with Vinyl Sulfones. Org Lett. 2006, 8, 1795-1798.
    [26] Hernández-Toribio, J.; Arrayás, R. G.; Martín-Matute, B.; Carretero, J. C. Catalytic Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides withα,β-Unsaturated Ketones. Org. Lett. 2009, 11, 393-396.
    [27] Yan, X. X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong, W.; Hou, X. L.; Wu, Y. D. A Highly Enantio- and Diastereoselective Cu-Catalyzed 1,3-Dipolar Cycloaddition ofAzomethine Ylides with Nitroalkenes. Angew. Chem., Int. Ed. 2006, 45, 1979-1983.
    [28] Fukuzawa, S, I.; Oki, H. Highly Enantioselective Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylide Catalyzed by a Copper(I)/ClickFerrophos Complex. Org. Lett. 2008, 10, 1747-1750.
    [29] (a) Pérez, A. L.; Adrio, J. Carretero, J. C. The Phenylsulfonyl Group as a TemporalRegiochemical Controller in the Catalytic Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides. Angew. Chem., Int. Ed. 2009, 48, 340-343. (b) Machīn, R. R.; Esguevillas, M. G.; Adrio, J.; Carretero, J. C. Cu-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides withβ-Phenylsulfonyl Enones.Ligand Controlled Diastereoselectivity Reversal. J. Org. Chem. 2010, 75, 233-236.
    [30] Saito, S.; Tsubogo, T.; Kobayashi, S. Chiral Calcium Complexes as Br?nsted Base Catalysts for Asymmetric Addition ofα-Amino Acid Derivatives toα,β-Unsaturated Carbonyl Compounds. J. Am. Chem. Soc. 2007, 129, 5364-5365. (b) Tsubogo, T.; Saito, S.; Seki, K.; Yamashita, Y., Kobayashi, S. Development of Catalytic Asymmetric 1,4-Addition and [3 + 2] Cycloaddition Reactions Using Chiral Calcium Complexes. J. Am. Chem. Soc. 2008, 130, 13321-13332.
    [31] Shi, J. W.; Zhao, M. X.; Lei, Z. Y.; Shi, M. Axially Chiral BINIM and Ni(II)-Catalyzed Highly Enantioselective 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides and N-Arylmal- eimides. J. Org Chem. 2008, 73, 305-308.
    [32] Vicario, J. L.; Reboredo, S.; Bad?a, D.; Carrillo, L. Organocatalytic Enantioselective [3+2] Cycloaddition of Azomethine Ylides andα,β-Unsaturated Aldehydes. Angew.Chem. Int. Ed. 2007, 46, 5168-5170.
    [33] Ibrahem, I.; Rios, R.; Vesely, J.; Córdova, A. Organocatalytic asymmetric multi-component [C+NC+CC] synthesis of highly functionalized pyrrolidine derivatives. Tetrahedron Lett. 2007, 48, 6252-6257.
    [34] (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Enantioselective Mannich- Type Reaction Catalyzed by a Chiral Br?nsted Acid. Angew. Chem. Int. Ed. 2004, 43, 1566-1568. (b) Uraguchi, D.; Terada, M. Chiral Br?nsted Acid Catalyzed Direct Mannich Reactions via Elec trophilic Activation. J. Am. Chem. Soc. 2004, 126, 5356-5357.(c) Liu, H.; Cun, L. F.; Mi, A.; Jiang, Y. Z.; Gong, L. Z. Enantioselective Direct Aza Hetero-Diels-Alder Reaction Catalyzed by Chiral Br?nsted Acids. Org. Lett. 2006, 8, 6023-6025. (d) Guo, Q. X.; Liu, H.; Guo, C.; Luo, S. W.; Gong, L. Z. Chiral Br?nsted Acid-Catalyzed Direct Asymmetric Mannich Reaction. J. Am. Chem. Soc. 2007, 129, 3790-3791. (e) Chen, X. H.; Xu, X. Y.; Liu, H.; Cun, L. F.; Gong, L. Z. Highly Enantioselective Organocatalytic Biginelli Reaction. J. Am. Chem. Soc. 2006, 128, 14802-14803.
    [35] (a) Chen, X. H.; Zhang, W. Q.; Gong, L. Z. Asymmetric Organocatalytic Three-Component 1,3- Dipolar Cycloaddition: Control of Stereochemistry via a Chiral Br?nsted Acid Activated Dipole. J. Am. Chem. Soc. 2008, 130, 5652-5653. (b) Liu, W. J.; Chen, X. H.; Gong, L. Z. Direct Assembly of Aldehydes, Amino Esters, and Anilines into Chiral Imidazolidines viaBr?nsted Acid Catalyzed Asymmetric 1,3-Dipolar Cycloadditions. Org Lett. 2008, 10, 5357-5360.
    [36] (a)Xu, M. X.; Zhang, X. M.; Gong, L. Z. The first organocatalytic enantio- and diastereoselective 1, 3-diplor cycloaddition of azomethine ylides with nitroalkens. Synlett 2008, 691. (b) Liu, Y. K.; Liu, H.; Du, W.; Yue, L.; Chen, Y. C. Reaction Control in the Organocatalytic Asymmetric One-Pot, Three-Component Reaction of Aldehydes, Diethylα-Aminomalonate and Nitroalkenes: Toward Diversity-Oriented Synthesis. Chem. Eur. J. 2008, 14, 9873-9877. (c) Xie, J. W.; Yoshida, K.; Takasu, K.; Takemoto, Y. Thiourea-catalyzed asymmetric formal [3+2] cycloaddition of azomethine ylides with nitroolefins. Tetrahedron Lett. 2008, 49, 6910-6913.
    [37] (a) Yu, J.; He, L.; Chen, X. H.; Song, J.; Chen, W. J.; Gong, L. Z. Highly Enantioselective Catalytic 1,3-Dipolar Cycloaddition Involving 2,3-Allenoate Dipolarophiles. Org Lett. 2009, 11, 4946-4949. (b) Chen, X. H.; Wei, Q.; Luo, S. W.; Xiao, H.; Gong, L. Z. Organocatalytic Synthesis of Spiro [pyrrolidin-3,3′-oxindoles] with High Enantiopurity and Structural Diversity. J. Am. Chem. Soc. 2009, 131, 13819-13825. (c) Wang, C.; Chen, X. H.; Zhou, S. M.; Gong, L. Z. Asymmetric organocatalytic formal double-arylation of azomethines for the synthesis of highly enantio- merically enriched isoindolines. Chem Commun. 2010, 46, 1275-1277.
    [38] (a) Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe, K. Chiral Br?nsted Acid Catalyzed Enantioselective Hydrophosphonylation of Imines: Asymmetric Synthesis of A?mino Phosphonates. Org. Lett. 2005, 7, 2583-2586. (b) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. Enantioselective Organocatalytic Reductive Amination. J. Am. Chem. Soc. 2006, 128, 84-85.
    [39] Matsunaga, S.; Das, J.; Roels, J.; Vogl, E. M.; Yamamoto, N.; Iida, T.; Yamaguchi, K.; Shibasaki, M. Catalytic Enantioselective meso-Epoxide Ring Opening Reaction with Phenolic Oxygen Nucleophile Promoted by Gallium Heterobimetallic Multifunctional Complexes. J. Am. Chem. Soc. 2000, 122, 2252-2260.
    [40] (a) Majima, K.; Takita, R.; Okada, R.; Ohshima, T.; Shibasaki, M. Catalytic Asymmetric Michael Reaction ofβ-Keto Esters: Effects of the Linker Heteroatom in Linked-BINOL. J. Am. Chem. Soc. 2003, 125, 15837-15845. (b) Kurihara, K.; Yamamoto, Y.; Miyaura, N. An N-Linked Bidentate Phosphoramidite Ligand (N-Me-BIPAM) for Rhodium-Catalyzed Asymmetric Addition of Arylboronic Acids to N-Sulfonylarylaldimines Adv. Syn & Catal. 2009, 351, 260-270.
    [41] Kumagai, N.; Matsunnga, S.; Kinoshita, T.; Harada, S.; Okada, S.; Sakamoto, S.; Yamaguchi,K.; Shibasaki, M. Direct Catalytic Asymmetric Aldol Reaction of Hydroxyketones: Asymmetric Zn Catalysis with a Et2Zn/Linked-BINOL Complex. J. Am. Chem. Soc. 2003, 125, 2169-2178.
    [42] Vogl, E. M.; Matsunaga, S.; Kanai, M.; Iida, T.; Shibasaki, M. Linking BINOL: C2-Symmetric Ligands for Investigations on Asymmetric Catalysis Tetrahedron Lett. 1998, 39, 7917-7920.
    [43] Robinson, J. E.; Taylor, R. J. K. A Ramberg–B?cklund route to the stilbenoid anti-cancer agents combretastatin A-4 and DMU-212. Chem Commun. 2007, 1617-1619.
    [44] Hili, R.; Yudin, A. K. Readily Available Unprotected Amino Aldehydes. J. Am. Chem. Soc. 2006, 128, 14772-14773.
    [45] Nicolaou, K. C.; Natarajan, S.; Li, H.; Jain, N. F.; Hughes, R.; Solomon, M. E.; Ramanjulu, J. M.; Boddy, C. N. C.; Takayanagi, M. Total Synthesis of Vancomycin Aglycon-Part 1: Synthesis of Amino Acids 4±7 and Construction of the AB-COD Ring Skeleton. Angew. Chem. Int. Ed. 1998, 37, 2708-2714.
    [46] Yu, G. X.; Mason, H. J.; Galdi, K.; Wu, X. M.; Cornelius, L,; Zhao, N.; Witkus, M.; Ewing, W. R.; Macor, J. E. Mono-Chlorination of Electron-Rich Arylalkyl- and Heteroarylalkyl-amines and Amino Acids Using Sulfuryl Chloride. Synthesis. 2003, 403-407.
    [1] For review, see (a) Xia, Q. H.; Ge, H. Q.; Ye, C. P.; Liu, Z. M.; Su, K. X. Advances in Homogeneous and Heterogeneous Catalytic Asymmetric Epoxidation. Chem. Rev. 2005, 105, 1603-1662. (b) Li, A. H.; Dai, L. X.; Aggarwal, V. K. Asymmetric Ylide Reactions: Epoxid- ation, Cyclopropanation, Aziridination, Olefination, and Rearrangement. Chem. Rev. 1997, 97, 2341-2372. (c) Wong, O. A.; Shi, Y. Organo-catalytic Oxidation. Asymmetric Epoxid- ation of Olefins Catalyzed by Chiral Ketones and Iminium Salts. Chem. Rev. 2008, 108, 3958 -3987. (d) Lane, B. S.; Burgess, K. Metal-Catalyzed Epoxidations of Alkenes with Hydrogen Peroxide. Chem. Rev. 2003, 103, 2457-2474.
    [2] For review, see: (a) Diez, D.; Nunez, M. G.; Anton, A. B.; Garcia, P.; Moro, R. F.; Garrido, N. M.; Marcos, I. S.; Basabe, P.; Urones, J. G. Asymmetric epoxidation of electron-deficient olefins. Curr. Org. Synth. 2008, 5, 186-216. (b) Michael, J. P.; John, S. Asymmetric epoxidation of electrondeficient olefins. Chem. Commun. 2000, 1215-1225.
    [3] (a) Kolb, H. C.; Vannieuwenhze, M. S.; Sharpless, K. B. Catalytic Asymmetric Dihydro- xylation. Chem. Rev. 1994, 94, 2483-2547. (b) Elston, C. L.; Jackson, R. F. W.; MacDonald, S. J. F.; Murray, P. J. Asymmetric Epoxidation of Chalcones with Chirally Modified Lithium and Magnesium tert-Butyl Peroxides. Angew. Chem., Int. Ed. Engl. 1997, 36, 410-412. (c) Bougauchi, M.; Watanabe, S.; Arai, T.; Sasai, H.; Shibasaki, M. Catalytic Asymmetric Epoxidation ofα,β-Unsaturated Ketones Promoted by Lanthanoid Complexes. J. Am. Chem. Soc. 1997, 119, 2329-2330. (d) Matsunaga, S.; Kinoshita, T.; Okada, S.; Harada, S.; Shibasaki, M. Catalytic Asymmetric 1,4-Addition Reactions Usingα,β-Unsaturated N- Acylpyrroles as Highly Reactive Monodentateα,β-Unsaturated Ester Surrogates. J. Am. Chem. Soc. 2004, 126, 7559-7570. (e) Wu, M.; Wang, B.; Wang, S. F.; Xia, C. G.; Sun, W. Asymmetric Epoxidation of Olefins with Chiral Bioinspired Manganese Complexes. Org. Lett. 2009, 11, 3622-3625.
    [4] For a review, see: Rosen, T. in: Comprehensive Organic Synthesis, (Eds.: Trost, B. M.; Fleming, I.); Pergamon: Oxford, 1991, Vol. 2, p 409-439.
    [5] (a) Arai, S.; Shioiri, T. Catalytic Asymmetric Darzens Condensation Under Phase-Transfer- Catalyzed Conditions. Tetrahedron Lett. 1998, 39, 2145–2148. (b) Arai, S.; Shirai, Y.; Ishida, T.; Shioiri, T. Phase-transfer catalyzed asymmetric Darzens reaction of cyclicα-chloro Ketones. Chem. Commun. 1999, 49-50. (c) Arai, S.; Shirai, Y.; Ishida, T.; Shioiri, T. Phase-Transfer-Catalyzed Asymmetric Darzens Reaction. Tetrahedron 1999, 55, 6375-6386.(d) Arai, S.; Shioiri, T. Asymmetric Darzens utilizing chloromethyl phenyl sulfone under phase-transfer catalyzed conditions. Tetrahedron 2002, 58, 1407-1413. (e) Ku, J. M.; Yoo, M. S.; Park, H. G.; Jew, S. S.; Jeong, B. S. Asymmetric synthesis ofα,β-epoxysulfones via phase-transfer catalytic Darzens reaction. Tetrahedron. 2007, 63, 8099- 8103. (f) Arai, S.; Tokumaru, K.; Aoyama, T. Phase-transfer-catalyzed asymmetric Darzens reaction using a new chiral ammonium salt. Tetrahedron Lett. 2004, 45, 1845–1848. (g) Achard, T. J. R.; Belokon, Y. N.; Ilyin, M.; Moskalenko, M.; North, M.; Pizzato, F.; Enantio- and diastereoselective Darzens condensations. Tetrahedron Lett. 2007, 48, 2965–2969.
    [6] (a) Bakó, P.; Sz?ll?sy, A.; Bombicz, P.; T?ke, L. Asymmetric C-C Bond Forming Reactions by Chiral Crown Catalysts; Darzens Condensation and NitroalkaneAddition to the Double Bond. Synlett 1997, 291-292. (b) Bakó, P.; Vizárdi, K.; Bajorm, Z.; T?ke, L. Synthesis and application in asymmetric synthesis of azacrown ethers derived from D-glucose. Chem. Commun. 1998, 1193-1194. (c) Bakó, P.; Vizárdi, K.; Toppet, S.; Van der Eycken, E.; Hoornaert, G. J.; T?ke, L. Synthesis, Extraction Ability and Application in Asymmetric Synthesis of Azacrown Ethers Derived from D-glucose. Tetrahedron 1998, 54, 14975–14988. d) Bakó, P. Czinege, E.; Bakó, T.; Czugler, M.; T?ke, L. Asymmetric C–C bond forming reactions with chiral crown catalysts derived from D-glucose and D-galactose. Tetrahedron: Asymmetry 1999, 10, 4539–4551. e) Bakó, P.; Makó, A.; Keglevich, G.; Kubinyi, M.; Pál, K. Synthesis of D-mannose-based azacrown ethers and their application in enantioselective reactions. Tetrahedron: Asymmetry 2005, 16, 1861–1871.
    [7] Imashiro, R.; Yamanaka, T.; Seki, M. Catalytic asymmetric synthesis of glycidic amides via chiral sulfur ylides. Tetrahedron: Asymmetry 1999, 10, 2845–2851.
    [8] (a) Aggarwal, V. K.; Hynd, G.; Picoul, W.; Vasse, J. L. Highly Enantioselective Darzens Reaction of a Camphor-Derived Sulfonium Amide to Give Glycidic Amides and Their Applications in Synthesis. J. Am. Chem. Soc. 2002, 124, 9964-9965. (b) Aggarwal, V. K.; Charmant, J. P. H.; Fuentes, D.; Harvey, J. N.; Hynd, G.; Ohara, D.; Picoul, W.; Smith, C.; Vasse, J. L.; Winn, C. L. Highly Enantioselective Synthesis of Glycidic Amides Using Camphor-Derived Sulfonium Salts. Mechanism and Applications in Synthesis. J. Am. Chem. Soc. 2006, 128, 2105-2114.
    [9] (a) Comprehensive reviews onα-diazocarbonyl compounds, see: Ye T.; McKervey, M. A. Organic Synthesis with .alpha.-Diazo Carbonyl Compounds. Chem Rev. 1994, 94, 1091- 1160. (b) Doyle, M. P.; Forbes, D. C. Recent Advances in Asymmetric Catalytic Metal Carbene Transformations. Chem Rev. 1998, 98, 911 -936. (c) Zhang, Y.; Wang, J. B. Recent development of reactions withα-diazocarbonyl compounds as nucleophiles. Chem. Commun.2009, 5350-5361.
    [10] Yao W. G., Wang, J. B. Direct Catalytic Asymmetric Aldol-Type Reaction of Aldehydes with Ethyl Diazoacetate. Org. Lett. 2003, 5, 1527-1530.
    [11] (a) Hashimoto, T.; Maruoka, K. Design of Axially Chiral Dicarboxylic Acid for Asymmetric Mannich Reaction of Arylaldehyde N-Boc Imines and Diazo Compounds. J. Am. Chem. Soc. 2007, 129, 10054-10055. (b) Hashimoto, T.; Uchiyama, N.; Maruoka, K. Trans-Selective Asymmetric Aziridination of Diazoacetamides and N-Boc Imines Catalyzed by Axially Chiral Dicarboxylic Acid. J. Am. Chem. Soc. 2008, 130, 14380-14381.
    [12] Liu, W. J.; Lv, B. D.; Gong, L. Z. An Asymmetric Catalytic Darzens Reaction between Diazoacetamides and Aldehydes Generates cis-Glycidic Amides with High Enantiomeric Purity. Angew. Chem. Int. Ed. 2009, 48, 6503-6506.
    [13] Kobayashi, S.; Ueno, M.; Saito, S.; Mizuki, Y.; Ishitami, H.; Yamashita, Y. Air-stable, storable, and highly efficient chiral zirconium catalysts for enantioselective Mannich-type, aza Diels–Alder, aldol, and hetero Diels–Alder reactions. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5476-5481.
    [14] (a) Ishitani, H.; Ueno, M.; Kobayashi, S. Catalytic Enantioselective Mannich-Type Reactions Using a Novel Chiral Zirconium Catalyst. J. Am. Chem. Soc. 1997, 119, 7153-8154. (b) Kobayashi, S.; Ishitani, H.; Ueno, M. Catalytic Asymmetric Synthesis of Both Syn- and Anti-β-Amino Alcohols. J. Am. Chem. Soc. 1998, 120, 431-432. (c) Ishitani, H.; Ueno, M.; Kobayashi, S. Enantioselective Mannich-Type Reactions Using a Novel Chiral Zirconium Catalyst for the Synthesis of Optically Activeβ-Amino Acid Derivatives. J. Am. Chem. Soc. 2000, 122, 8180-8186. (d) Saruhashi, K.; Kobayashi, S. Remarkably Stable Chiral Zirconium Complexes for Asymmetric Mannich-Type Reactions. J. Am. Chem. Soc. 2006, 128, 11232-11235. (e) Ihori, Y.; Yamashita, Y.; Ishitani, H.; Kobayashi, S. Chiral Zirconium Catalysts Using Multidentate BINOL Derivatives for Catalytic Enantioselective Mannich-Type Reactions; Ligand Optimization and Approaches to Elucidation of the Catalyst Structure. J. Am. Chem. Soc. 2005, 127, 15528-15535. (f) Xue, S.; Yu, S.; Deng, Y.-H.; Wulff, W. D. Active Site Design in a Chemzyme: Development of a Highly Asymmetric and Remarkably Temperature-Independent Catalyst for the Imino Aldol Reaction. Angew. Chem., Int. Ed. 2001, 40, 2271-2274. (g) Ueno, M.; Ishitani, H.; Kobayashi, S. Air-Stable, Storable, and Highly Selective Chiral Lewis Acid Catalyst. Org. Lett. 2002, 4, 3395-3397.
    [15] (a) Yamashita, Y.; Ishitani, H.; Shimizu, H.; Kobayashi, S. Highly anti-Selective Asymmetric Aldol Reactions Using Chiral Zirconium Catalysts. Improvement of Activities, Structure ofthe Novel Zirconium Complexes, and Effect of a Small Amount of Water for the Preparation of the Catalysts. J. Am. Chem. Soc. 2002, 124, 3292-3302. (b) Isoda, T.; Akiyama, R.; Oyamada, H.; Kobayashi, S. A 100 Gram-Scale Production of a KeyBuilding Block of Antibacterial Vancomycin: The Use of an Air-Stable Chiral Zirconium Catalyst and Complete Recovery of a Silicon Source in Catalytic Asymmetric Mukaiyama Aldol Reaction. Adv. Synth.& Catal. 2006, 348, 1813-1817. (c) Kobayashi, S.; Saito, S.; Ueno, M.; Yamashita, Y. An air-stable, storable chiral zirconium catalyst for asymmetric aldol reaction. Chem. Commun. 2003, 2016-2017. (d). Ishitani, H.; Yamashita, Y.; Shimizu, H.; Kobayashi, S. Highly anti-Selective Catalytic Asymmetric Aldol Reaction. J. Am. Chem. Soc. 2002, 124, 5403-5404.
    [16](a) Ishitani, H.; Komiyama, S.; Kobayashi, S. Catalytic Enantioselective Synthesis ofα-Ami- nonitriles with a Novel Zirconium Catalyst. Angew. Chem., Int. Ed. 1998, 37, 3186-3188. (b) Ishitani, H.; Komiyama, S.; Hasegawa, Y.; Kobayashi, S. Catalytic Asymmetric Strecker Synthesis. Preparation of Enantiomerically Pureα-Amino Acid Derivatives from Aldimines and Tributyltin Cyanide or Achiral Aldehydes, Amines, and Hydrogen Cyanide Using a Chiral Zirconium Catalyst. J. Am. Chem. Soc. 2000, 122, 762-766.
    [17](a) Kobayashi, S.; Shimizu, H.; Yamashita, Y.; Ishitani, H.; Kobayashi, J. Asymmetric Intramolecular [3+2] Cycloaddition Reactions of Acylhydrazones/ Olefins Using a Chiral Zirconium Catalyst. J. Am. Chem. Soc. 2002, 124, 13678-13679. (b)Yamashita, Y.; Kobayashi, S. Zirconium-Catalyzed Enantioselective [3+2] Cycloaddition of Hydrazones to Olefins Leading to Optically Active Pyrazolidine, Pyrazoline, and 1,3-Diamine Derivatives. J. Am. Chem. Soc. 2004, 126, 11279-11282.
    [18](a) Kobayashi, S.; Komiyama, S.; Ishitani, H. The First Enantioselective Aza-Diels-Alder Reactions of Imino Dienophiles on Use of a Chiral Zirconium Catalyst. Angew. Chem., Int. Ed. 1998, 37, 979-981. (b) Kobayashi, S.; Kusakabe, K.; Komiyama, S.; Ishitani, H. A Switch of Enantiofacial Selectivities Using Designed Similar Chiral Ligands in Zirconium-Catalyzed Asymmetric Aza Diels-Alder Reactions. J. Org. Chem. 1999, 64, 4220-4221. (c) Kobayashi, S.; Kusakabe, K.; Ishitani, H. Chiral Catalyst Optimization Using Both Solid-Phase and Liquid-Phase Methods in Asymmetric Aza Diels?Alder Reactions. Org. Lett. 2000, 2, 1225-1227. (d)Yamashita, Y.; Saito, S.; Ishitani, H.; Kobayashi, S. Catalytic, Asymmetric trans-Selective Hetero Diels?Alder Reactions Using a Chiral Zirconium Complex. Org. Lett. 2002, 4, 1221-1223. (e)Yamashita, Y.; Saito, S.; Ishitani, H.; Kobayashi, S. Chiral Hetero Diels-Alder Products by Enantioselective and Diastereoselective Zirconium Catalysis. Scope, Limitation, Mechanism, and Application to the Concise Synthesis of(+)-Prelactone C and (+)-9-Deo- xygoniopypyrone. J. Am. Chem. Soc. 2003, 125, 3793-3798.
    [19]Okachi, T.; Murai, N.; Onaka, M. Catalytic Enantioselective Epoxidation of Homoallylic Alcohols by Chiral Zirconium Complexes. Org. Lett. 2003, 5, 85-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700