用户名: 密码: 验证码:
水杨醛类西佛碱分子的开关性质及其逻辑功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Investigation of the Switch and Logic Properties for the Salicylidene Schiff Base
  • 作者:赵立彦
  • 论文级别:博士
  • 学科专业名称:有机化学
  • 学位年度:2008
  • 导师:王悦 ; 姜世梅
  • 学科代码:070303
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-05-01
摘要
近年来,分子开关和分子逻辑门的研究倍受人们关注。然而,目前能够被用来研究分子水平开关和逻辑门的多重响应分子体系还很缺乏。本论文致力于开发新的响应分子体系,设计并合成了一系列取代基不同、共轭程度各异的水杨醛类西佛碱分子。并以这些分子为响应实体,详细研究了这一新的分子体系的开关功能和逻辑响应特性。
     本论文分为以下四部分。第一,为了使我们的响应分子体系-水杨醛类西佛碱具有很高的响应活性,我们对其结构进行了合理的设计,共合成了两大类,12种水杨醛类西佛碱分子,为进一步的分子开关性质及其逻辑功能的研究奠定了基础。第二,对水杨醛类西佛碱分子的开关性质进行了详细地研究。结果显示,它们都能够很好地执行集成了光致变色开关、荧光开关以及pH开关于一体的多开关功能。其中,具有较高共轭程度的水杨醛类西佛碱分子还能够完成独特的可见光驱动的光致变色开关的功能。第三,详细研究了水杨醛类西佛碱分子的逻辑响应特性。发现,在水杨醛所在苯环上连有强吸电子基团的一类水杨醛类西佛碱分子对OH–、Zn2+和紫外光三种输入信号的所有单独的以及组合的刺激都能够产生很好的响应,且伴有较强的光学信号输出。基于对这三种输入信号的多重响应性,这类分子完成了重要的单分子逻辑电路功能。我们首次报道了水杨醛类西佛碱分子的逻辑响应特性,这将为分子水平的逻辑功能的研究提供一个新的、性能优良的响应分子体系。第四,为了进一步推动分子水平逻辑功能固相化的发展,我们选择了未见报道的固相化材料-介孔分子筛和SiO2微球为响应分子体系的支撑材料,并通过超分子自组装的方法制备了有机/无机超分子杂化材料。通过详细地研究杂化体系的逻辑性质发现,水杨醛类西佛碱分子在这两种新的固相材料中仍然能够对OH–、Zn2+和紫外光三种输入信号的各种单独的以及组合的刺激产生很好的响应。而且由于超分子体系的协同作用,水杨醛类西佛碱分子在杂化材料中的逻辑响应性质与本体相比更具优势,完成了更为复杂的逻辑功能。
Nowadays, molecular devices and machines has been one focus of the modern technology. For the preponderance in dimension and capability, these molecular-level devices and machines will lead a new revolution in the miniaturization and high capability. Recently, as a portion of molecular devices and machines, the molecular-level switches and logic operation has gained considerable attention. The consecutive development in the field of molecular switches and logic will become the basis of the high density and rapid information process.
     Whereas, until recently, the chemical molecules which can be used in the switch and logic research are rare, we design a new molecular system in this thesis. It includes two species and total twelve salicylidene Schiff bases. There are not chlorine atoms in the phenyl of the salicylidene in the first species. On the contrary, there are chlorine atoms at the third and the fifth position in the phenyl of the salicylidene in the second species. Besides the difference in the substituent group, the conjugation also has considerable differentia. The study based on our molecular system present that the excellent switch and logic function can been obtained. On the basis of our study, we firstly report the multi-switch and the logic function of salicylidene Schiff base. In addition, we also devote much effort to perform the logic operations with the solid materials. At the same time, we detailed study and report the assembly of the response molecules and the solid matrix as well as the excellent logic function of the hybrid.
     The work in this thesis mainly includes four parts as follow:
     First,the preparation of the molecular system studied by us. Considering the fact that the salicylidene Schiff bases have excellent response to many inputs such as: pH value, ultraviolet light, visible light, heat and metal ions, we select it as our molecular system to study their molecular switch and logic function. In addition, introducing strong electron-withdrawing group to the phenyl of the salicylidene can enhance the reactivity of salicylidene Schiff bases. We design two kinds of salicylidene Schiff bases: without and with chlorine atoms. On the other hand, we also change the middle or bridge group. As a whole, we synthesize two kinds, total twelve salicylidene Schiff bases.
     Second, the study of molecular switch for the salicylidene Schiff bases. We explore the switch character of salicylidene Schiff bases acted by the external stimulations in detailed. The experimental results demonstrate that in the alkaline circumstance, the phenol group of salicylidene Schiff bases can be deprotonated immediately. Acid can drive them protonated again. The molecules in this system can coordinate with zinc ion to form complex with bright blue emission. The complex will be dissociated and lose the luminescence under the ultraviolet light action. In addition, with the irradiation of ultraviolet light, these molecules can gradually transfer from the initial enol-form to keto-form. Heat or visible light will drive reversibly this reaction. As a result, based on the salicylidene Schiff bases, we can mimic a multi-switch which integrates pH switch, fluorescence switch and photochromic switch.
     Third, we select OH–, Zn2+ and UV light as inputs to stimulate the salicylidene Schiff bases, and study the logic properties of salicylidene Schiff bases in detailed,finding that the ones in the species with chlorine atoms in the phenyl of the salicylidene can well response three inputs. At the same time of responding, strong outputs can been observed. So, they can execute one excellent logic operation, which integrate one OR, two NOT, and four AND logic gates. Based on these work, we firstly report that the salicylidene Schiff bases have excellent logic function. In addition, this logic function is executed at the monomolecular system. So, comparing the logic functions which were finished with more than one molecule, the stability and the reliability of the information all have advantages.
     Fourth, in order to transfer the logic operation from solution to solid phase and overcoming the drawback in the solution, we select mesoporous molecular sieve, silica nanoparticles etc as the solid matrix to construct organic/inorganic hybrid with the salicylidene Schiff bases through the supramolecular self-assembly. The experimental results indicate that the salicylidene Schiff base can response to the OH–, Zn2+ and UV light in the hybrid yet. Attributing to the concurrent function of the supramolecular system, the response of the target molecule is more excellent, the intensity of the output is stronger. So, we not only can realize the transfer to the solid of the logic operation, but also can execute more complex logic operation. The solid materials selected by us and the method of assembly also can extend to the other molecular system. So, we provide two kinds of solid materials for the logic study and the method of assembly.
     In summary, we have designed a new intelligent response molecular system and synthesized two kinds, total twelve salicylidene Schiff bases. We detailedly explore the switch and logic functions of our target molecules. The experimental results indicate that all the molecules in our system can present the multi-switch functions which integrate pH switch, fluorescence switch and photochromic switch. Among them, the ones with chlorine atoms in the phenyl of the salicylidene can execute excellent logic character. In addition, we select mesoporous molecular sieve, silica nanoparticles etc as the solid matrix, transferring the logic function from solution to solid materials successfully.
引文
[1] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, G. Timp, Nature, 1999, 399, 758.
    [2] G. M. Whitesides, J. C. Love, Sci. Am., 2001, 285, 32.
    [3] R. F. Service, Science, 2001, 293, 785.
    [4] (a) R. P. Feynman, Eng. Sci., 1960, 23, 22. (b) R. P. Feynman, Saturday Rev., 1960, 43, 45.
    [5] V. Balzani, A. Credi, M. Venturi, Molecular Devices and Machines: A Journey into the Nanoworld, Wiley-VCH. Weinheim, 2003.
    [6] A. E. Kaifer, M. Gómez-Kaifer, Supramolecular Electrochemistry, Wiley–VCH. Weinheim, 1999.
    [7] P. D. Beer, J. Cadman, Coord. Chem. Rev., 2000, 205, 131.
    [8] (a) E. Córdova, R. A. Bissell, N. Spencer, P. R. Ashton, J. F. Stoddart, A. E. Kaifer, J. Org. Chem., 1993, 58, 6550. (b) N. Armaroli, V. Balzani, J.-P. Collin, P. Gavina, J.-P. Sauvage, B. Ventura, J. Am. Chem. Soc., 1999, 121, 4397.
    [9] Struct. Bond., 2001, 99, Special volume (Ed.: J.-P. Sauvage) on Molecular Machines and Motors.
    [10] V. Balzani, A. Credi, F.M. Raymo, J. F. Stoddart, Angew. Chem. Int. Ed., 2000, 39, 3348.
    [11] R. Ballardini, V. Balzani, A. Credi, M. T. Gandolfi, M. Venturi, Acc. Chem. Res., 2001, 34, 445.
    [12] B. L. Feringa, Acc. Chem. Res., 2001, 34, 504.
    [13] M. Takeuchi, M. Ikeda, A. Sugasaki, S. Shinkai, Acc. Chem. Res., 2001, 34, 865.
    [14] V. Balzani, A. Credi, M. Venturi, Proc. Natl. Acad. Sci. USA, 2002, 99, 4814.
    [15] V. Amendola, L. Fabbrizzi, C. Mangano, P. Pallavicini, Acc. Chem. Res., 2001, 34, 488.
    [16] J.-P. Collin, C. O. Dietrich-Bucheker, P. Gavina, M. C. Jimenez-Molero, J.-P. Sauvage, Acc. Chem. Res., 2001, 34, 477.
    [17] A. Aviram, M. A. Ratner, Chem. Phys. Lett., 1974, 29, 277.
    [18] V. Balzani, F. Scandola, Supramolecular Photochemistry, Horwood, Chichester, 1991.
    [19] T. Bartik, B. Bartik, M. Brady, R. Dembinski, J. A. Gladysz, Angew. Chem. Int. Ed., 1996, 35, 414.
    [20] M. N. Paddon-Row, in Electron Transfer in Chemistry (Ed.: V. Balzani), Wiley-VCH, Weinheim, 2001, 3, 179.
    [21] P. R. Ashton, R. Ballardini, V. Balzani, A. Credi, K. R. Dress, E. Ishow, C. J. Kleverlaan, O. Kocian, J. A. Preece, N. Spencer, J. F. Stoddart, M. Venturi, S. Wenger, Chem. Eur. J., 2000, 6, 3558.
    [22] (a) W. B. Davis, W. A. Svec, M. A. Ratner, M. R. Wasielewski, Nature, 1998, 396, 60. (b) W. B. Davis, M. A. Ratner, M. R. Wasielewski, J. Am. Chem. Soc., 2001, 123, 7877.
    [23] M. Antolovich, P. J. Keyte, A. M. Oliver, M. N. Paddon-Row, J. Kroon, J. W. Veroheven, S. A. Jonker, J. M. Warman, J. Phys. Chem., 1991, 95, 1933.
    [24] T. D. M. Bell, T. A. Smith, K. P. Ghiggino, M. G. Ranasinghe, M. J. Shephard, M. N. Paddon-Row, Chem. Phys. Lett., 1997, 268, 223.
    [25] H. Imahori, K. Hagiwara, M. Aoki, T. Akiyama, S. Taniguchi, T. Okada, M. Shirakawa, Y. Sakata, J. Am. Chem. Soc., 1996, 118, 11771.
    [26] F. Barigelletti, L. Flamigni, Chem. Soc. Rev., 2000, 29, 1.
    [27] F. Scandola, C. Chiorboli, M. T. Indelli, M. A. Rampi, in Electron Transferin Chemistry (Ed.: V. Balzani), Wiley-VCH, Weinheim, 2001, 3, 337 .
    [28] C. J. Kleverlaan, M. T. Indelli, C. A. Bignozzi, L. Pavanin, F. Scandola, G. M. Hasselman, G. J. Meyer, J. Am. Chem. Soc., 2000, 122, 2840.
    [29] R. D. Vale, R. A. Milligan, Science, 2000, 288, 88.
    [30] (a) M. C. Jiménez, C. O. Dietrich-Buchecker, J.-P. Sauvage, Angew. Chem. Int. Ed., 2000, 39, 3284. (b) M. C. Jiménez-Molero, C. O. Dietrich-Buchecker, J.-P. Sauvage, Chem. Eur. J., 2002, 8, 1456. (c) T. Otero, J. M. Sansinena, Adv. Mater., 1998, 10, 491. (d) T. F. Otero, S. A. Cheng, F. Huerta, J. Phys. Chem. B, 2000, 104, 10522. (e) T. F. Otero, S. A. Cheng, D. Alonso, F. Huerta, J. Phys. Chem. B, 2000, 104, 10528. (f) T. F. Otero, S. Villanueva, M. T. Cortes, S. A. Cheng, A. Vazquez, I. Boyano, D. Alonso, R. Carmago, Synthetic Metals, 2001, 119, 419. (g) M. D. Levi, E. Lankri, Y. Gofer, D. Aurbach, T. F. Otero, J. Electrochem. Soc., 2002, 149, E204. (h) M. Lahav, C. Durkan, R. Gabai, E. Katz, I. Willner, M. E. Welland, Angew. Chem. Int. Ed., 2001, 40, 4095.
    [31] N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, B. L. Feringa, Nature, 1999, 401, 152.
    [32] (a) E. Alessio, S. Geremia, S. Mestroni, I. Srnova, M. Slouf, T. Gianferrara, A. Prodi, Inorg. Chem., 1999, 38, 2527. (b) A. Ikeda, H. Udzu, Z. Zhong, S. Shinkai, S. Sakamoto, K. Yamaguchi, J. Am. Chem. Soc., 2001, 123, 3872. (c) R. A. Bragg, J. Clayden, G. A. Morris, J. H. Pink, Chem. Eur. J., 2002, 8, 1279.
    [33] (a) M. Takeuchi, M. Ikeda, A. Sugasaki, S. Shinkai, Acc. Chem. Res., 2001, 34, 865. (b) S. Shinkai, M. Ikeda, A. Sugasaki, M. Takeuchi, Acc. Chem. Res., 2001, 34, 494.
    [34] (a) Y. Kawada, H. Iwamura, J. Org. Chem., 1980, 45, 2547. (b) W.D. Hounshell, C. A. Johnson, A. Guenzi, F. Cozzi, K. Mislow, Proc. Natl. Acad. Sci. USA, 1980, 77, 6961. (c) Y. Kawada, H. Iwamura, J. Am. Chem.Soc., 1981, 103, 958. (d) C. A. Johnson, A. Guenzi, K. Mislow, J. Am. Chem. Soc., 1981, 103, 6240. (e) C. A. Johnson, A. Guenzi, R. B. NachbarJr., J. F. Blount, O. Wennerstr?m, K. Mislow, J. Am. Chem. Soc., 1982, 104, 5163. (f) H. B. Bürgi, W. D. Hounshell, R. B. NachbarJr., K. Mislow, J. Am. Chem. Soc., 1983, 105, 1427. (g) A. Guenzi, C. A. Johnson, F. Cozzi, K. Mislow, J. Am. Chem. Soc., 1983, 105, 1438. (h) Y. Kawada, H. Iwamura, J. Am. Chem. Soc., 1983, 105, 1449. (i) Y. Kawada, Y. Okamoto, H. Iwamura, Tetrahedron Lett., 1983, 24, 5359. (j) H. Iwamura, T. Ito, H. Ito, K. Toriumi, Y. Kawada, E. Osawa, T. Fujiyoshi, C. Jaime, J. Am. Chem. Soc., 1984, 106, 4712. (k) N. Koga, H. Iwamura, J. Am. Chem. Soc., 1985, 107, 1426.
    [35] F. Cozzi, A. Guenzi, C.A. Johnson, K. Mislow, W. D. Hounshell, J. F. Blount, J. Am. Chem. Soc., 1981, 103, 957.
    [36] (a) N. Koga, Y. Kawada, H. Iwamura, J. Am. Chem. Soc., 1983, 105, 5498. (b) N. Koga, Y. Kawada, H. Iwamura, Tetrahedron, 1986, 42, 1679.
    [37] (a) A. A. Gakh, R. A. Sachleben, J. C. Bryan, B. A. Moyer, Tetrahedron Lett., 1995, 36, 8163. (b) A. A. Gakh, R. A. Sachleben, J. C. Bryan, Chemtech, 1997, 27, 26. (c) F. V?gtle, P. K. T. Mew, Angew. Chem. Int. Ed. Engl., 1978, 17, 60.
    [38] Molecular Switches (Ed.: B.L. Feringa), Wiley-VCH, Weinheim, 2001.
    [39] Photochromism: Molecules and Systems (Eds.: H. Du¨rr, H. Bouas-Laurent), Elsevier, Amsterdam, 1990.
    [40] P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electrochromism: Fundamentals and Applications, VCH, Weinheim, 1995.
    [41] D. Holten, D. F. Bocian, J. S. Lindsey, Acc. Chem. Res., 2002, 35, 57.
    [42] J. Fritzsche, Comptes Rendus Acad. Sci., 1867, 69, 1035.
    [43] (a) M. Irie, K. Matsuda, in Electron Transfer in Chemistry (Ed.: V. Balzani), Wiley-VCH, Weinheim, 2001, 5, 215. (b) Molecular ElectronicDevices (Eds.: F. L. Carter, R. E. Siatkowsky, H. Woltjien) Elsevier, Amsterdam, 1988. (c) J. S. Miller, Adv. Mat., 1990, 2, 378. (d) T. Thompson, Byte, 1996. (e) R. W. Keyes, in Molecular Electronics-Science and Technology (Ed.: A. Aviram), Engineering Foundation, New York, 1989, p. 197.
    [44] M. Irie, in Molecular Switches (Ed.: B. L. Feringa), Wiley-VCH, 2001, p. 37.
    [45] Y. Yokoyama, in Molecular Switches (Ed.: B. L. Feringa), Wiley-VCH, 2001, p. 107.
    [46] G. Berkovic, V. Krongauz, V. Weiss, Chem. Rev., 2000, 100, 1741.
    [47] S. Shinkai, in Molecular Switches (Ed.: B. L. Feringa), Wiley-VCH, 2001, p. 281.
    [48] T. Mrozek, J. Daub, A. Ajayaghosh, in Molecular Switches (Ed.: B. L. Feringa), Wiley-VCH, 2001, p. 63.
    [49] M. Maestri, F. Pina, V. Balzani, in Molecular Switches (Ed.: B. L. Feringa), Wiley-VCH, 2001, p. 309.
    [50] E. Hadjoudis A. Rontoyianni K. Ambroziak, T. Dziembowskac, I. M. Mavridis, J. Photochem. Photobiol. A: Chem. 2004, 162, 521.
    [51] 沈永淼 , 王炳祥, 冯玉英, 沈珠英, 沈 健, 李 邨, 胡宏纹, 高等学校化学学,2006,27,651.
    [52] D. S. Tyson, C. A. Bignozzi, F. N. Castellano, J. Am. Chem. Soc., 2002, 124, 4562.
    [53] M. Engeser, L. Fabbrizzi, M. Licchelli, D. Sacchi, Chem. Commun., 1999, 1191.
    [54] (a) Y. Yokoyama, S. Uchida, Y. Yokoyama, Y. Sugawara, Y. Kurita, J. Am. Chem. Soc., 1996, 118, 3100. (b) T. Inada, S. Uchida, Y. Yokoyama, Chem. Lett., 1997, 321.
    [55] B. L. Feringa, W. F. Jager, B. de Lange, E. W. Meijer, J. Am. Chem. Soc.,1991, 113, 5468.
    [56] (a) B. L. Feringa, W. F. Jager, B. de Lange, J. Chem. Soc. Chem. Commun., 1993, 288. (b) W. F. Jager, J. C. de Jong, B. de Lange, N. P. M. Huck, A. Meetsma, B. L. Feringa, Angew. Chem. Int. Ed. Engl., 1995, 34, 348.
    [57] (a) A. E. Kaifer, M. Go′mez-Kaifer, Supramolecular Electrochemistry, Wiley-VCH, Weinheim, 1999. (b) Organic Photochromic and Thermochromic Compounds (Eds.: J. C. Crano, R. J. Guglielmetti), Plenum Press, New York, Vol. 1 and 2, 1998 and 1999.
    [58] P. R. Ashton, V. Balzani, J. Becher, A. Credi, M. C. T. Fyfe, G. Mattersteig, S. Menzer, M. B. Nielsen, F. M. Raymo, J. F. Stoddart, M. Venturi, D. J. Williams, J. Am. Chem. Soc., 1999, 121, 3951.
    [59] (a) T. Imokawa, K. Williams, G. Denuault, Anal. Chem. 2006, 78, 265. (b) S. G. Tajc, B. L. Miller, J. Am. Chem. Soc., 2006, 128, 2532. (c) S. Yasutomi, T. Morita, S. Kimura, J. Am. Chem. Soc., 2005, 127, 14564. (d) F. Ceccacci, G. Mancini, A. Sfrrazza, C. Villani, J. Am. Chem. Soc., 2005, 127, 13762.
    [60] J. D. Badjic, C. M. Ronconi, F. Stoddart, V. Balzani, S. Silvi, A. Credi, J. Am. Chem. Soc., 2006, 128, 1489.
    [61] A. Aviram, J. Am. Chem. Soc., 1988, 110, 5687.
    [62] A. P. de Silva , H. Q. N. Gunaratne, C. P. McCoy, Nature, 1993, 364, 42.
    [63] A. P. de Silva, S. A. de Silva, A. S. Dissanayake, K. R. A. S. Sandanayake, J. Chem. Soc. Chem. Commun., 1989, 1054.
    [64] P. Ghosh, P. K. Bharadwaj, J. Roy, S. Ghosh, J. Am. Chem. Soc., 1997, 119, 11903.
    [65] A. P. de Silva, H. Q. N. Gunaratne, C. P. McCoy, J. Am. Chem. Soc., 1997, 119, 7891.
    [66] A. P. de Silva, I. M. Dixon, H. Q. N. Gunaratne, T. Gunnlaugsson, P. R. S. Maxwell, T. E. Rice, J. Am. Chem. Soc., 1999, 121, 1393.
    [67] (a) D. Parker, J. A. G. Williams, Chem. Commun., 1998, 245. (b) D. Parker, P. K. Senanayake, J. A. G. Williams, J. Chem. Soc. Perkin Trans. 2, 1998, 2129.
    [68] A. Credi, V. Balzani, S. J. Langford, J. F. Stoddart, J. Am. Chem. Soc., 1997, 119, 2679.
    [69] M. Asakawa, P. R. Ashton, V. Balzani, A. Credi, G. Mattersteig, O. A. Matthews, M. Montalti, N. Spencer, J. F. Stoddart, M. Venturi, Chem. Eur. J., 1997, 3, 1992.
    [70] A. Roque, F. Pina, S. Alves, R. Ballardini, M. Maestri, V. Balzani, J. Mater. Chem., 1999, 9, 2265.
    [71] (a) T. Gunnlaugsson, D. A. MacDónaill, D. Parker, Chem. Commun., 2000, 93. (b) T. Gunnlaugsson, D. A. MacDónaill, D. Parker, J. Am. Chem. Soc., 2001, 123, 12866.
    [72] (a) J. Andréasson, G. Kodis, Y. Terazono, P. A. Liddell, S. Bandyopadhyay, R. H. Mitchell, T. A. Moore, A. L. Moore, D. Gust, J. Am. Chem. Soc., 2004, 126, 15926. (b) J. Andréasson, S. D. Straight, G. Kodis, C. Park, M. Hambourger, M. Gervaldo, B. Albinsson, T. A. Moore, A. L. Moore, D. Gust, J. Am. Chem. Soc., 2006, 128, 16259.
    [73] (a) S. J. Langford, T. Yann, J. Am. Chem. Soc. 2003, 125, 11190. (b) E. Pérez-Inestrosa, J. Montenegro, D. Collado, R. Suau, J. Casado, J. Phys. Chem. C 2007, 111, 6904.
    [74] (a) A. Okamoto, K. Tanaka, I. Saito, J. Am. Chem. Soc. 2004, 124, 9458. (b) F. Remacle, S. Speiser, R. D. Levine, J. Phys. Chem. B 2001, 105, 5589.
    [75] D. Margulies, G. Melman, A. Shanzer J. Am. Chem. Soc. 2006, 128, 4865.
    [76] J. Andréasson, S. D. Straight, S. Bandyopadhyay, R. H. Mitchell, T. A. Moore, A. L. Moore, D. Gust, Angew. Chem. Int. Ed. 2007, 46, 958.
    [77] D. Margulies, C. E. Felder, G. Melman, A. Shanzer, J. Am. Chem. Soc., 2007, 129, 347.
    [78] S. Giordani, F. M. Raymo, Org. Lett. 2003, 5, 3559.
    [79] H. Schiff, Justus Liebigs Ann. Chem. 1864, 131, 118.
    [80] E. M. Hodnett, G. Prakash, J. Amirmoazzami, J. Med. Chem. 1978, 21, 11.
    [81] M. Shamsipur, M. Yousefi, M. Hosseini, M. R. Ganjali, H. Sharghi, H. Naeim, Anal. Chem. 2001, 73, 2869.
    [82] N. Kobayashi, Coord. Chem. Rev., 2002, 227,129.
    [83] R. S. Willner, J. Wonner, F. Effenberger, J. Am. Chem. Soc. 1992, 14, 3150.
    [84] J. Perlein, B. Hofmann, K. S. Topperka, Signalaufzeichnungsmater, 1976, 4, 155.
    [85] G. A. Delzenne, J. Adv. Photochem. 1979, 11, 2.
    [86] E. Hadjoudis, I. M. Mavridis, Chem. Soc. Rev. 2004, 33, 579.
    [87] T. Akitsu, Y. Einaga, Polyhedron, 2005, 24, 1869.
    [88] H. E. Smith, S. L. Cook, M. E. Warren, J. Org. Chem. 1964, 29, 2265.
    [89] (a) C. Feng, Y. Zhang, J. Jin, Y. Song, L. Xie, G. Qu, L. Jiang, D. Zhu, Langmuir 2001, 17, 4593. (b) W. Liu, L. Xu, R. Sheng, P. Wang, H. Li, S. Wu, Org. Lett., 2007, 9, 3829. (c) Z. Wang, E. K. Todd, X. Meng, J. Gao, J. Am. Chem. Soc. 2005, 127, 11552. (d) M. Fukui, T. Mori, Y. Inoue, R. Rathore, Org. Lett., 2007, 9, 3977. (e) Y. Shiraishi, Y. Tokitoh, G. Nishimura, T. Hirai, Org. Lett., 2005, 7, 2611.
    [90] R. Exlby, R. Grinter, Chem. Rev., 1965, 65, 247.
    [91] J. N. Demas, G. A. Grosby, J. Phys. Chem. 1971, 75, 991.
    [92] N. Yoshida, K. Ichikawa, M. Shiro, J. Chem. Soc., Perkin Trans. 2000, 2, 17.
    [93] (a) G. Singh, P. A. Singh, A. K. Sen, K. Singh, S. N. Dubey, R. N. Handa, J. Choi, Synth. React. Inorg. Met. Org. Chem. 2002, 32, 171. (b) X. Ouyang, B. Fei, T. Okamura, H. Bu, W. Sun, W. Tang, N. Ueyama, Eur. J. Inorg. Chem. 2003, 618.
    [94] J. Zhao, B. Zhao, J. Liu, W. Xu, Z. Wang, Spectrochim. Acta A 2001, 57, 149.
    [95] G. Favaro, F. Ortica, A. Romani, New J. Chem. 2003, 27, 639.
    [96] I. Król-Starzomska, A. Filarowski, M. Rospenk, A. Koll, S. Melikova, J. Phys. Chem. A. 2004, 108, 2131.
    [97] J. M. Montenegro, E. Perez-Inestrosa, D. Collado, Y. Vida, R. Suau, Org. Lett. 2004, 6, 2353.
    [98] L. Zhao, D. Sui, J. Chai, Y. Wang, S. Jiang, J. Phys. Chem. B. 2006, 110, 24299.
    [100] (a) C. S. P. Sung, I. R. Gould, N. J. Turro, Macromolecules 1984, 17,1447. (b) M. Ueda, H. B. Kim, T. Ikeda, K. Ichimura, Chem. Mater. 1992, 4, 1229. (c) K. Se, M. Kijima, T. Fujimoto, Polymer 1997, 38, 5755.
    [101] (a) Y. Zhou, D. Zhang, Y. Zhang, Y. Tang, D. Zhu, J. Org. Chem. 2005, 70, 6164. (b) J. F. Callan, A. P. de Silva, N. D. McClenaghan, Chem. Commun. 2004, 2048. (c) S. Uchiyama, N. Kawai, A. P. de Silva, K. Iwai J. Am. Chem. Soc. 2004, 126, 3032.
    [102] (a) A. P. de Silva, N. D. McClenaghan, Chem. Eur. J. 2002, 8, 4935. (b) M. N. Stojanovic, T. E. Mitchell, D. Stojanovic, J. Am. Chem. Soc. 2002, 124, 3555. (c) D. M. Kolpashchikov, M. N. Stojanovic, J. Am. Chem. Soc. 2005, 127, 11348.
    [103] (a) W. Zhan, R. M. Crooks, J. Am. Chem. Soc. 2003, 125, 9934. (b) G. Ashkenasy, M. R. Ghadiri, J. Am. Chem. Soc. 2004, 126, 11140. (c) X. Guo, D. Zhang, Y. Zhou. D. Zhu, J. Org. Chem. 2003, 68, 5681.
    [104] (a) F. Pina, M. J. Melo, M. Maestri, P. Passaniti, V. Balzani, J. Am. Chem. Soc. 2000, 122, 4496. (b) S. J. Langford, T. Yann, J. Am. Chem. Soc. 2003, 125, 11198.
    [105] (a) A. P. de Silva, D. B. Fox, A. J. M. Huxley, T. S. Moody, Coord. Chem. Rev. 2000, 205, 41. (b) Z. Wang, G. Zheng, P. Lu, Org. Lett. 2005, 7, 3669.
    [108] (a) G. Bergamini, C. Saudan, P. Ceroni, M. Maestri, V. Balzani, M. Gorka, S. K. Lee, J. V. Heyst, F. V?gtle, J. Am. Chem. Soc. 2004, 126, 16466. (b) D. Barragán, B. C. Eu, J. Phys. Chem. B. 2001, 105, 7104.
    [107] (a) F. M. Raymo, S. Giordani, J. Am. Chem. Soc. 2001, 123, 4651. (b) F. M. Raymo, S. Giordani, J. Org. Chem. 2003, 68, 4158. (c) A. P. de Silva, N. D. McClenaghan, J. Am. Chem. Soc. 2000, 122, 3965.
    [108] (a) F. M. Raymo, S. Giordani, J. Am. Chem. Soc. 2001, 123, 4651. (b) F. M. Raymo, S. Giordani, J. Org. Chem. 2003, 68, 4158.
    [109] (a) I. Król-Starzomska; A. Filarowski, M. Rospenk, A. Koll, J. Phys. Chem. A. 2004, 108, 2131. (b) W. Turbeville, P. K. Dutta, J . Phys. Chem. 1990, 94, 4060.
    [110] (a) J. W. Lewis, C. Sandorfy, Can. J. Chem. 1982, 60, 1727. (b) H. H. Jaffe, S. J. Yeh, R. W. Gardner, J. Mol. Specrrosc. 1958, 2, 120. (c) N. Yoshida, H. Oshio, T. Ito, J. Chem. Soc. Perkin Trans. 2001, 2, 1674.
    [111] Y. Tian, C. Chen, C. Yang, A. C. Young, S. Jang, W. Chen, A. K. Y. Jen, Chem. Mater. 2008, 20, 1977.
    [112] J. Zhao, B. Zhao, Chem. Lett. 2000, 268.
    [113] P. F. Barbara, P. M. Rentzepis, L. E. Brus, J. Am. Chem. Soc. 1980, 102, 2786.
    [114] Y. Chen, D. X. Zeng, J. Org. Chem. 2004, 69, 5037.
    [115] R. J. Mitchell, Microprocessor Systems: An Introduction; Macmillan: London, 1995.
    [116] E. Katz, O. Lioubashevsky, I. Willner, J. Am. Chem. Soc. 2004, 126, 15520.
    [117] V. Derycke, R. Martel, J. Appenzeller, P. Avouris, Nano Lett. 2001, 1, 453.
    [118] X. Duan, Y. Huang, C. M. Lieber, Nano Lett. 2002, 2, 487.
    [119] B. L. Newalkar, J. Olanrewaju, S. Komarneni, Chem. Mater. 2001, 13, 552.
    [120] F. Y. Qu, G. S. Zhu, S. Y. Huang, S. G. Li, S. L. Qiu, ChemPhysChem 2006, 7, 400.
    [121] Y. S. Lin, S. H. Wu, Y. Hung, Y. H. Chou, C. Chang, M. L. Lin, C. Tsai, C. Mou, Chem. Mater. 2006, 18, 5170.
    [122] D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548.
    [123] S. Gago, J. A. Fernandes, J. P. Rainho, R. A. Ferreira, S. M. Pillinger, A. A. Valente, T. M. Santos, L. D. Carlos, P. J. A. Ribeiro-Claro, I. S. Goncüalves, Chem. Mater. 2005, 17, 5077.
    [124] S. Li, H. W. Song, W. L. Li, X. G. Ren, S. Z. Lu, G. H. Pan, L. B. Fan, H. Q. Yu, H. Zhang, R. F. Qin, Q. L. Dai, T. Wang, J. Phys. Chem. B 2006, 110, 23164.
    [125] L. Gao, Y. Wang, J. Q. Wang, L. Huang, L.Y. Shi, X. X. Fan, Z. G. Zou, T. Yu, M. Zhu, Z. S. Li, Inorg. Chem. 2006, 45, 6844.
    [126] J. C. Hicks, R. Dabestani, A. C. Buchanan III, C. W. Jones, Chem. Mater. 2006, 18, 5022.
    [127] W. Xu, D. L. Akins, J. Phys. Chem. B 2002, 106, 1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700