具有立体选择性环氧化物水解酶产生菌的筛选及手性β受体阻滞剂的生物法制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧化物水解酶产生菌的筛选过程中,本文主要以间甲基苯基缩水甘油醚为底物,以高效液相为分析方法,获得一株具有高活力、高对映立体选择性的环氧化物水解酶产生菌。经过鉴定为巨大芽孢杆菌命名为Bacillus megaterium ZJUZQ-002。
     对Bacillus megaterium ZJUZQ-002进行发酵条件优化。发现菌株生长过程中pH值和温度对菌体的产量与环氧化物水解酶活力有重要影响。当发酵pH值为7.2左右,温度为30℃时,菌体产量与酶活力均较好。底物诱导对该菌的酶活力也有重要的影响,当底物诱导量为6 mmol/L时,所得菌的酶活力最好,当底物诱导的浓度高于12 mmol/L时该菌基本不生长。
     该菌产生环氧化物水解酶的最佳发酵条件为:蔗糖1.0 %,酵母膏1.0 %,NaCl 1.0 %, MgSO4·7H2O 5 mmol/L,K2HPO4·3H2O 0.3 %,KH2PO4 0.1 %,底物6 mmol/L,温度:30℃,pH 7.2;250 mL三角瓶装30 mL,转速200 r/min,时间30 h。在该条件下酶活可达58.5 U/L。
     对Bacillus megaterium ZJUZQ-002进行拆分条件,包括温度、缓冲液pH、助溶剂类型、时间及催化剂与底物的质量比等进行研究,并确定其最佳的拆分条件。缓冲液为pH 8.0、浓度为0.1 M的磷酸钾(PKB),转化温度30℃,转化时间16 h,助溶剂为DMSO,冻干细胞/底物(g/g) = 9/1,底物浓度为20 mmol/L;在该条件下底物的e.e.值为99.9 %,其E值为37。
     对底物特异性的研究,发现菌体对邻位和间位有甲基取代基的苯基缩水甘油醚类底物有较好的对映立体选择性,并催化水解(R)-型的环氧化物,保留(S)-型;而对于对位有甲基取代基的苯基缩水甘油醚类底物立体选择性稍差,且主要催化水解(S)-型的环氧化物,保留(R)-型;通过Docking研究已解释了这一现象。在最适的转化条件下,对反应体系进行了扩大化转化的研究,最终确定当体系放大到5倍时,对100 mmol的间甲基苯基缩水甘油醚进行转化,16 h后底物的e.e.值接近100 %,转化率为68.6 %;分离纯化后进一步胺解可得光学纯的β-受体阻滞剂类药物:(S)-型托利洛尔,e.e.值98 %,得率16.5 %。
Strain which could enantiomeric stereoselectively hydrolysis the racemic glycidyl m-methylphenyl ether has been isolated from the soil and was named Bacillus megaterium ZJUZQ-002. The analysis of chiral purities was based on the chiral HPLC results.
     Optimization the fermentation conditions of the Bacillus megaterium ZJUZQ-002 revealed that the pH value and temperature have major impacts on biomass and epoxide hydrolase activity. The best result were obatined under the following conditions: pH 7.2, temperature 30℃. Substrate induction also has an impact on the enzyme activity, and substrate 6 mmol/L results the highest enzyme activity, whereas the 12 mmol/L of substrate would lead to the death of bacteria. The best fermentation condition: sucrose 1.0 %,yeast extract 1.0 %,NaCl 1.0 %, MgSO4·7H2O 5mmol/L,K2HPO4·3H2O 0.3 %,KH2PO4 0.1 %,substrate 6 mmol/L,temperature 30℃,pH 7.2,time 30 h, could give the activity of enzyme 58.5 U/L.
     The best resolution condition: 0.1 M pH 8.0 potassium phosphate buffer, temperature 30℃, time 16 h, cosolvent DMSO, the ration of catalyst/substrate (g/g) = 9/1, substrate concentration 20 mmol/L, could give the e.e. value of substrate is 99.9 %, the E value 37.
     The study towards the substrate specificity of this enzyme show that, by using Bacillus megaterium ZJUZQ-002, the position of the methyl group exerted effect not only on the enantioselectivities increasing from 2′≈3′> 4′, but also the configuration of the remained epoxides: for glycidyl o or m-methylphenyl ethers, the remaining epoxide was (R)-enantiomer, while p-methylphenyl ether gave (S)-configuration, and then we explain it with docking study.
     In the optimal resolution conditions, the effect of different magnification factor of the raction system on resolution was studied. It was found that the best magnification factor is five, and then the e.e. value of m-GMPE was obatined in 99.9 %, the conversion rate in 68.6 % after 16 h. After further purification and amination,β-blocks—(S)- Toliprolol was obtained in e.e. value of 98 % and yield of 16.5 % yield.
引文
[1] Bellamy FD,Bondoux B,Boubia B,et al. Enatioselective sysnthesis of four ssomer building blocks useful in the synthesis of 2-nroleukotriene analogues[J]. Tetrahedron :Asymmetry,1992,3:355-358.
    [2] Bellevik S,Zhang J,Meijer J. Brassica napus soluble epoxide hydrolase[J]. Eur. J.Biochem,2002,269:5295-5302.
    [3] Arand M,Hallberg BM,Zou J,et al. Structure of Rhodococcus eryropolis limone-1,2-epoxide hydrolase reveals a novel active site[J]. EMBO J,2003,22:2583-2592.
    [4] Beetham JK,Tian T,Hammock BD. cDNA cloning and expression of a soluble epoxide hydrolase from human liver[J]. Arch.Biochem.Biophys,1993,305:197-201.
    [5]唐燕发,许建和,叶勤.手性合成的新工具[J].化学通报,2003,13:00106.
    [6] Bevinakatti HS,Banerji AA. Practical Chemoenzymatic synthesis of both enantiomers of propranolol[J]. J.Org.Chem,1991,56:5372-5375.
    [7]侯大平,孟巍,王惠娟.β-受体阻滞剂在心血管疾病治疗中的应用及进展[J].中国初级卫生保健,2004,18(5):45-46.
    [8]陈新谦,金有豫.新编药物学[M].第14版.北京:人民卫生出版社,1999:173-175.
    [9] Schaus SE,Jacobsen EN. Asymmetric Ring-Opening of Meso-Epoxides with TMSCN Catalyzed by (pybox) Lanthanide Complexes[J]. Org.Lett,2000,2:1001.
    [10] Bose DS,Narsaiah AV. An efficient asymmetric synthesis of (S)-atenolol:using hydrolytic kinetic resolution[J]. Bioorganic & medicinalchemistry,2005,3:627-630.
    [11] Bartoli G,Bosco M,Sambri L. Asymmetric catalytic synthesis of enantiopure N-protected 1,2-amino alcohols[J]. Organic Letters,2004,22:3973-3975.
    [12] Bose DS,Narsaiah AV. Use of PyBOP as a convenient activator for the synthesis of nitriles from primary amides[J]. Synthesis,2001, 3, 373–375.
    [13] Muthukrishnan M,Garud DR,Joshi RR. Concise synthesis ofβ–blockers (S)-metoprolol and (S)-betaxolol using hydrolytic kinetic resolution[J]. Tetrahedron. 2007,63:1872-1876.
    [14] Phukan P,Sudalai A. Regioselective alkylation of phenol with cyclopentanol over montmorillonite K10[J]. J.Chem.Soc.Perkin Trans,1999,1:3015–3018.
    [15] Sayyed IA,Thakur VV,Sudalai A. Asymmetric synthesis of aryloxypropanolamines via OsO4-catalyzed asymmetric dihydroxylation[J]. Tetrahedron,2005,61:2831-2838.
    [16] Klunder JM,Onami T,Sharpless B. Arenesulfonate derivatives of homochiral glycidol:versatile chiral building blocks for organic synthesis[J]. J.Org.Chem, 1989,54 (6):1295-1304.
    [17] Apparu M,Hamman S,Coulombeau S. Determination of the enantiomeric purity and the configuration ofββ-aminoalcohols using (R)-2-fluorophenylacetic acid (AFPA) and fluorine-19 NMR: application to -blockers[J]. Tetrahedron: Asymmetry,2000,11:2885-2898.
    [18] Kitaori K,Furukawa Y,Yoshimoto H. CsF in organic synthesis regioseletive nucleophilic reaction of phenols with oxiranes leading to enantiopureβ-blockers[J]. Tetrahedron,1999,55:14381-14390.
    [19] Corral ASDD,Garcia PC. [P]. USA,pat.No..5426227, 1995.
    [20] Bredikhin AA,Litvinov IA. Solid-state properties of 1,2-epoxy-3-(2-cyanophenoxy)propane,a conglomerate-forming chiral drug precursor[J]. Mendeleev Commun,2006,16(5):245–247.
    [21]朱锦桃等.一种(S)-托利洛尔的合成方法[P].中国,专利号:CN 101219961A,2008.07.16
    [22] Kakulapati. et al. Process for the solid state synthsis of enantiopureβ–aminoalcohols from racemic epoxides[P]. USA,Patent NO.:US6239313B1,2001.03.29
    [23] Damle SV,Patil PN. Biotransformations with Rhizopus arrhizus and Geotrichum candidum for the preparation of (S)-Atenolol and (S)-propranolol[J]. Bioorganic & medicinalchemistry,2000,8:2067-2070.
    [24] Kamal A,Sandbhor M. Chemoenzymatic synthesis of (S) and (R)-propranolol and sotalol employing one-pot lipase resolution protocol[J]. Bioorganic & medicinalchemistry,2004,14:4581-4583.
    [25] Bevinakatti HS,Banerji AA. Lipase catalysis in organic solvents. Application to the systhesis of (R)-and (S)-atenolol[J]. J.Org.Chem.1992,57:6003-6005.
    [26]徐毅,潘江,许建和.环氧水解酶催化合成(R)-和(S)-普萘洛尔[J].石油化工,2004,33:950-952.
    [27] Archelas A,Delbecque JP,Furstoss R. Microbiological transformations. 30. Enantioselective hydrolysis of racemic epoxides: The synthesis of enantiopure insect juvenile hormoneanalogs (Bower's compound)[J]. Tetrahedron:Asymmetry,1993,4:2445-2446.
    [28] Jerina DM. Biological formation and disposition of arene oxides[J]. Lioydia,1974,37:212-218.
    [29]孙志浩.生物催化工艺学[M].化学工业出版社,2005.05.
    [30] Oesch F. Mammalian epoxide hydrolase:inducible enzymes catalyzing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds[J]. Xenobiotica,1972,3:305-321.
    [31] Weijers CA. Enantioseletive hydrolysis of aryl,alicyclic and aliphatic epoxides by Rhodotorula glutinis[J]. Tetrahedron:Asymmetry,1997,8:639-647.
    [32] Martha SS. Fungal epoxide hydrolases: new landmarks in sequence-activity space[J]. TRENDS in Biotechnology,2004,22(3):123-129.
    [33]彭华松,宗敏华,聂凌鸿.环氧化物水解酶的研究进展[J].分子催化,2003,17(1):75-80.
    [34] Morisseau C,Hammock BD. Epoxide hydrolases: mechanisms,inhibitor designs,and biological roles[J]. Annu.Rev.Pharmacol.Toxicol,2005,45:311-333.
    [35] Blee E, Schuber F. Occurrence of fatty acid epoxide hydrolase in soybean[J]. Plant J,1993,4:113-123.
    [36] Blee E. Phytooxylipins and plant defense reactions[J]. Prog. Lipid. Res,1998,37:33-72.
    [37] Wojtasek H,Prestwich GD. An insect juvenile hormone-specific epoxide hydrolase is related to vertebrate microsomal epoxide hydrolases[J]. Biochem.Biophys.Res.Comm,1996,220:323-329.
    [38] de Bont JAM,van Dijken JP,van Ginkel KG. The metabolism of 1,2-propanediol by the propylene oxide utilizing bacterium Nocardia A60 [J]. Biochim.Biophys.Acta,1982,714:465-470.
    [39] Arand M,Wagner H,Oesch F. Asp333,Asp495,and His523 from the catalytic triad of rat soluble epoxide hydrolase[J]. J.Biol.Chem,1996,271:4223-4229.
    [40] Lacourciere GM,Armstrong RN. The catalytic mechanism of microsomal epoxide hydrolase involves an ester intermediate[J]. J.Am.Chem.Soc,1993,115:10466-10467.
    [41] Hammock BD,Pinot F,Beetham JK,et al. Isolation of a putative hydroxyacyl enzyme intermediate of an epoxide hydrolade[J]. Biochem.Biophys.Res.Commun,1994,198:850-856.
    [42] Acher Ian-VJ. Epoxide hydrolase as asymmetric catalysts[J]. Tetrahedron,1997,53(46):15617-15626.
    [43] Niehaus WG,Kisic A,Torkelson A,et al. Stereospecific hydration of cis- and trans-9,10-epoxyoctadecanoic acids[J]. J.Biol.Chem,1970,245:3802-3809.
    [44] Schroepfer GJ,Niehaus WG. Enzymatic stereospecificity in the hydration of epoxy fatty acids. Stereospecific incorporation of the oxygen of water[J]. J.Am.Chem.Soc,1967,89:4227-4228.
    [45] Hechtberger P,Wirnsberger G,Mischitz M,et al. Asymmetric hydrolysis of epoxides using an immobilized enzyme preparation from Rhodococcus sp.[J]. Tetrahedron:Asymmetry,1993,4:1161-1164.
    [46] Cater SF,Leak D. The isolation and characterization of a carbocyclic epoxide-degrading Corynebacterium sp.[J]. Biocatal Biotrans,1995,13:111-129.
    [47] Archer IVJ,Leak DJ,Widdowson DA. Chemoenzymic resolution and deracemisation of (±)-l-methyl-l,2-epoxycyclohexane: the synthesis of (1S,2S)-l-Methylcyclohexane-l,2-diol[J]. Tetrahedron Lett,1996,37:8819-8822.
    [48] Xin jia,Zunsheng Wang,Zhi Li. Preparation of (S)-2-, 3-, and 4-chlorostyrene oxides with the epoxide hydrolase from sphingomonas sp. HXN-200[J]. Tetrahedron:Asymmetry,2008,19:407-415.
    [49] Suzuki Y,Imai K,Marumo S. Trans and cis hydration of racemic (10,11)-epoxyfarnesol into optically active glycols by fungus[J]. J.Am.Chem.Soc,1974,96:3703-3705.
    [50] Kolattukudy PE,Brow L. Fate of naturally occurring epoxy acids:A soluble epoxide hydrase, which catalyzes cis hydration from Fusarium solani pisi[J]. Arch.Biochem.Biophys,1975,166:599-607.
    [51] Attwood MR,Hassall CH,Redshaw S,et al. An investigation of the biotransformation of organic selenides by fungi[J]. J.Chem.Soc.Perkin Trans I,1986,6:1011-1019
    [52] Mischitz M,Kroutile W,Wandel U,et al. Highly selective asymmetric hydrolysis of 2,2-disubstituted epoxides using lyophilized cells of Rhodococcus sp. NCIMB 11216[J]. Tetrahedron:Asymmetry,1995,6:1261-1272.
    [53] Zhang JY,Reddy J,Roberge C,et al. Biocatalytic resolution of 1,2-epoxyoctane using resting cells[J]. J.Ferment Bioeng,1995,80:244-246.
    [54] Weijers CA. Enantioseletive hydrolysis of aryl,alicyclic and aliphatic epoxides by Rhodotorula glutinis[J]. Tetrahedron:Asymmetry,1997,8:639-647.
    [55] Weijers CAGM,Botes AL,van Dyk MS,et al. Enantioseletives of yeast epoxide hydrolase for 1,2-epoxides[J]. Tetrahedron:Asymmetry,1998:467-473.
    [56] Chiappe C,Leandri E,Hammock BD,et al. Effect of ionic liquids on epoxide hydrolase-catalyzed synthesis of chiral 1,2-diols[J]. Green Chem.,2007,9:162-168.
    [57] Fenglai Sun , Gang Xu , Jianping Wu. A new and facile preparation of tert-butyl(3R,5S)-6-hydroxy-3,5-o-isopropylidene-3,5-dihydroxyhexanoate[J]. Tetrahedron: Asymmetry,2006,17,2907-2913.
    [58] Zhu Q,Huang X,Grace YJ,et al. Design and synthesis of fluorogenic substrates that target protein phosphatases[J]. Tetrahedron Letters,2004,45:707-710.
    [59]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].2001版.
    [60] Chen CS,Fujimoto Y,Girdaukas G,et al. Quantitative analyses of biochemical kinetic resolutions of enantiomers[J]. Journal of the American Chemical Society,1982,104(25):7294-7299.
    [61] Pedragosa-Moreau S,Archelas A,Furstoss R. Biocatalytic approaches for the synthesis of enantiopure epoxides[J]. J.Org.Chem,1993,58:5533-5536.
    [62] Choi WJ,Lee EY,Yoon SJ,et al. Biocatalytic production of chiral epichlorohydrin in organic solvents[J]. J.Biosci.Bioeng,1999,88:339-341.
    [63] Gomez GA,Morisseau C,Hammock BD,et al. Human soluble epoxide hydrolase: structural basis of inhibition by 4-(3-cyclohexylureido)-carboxylic acids[J]. Protein Sci,2006,15:58-64.
    [64] Armstrong RN. Kinetic and chemical mechanism of epoxide hydrolase[J]. Drug Metab Rev,1999,31:71–86.
    [65] Rink R,Janssen DB. Kinetic mechanism of the enantioselective conversion of styrene oxide by epoxide hydrolase from Agrobacterium radiobacter AD1[J]. Biochemistry ,1998,37:18119–18127.
    [66] Werf VD,Swarts HJ. Acid-catalyzed enzymatic hydrolysis of 1-methylcyclohexene oxide[J]. Tetrahedron Asymmetry,1999,10:4225–4230.
    [67] Yamada T,Morisseau C,Maxwell JE,et al. Biochemical evidence for the involvement of tyrosine in epoxide activation during the catalytic cycle of epoxide hydrolase[J]. J.Biol.Chem,2000,275:23082–23088.
    [68] Iliyas A,Sayyed VV,Milind D,et al. Asymmetric synthesis of aryloxypropanolamines via OsO4-catalyzed asymmetric dihydroxylation[J]. Tetrahedron,2005,61:2831-2838.
    [69] Howe R,Rao BS. Structure-activity relationship of the beta adrenoreceptor blocking agents[J]. J.Med.Chem,1968,11:1118-1121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700