面手性[2.2]环仿衍生物的合成、表征及光化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性配体的结构是不对称催化反应取得成功的一个重要因素,而根据反应特点进行新型配体的设计与合成一直是不对称催化反应中研究的重点。中心手性、轴手性、面手性和螺手性是构建手性配体的基本手性因素。面手性[2.2]环仿(PCP)类化合物是平面手性配体的一个典型代表,从上世纪九十年代末开始,这类化合物作为一类崭新的手性配体应用到不对称催化的研究逐渐增多,面手性在现代金属有机化学均相催化中扮演着越来越重要的作用。
     [2.2]环仿是由两个平行并对立而且发生了扭曲变形的的苯环通过两个乙撑基连接的三维型的芳香分子。由于其特殊的结构特点也常常用于研究跨环立体效应和电子效应的优良载体。近年来,[2.2]环仿常常用于构建人工光合作用的体系,作为一种特殊的共价型连接基,与许多其他连接基团如(乙炔基、苯基等)有着不同的性质和特殊的作用。
     基于以上原因,以及我们一直以来对于[2.2]环仿化学的研究兴趣,我们设计并合成了一系列基于面手性[2.2]环仿的螺手性化合物,并尝试将其应用于手性催化。另外还研究了面手性[2.2]环仿这一特殊的芳香化合物与另一种特殊芳香化合物卟啉的Suzuki反应条件。然后我们以此反应为基础合成了由[2.2]环仿桥连的卟啉-花二酰亚胺三聚体及其类似物,并研究了这一体系的光致电子转移与能量传递过程。
     本论文的内容主要有以下几个方面:
     第一部分,基于面手性[2.2]环仿的螺手性大环亚胺的合成及性质。
     设计并合成了一系列基于[2.2]环仿的螺手性大环亚胺,并对其进行了表征,确定了其螺手性。在我们合的目标化合物中,4-氨基-12-溴[2.2]环仿和4,12-二氨基[2.2]环仿是重要的结构单元,也是合成目标化合物的关键中间体。对于这两个化合物的合成及拆分我们采用了我们实验室所发现的方法。4-氨基-12-溴-[2.2]环仿的一个重要特点是其空间结构可以较容易地加以修饰。氨基与乙酸酐反应得到的乙酰胺可以进一步进行重氮化反应,再进行烷基化后可获得各种醚。在室温条件下,以四氢呋喃为溶剂,4,12-二氨基[2.2]环仿以及由不同醚链连接的的氨基[2.2]环仿衍生物和乙二醛水溶液反应,可得到相应的合环的亚胺。通过X-射线单晶衍射我们确定了4,12-二氨基[2.2]环仿反应后生成的四亚胺的螺手性。然后以四亚胺为标准,通过比旋光度以及圆二色谱的测定确定了其余化合物的螺手性。
     第二部分,基于面手性[2.2]环仿的卟啉衍生物的合成与表征。
     合成了一系列基于面手性[2.2]环仿的卟啉化合物,研究了两种特殊的芳香化合物[2.2]环仿与卟啉的Suzuki反应条件。复杂结构的卟啉化合物用经典的方法进行合成时步骤比较繁琐而且产率较低,而采用Suzuki反应可以很好的解决官能团的适配性这一问题。我们在卟啉硼酸嚬呐醇酯与溴代[2.2]环仿的Suzuki反应中,筛选了各种溶剂与碱,发现体系中所用碱的碱性强弱对这一反应起到了至关重要的作用,而K3PO4·3H2O的碱性在这一反应中比较合适。
     第三部分,由[2.2]环仿连接的卟啉-花二酰亚胺三聚体的光致电子转移和能量传递。
     以上述Suzuki反应为基础合成了由[2.2]环仿及其他连接基(苯基、联苯)桥连的卟啉与花二酰亚胺衍生物相连的D-A体系化合物,并通过稳态紫外可见吸收光谱,荧光光谱研究了化合物的光物理性质。稳态紫外可见吸收光谱表明:在基态,体系各组分之间没有明显的相互作用。荧光光谱表明了苝二酰亚胺向卟啉分子高效的光致能量传递和卟啉分子向花二酰亚胺分子之间的光致电荷转移。
The structure of the chiral ligands is an important factor in asymmetric catalysis, and the synthesis of new ligands according to the characteristics of the asymmetric catalysis reaction has been the key point of the research. Central chirality, axial chirality, planar chiral and helical chiral are the basic factors for the construction of chiral ligands. Compounds derived from [2.2]paracyclophane (PCP) are typical representatives of planar chiral ligand, and these compounds had been widely used in asymmetric catalysis as a new class of chiral ligands since 1990s. Planar chiral has been playing more and more important roles in homogeneous catalysis in modern chemistry.
     [2.2]paracyclophane (PCP) is a three-dimensional aromatic molecule with rigid arrangement of parallel, eclipsed benzene rings connected by the ethylene. Due to its special structural features, molecules based on PCP have been designed to mimic through-space delocalization of excited energy, probe intramolecular charge transfer across the transannular gap and understand the global transannularπ-πinteractions. In recent years, molecules based on PCP are often used to build artificial photosynthesis system as a special spacer different from many other groups such as acetylene, benzene, etc.
     For these reasons, and our interest in cyclophane chemistry, we designed and synthesized a series of helical compounds based on PCP, and try to apply it to asymmetric catalysis. We also studied Suzuki reaction conditions between the two kinds of particular aromatic compounds PCP bromides and porphyrin boronate. Then Novel bisporphyrin-perylene triad dyes composed of a perylene tetracarboxylic diimide (PDI) and tetraphenylporphyrin (free-base porphyrin (H2TPP) or zinc porphyrin (ZnTPP)) linked by a [2.2]paracyclophane moiety have been prepared. Structurally related compounds bearing a biphenyl or a p-terphenyl spacer have also been prepared. Photoinduced electron and energy transfer in porphyrin-perylene diimide triads were determined.
     The main content of the thesis was shown as follows:
     1. Synthesis of cyclophanes with planar and helical chirality derived from [2.2]paracyclophane.
     Macrocyclic imines based on PCP were synthesized and characterized, and the absolute helicity of the imines were determined. In our synthetic pathway to the helical macrocyclic imines, the compounds 4-amino-12-bromo[2.2]paracyclophane and 4,12-diamino[2.2] paracyclophane are the key structural elements. We adopted our own methods discovered by our lab for the synthesis and resolution of the two compounds. One of the important characteristics of the two compounds is the fact that they are easily tunable in their steric profile. Suzuki-Miyaura coupling with arylboronic acids under PdCl2(dppf) catalysis gave the sterically hindered amino[2.2]paracyclophanes in good to excellent yields (85-99%). The acetamides preparedby the reaction of amino group with acetic anhydride can further diazotization to get variety of phenols and then ether. Treatment of the substituted amino[2.2] paracyclophanes with aqueous glyoxal in THF at room temperature gave corresponding imines in essentially quantitative yield. The absolute helicity of the tetraimine prepared from 4,12-diamino[2.2] paracyclophane was determined according to the X-ray single crystal diffraction. Then the absolute helicity of the other imines were also determined by the specific rotation and CD spectra.
     2. Preparation of [2.2]paracyclophanyl porphyrins.
     A facile synthetic approach for the preparation of planar chiral porphyrins derived from [2.2]paracyclophane was described. The conditions of Suzuki reaction between the two special aromatic compounds PCP and porphyrins were studied. Traditional method to the porphyrin includes condensation of pyrroles and aldehydes in refluxing propionic acid, and some unusually elaborated unsymmetrical porphyrins couldn't be prepared in this way. Palladium-catalyzed cross-coupling reactions that employ halogenated porphyrins and arylboronates have provided a facile synthetic approach for the modular preparation of porphyrin macrocyles. K3PO4·3H2O was found to be a mild and effective base with the catalyst of PdCl2(dppf) acted as effective catalytic system for the cross-coupling reaction between PCP bromides and porphyrin boronate. The method reported here may be used as a novel alternative for preparation of chiral porphyrin derivatives.
     3. Photoinduced energy and electron transfer in porphyrin-perylene diimide symmetric triads linked by [2.2]paracyclophane.
     Novel bisporphyrin-perylene triad dyes composed of a perylene tetracarboxylic diimide (PDI) and tetraphenylporphyrin (free-base porphyrin (H2TPP) or zinc porphyrin (ZnTPP)) linked by a [2.2]paracyclophane moiety have been prepared based on the above Suzuki reaction. Structurally related compounds bearing a biphenyl or a p-terphenyl spacer have also been prepared as references. The photophysical properties of these compounds are investigated by steady state electronic absorption and fluorescence spectra. The ground state absorption spectra reveal no significant interactions between the porphyrin moieties and PDI in the ground state. The fluorescence spectra suggest high efficient energy transfer from PDI to porphyrin. The energy transfer is not affected by the spacer between the porphyrin and PDI.
引文
1. Moore, J. S. Shape-persistent molecular architectures of nanoscale dimension. Acc. Chem. Res.1997,30,402-413.
    2. Haley, M. M.; Pak, J. J.; Brand, S. C. Macrocyclic oligo(phenylacetylenes) and oligo(phenyldiacetylenes) Top. Curr. Chem.1999,201,81-130.
    3. Marsden, J. A.; Palmer, G. J.; Haley, M. M. Synthetic strategies for dehydrobenzo[n]annulenes. Eur. J. Org. Chem.2003,2355-2369.
    4. Bunz, U. H. F. Carbon-rich molecular objects from multiply ethynylated π-complexes. Top. Curr. Chem.1999,201,131-161.
    5. Youngs, W. J.; Tessier, C. A.; Bradshaw, J. D. ortho-Arene cyclynes, related heterocyclynes, and their metal chemistry. Chem. Rev.1999,99,3153-3180.
    6. Grave, C.; Schluter, A. D. Shape-persistent, nano-sized macrocycles. Eur. J. Org. Chem.2002,3075-3098.
    7. Bodwell, G. J.; Satou, T. "Polyunsaturated" cyclophanes. Angew. Chem. Int. Ed. 2002,41,4003-4006.
    8. Houghton, T. J. in Newfoundland:Memorial University of Newfoundland,1899, 4-6.
    9. Brown C. J.; Farthing, A. C. Preparation and structure of di-p-xylylene. Nature, 1949,164,915-916.
    10. Cram, D. J.; Steinberg, H. Macro rings.Ⅰ. preparation and spectra of the paracyclophanes. J. Am. Chem. Soc.1951,73,5691-5704.
    11. Rozenberg, V.; Sergeeva, E.; Hopf, H. Cyclophanes as templates in stereoselective synthesis. In Modern cyclophane chemistry; Gleiter, R.; Hopf, H., Eds.; Wiley-VCH:Weinheim, Germany,2004; p 435.
    12. Cram, D. J.; Cram, J. M. Cyclophane chemistry:bent and battered benzene rings. Acc. Chem. Res.,1971,4,204-213.
    13. Gollas, B.; Speiser, B. Electrochemistry of ruthenium metallocenes.1. Synthesis, NMR, and anodic electrochemical behavior of vinyl-substituted ruthenium cyclophane complexes. Organometallics 1996,15,260-271.
    14. Maekawaa, M.; Hashimoto, N.; Kuroda-Sowa, T.; Suenaga, Y.; Munakata, M. Syntheses and crystal structures of mononuclear [2.2]paracyclophane complexes of rhodium and iridium supported by the pentamethylcyclopentadienyl ligand [M(η6-pcp)(η5-C5Me5)](BF4)2 (M=Rh and Ir). Inorganica Chimica Acta 2002,328,254-258.
    15. Maekawa, M.; Hashimoto, N.; Sugimoto, K.; Kuroda-Sowa, T. Suenaga, Y. Munakata, N. Syntheses and structural characterization of [2.2]paracyclophane complexes of rhodium and iridium supported by diene ligands. Inorganica Chimica Acta 2003,344,143-157.
    16. Dyson, P. J.; Johnson, B. F. G.; Martin, C. M. Ruthenium cluster-[2.2]paracyclophane complexes. Coordination Chemistry Reviews 1998,175, 59-89.
    17. Popova, E. L.; Rozenberg, V. I.; Staikova, Z. A.; Hopf, H. Thermotropic liquid crystals from planar chiral cmpounds:optically active mesogenic [2.2]paracyclophane derivatives. Angew. Chem. Int. Ed.,2002,41,3411-3414.
    18. Reich, H. J.; Cram, D. J. Macro rings. XXXVI. Ring expansion, racemization, and isomer interconversions in the [2.2]paracyclophane system through a diradical intermediate. J. Am. Chem. Soc.1969,91,3517-3526.
    19. Lahann, J.; Hocker, H.; Langer, R. Synthesis of amino[2.2]paracyclophanes-beneficial monomers for bioactive coating of medical implant materials. Angew. Chem. Int. Ed.2001,40,726-728.
    20. Pye, P. J.; Rossen, K.; Reamer, R. A.; Volante, R. P.; Reider, P. J. [2.2]PHANEPHOS-Ruthenium(II) complexes:highly active asymmetric catalysts for the hydrogenation of β-ketoesters. Tetrahedron Lett.1998,39, 4441-4443.
    21. Dominguez, B.; Zanotti-Gerosa, A.; Hems, W. Electrophilic substitution of dibromoparacyclophane:A route to novel paracyclophane phosphine ligands. Org. Lett.2004,6,1927-1930.
    22. Gibson, S. E.; Knight, J. D. [2.2]Paracyclophane derivatives in asymmetric catalysis. Org. Biomol. Chem.2003,1,1256-1269.
    23. Aly, A. A.; Brown, A. B. Asymmetric and fused heterocycles based on [2.2]paracyclophane. Tetrahedron 2009,65,8055-8089.
    24. Rozenberg, V.; Kharitonov, V.; Antonov, D.; Sergeeva, E.; Aleshkin, A.; Ikonnikov, N.; Orlova, S.; Belokon, Y. Scalemic 2-formyl-3-hydroxy-[2.2]paracyclophane:A new auxiliary for asymmetric synthesis. Angew. Chem., Int. Ed.1994,33,91-92.
    25. Braddock, D. C.; MacGilp, I. D.; Perry, B. G. Improved synthesis of (±)-4,12-dihydroxy[2.2]paracyclophane and its enantiomeric resolution by enzymatic methods:planar chiral (R)- and (S)-phanol. J. Org. Chem.2002,67, 8679-8681.
    26. Pye, P. J.; Rossen, K.; Reamer, R. A.; Tsou, N. N.; Volante, R. P.; Reider, P. J. A new planar chiral bisphosphine ligand for asymmetric catalysis:highly enantioselective hydrogenations under mild conditions.J. Am. Chem. Soc.1997, 119,6207-6208.
    27. Vetter, A. H.; Berkessel, A. Schiff-base ligands carrying two elements of chirality: Matched-mismatched effects in the vanadium-catalyzed sulfoxidation of thioethers with hydrogen peroxide. Tetrahedron Lett.1998,39,1741-1744.
    28. Hou, X. L.; Wu, X. W.; Dai, L. X.; Cao, B. X.; Sun, J. Novel N,S- and N,Se-planar chiral [2,2]paracyclophane ligands:synthesis and application in Pd-catalyzed allylic alkylation. Chem. Commun.2000,1195-1196.
    29. Ma, Y. D.; Song, C.; Ma, C. Q.; Sun, Z. J.; Chai, Q.; Andrus, M. B. Asymmetric addition of aryl boron reagents to enones with rhodium dicyclophane imidazolium carbene catalysis. Angew. Chem., Int. Ed.2003,42,5871-5874.
    30. Song, C.; Ma, C. Q.; Ma, Y. D.; Feng, W. H.; Ma, S. T.; Chai, Q.; Andrus, M. B. Bis-paracyclophane N-heterocyclic carbene-ruthenium catalyzed asymmetric ketone hydrosilylation. Tetrahedron Lett.2005,46,3241-3244.
    31. Duan, W. Z.; Ma, Y. D.; Xia, H. Q.; Liu, X. Y.; Ma, Q. S.; Sun, J. Design and synthesis of planar chiral heterocyclic carbene precursors derived from [2.2]paracyclophane. J. Org. Chem.2008,73,4330-4333.
    32. Tye, H.; Comina, P. J. Catalytic asymmetric processes. J. Chem. Soc., Perkin Trans.1 2001,1729-1747.
    33. Deng, W. P.; You, S. L.; Hou, X. L.; Dai, L. X.; Yu, Y. H.; Xia, W.; Sun, J. Importance of Planar Chirality in Chiral Catalysts with Three Chiral Elements: The Role of Planar Chirality in 2'-Substituted 1,1'-P,N-Ferrocene Ligands on the Enantioselectivity in Pd-Catalyzed Allylic Substitution. J. Am. Chem. Soc.2001, 123,6508-6519.
    34. Farrell, A.; Goddard, R.; Guiry, P. J. Preparation of Ferrocene-Containing Phosphinamine Ligands Possessing Central and Planar Chirality and Their Application in Palladium-Catalyzed Asymmetric Allylic Alkylation. J. Org. Chem.2002,67,4209-4217
    35. S. L.; Hou, X. L.; Dai, L. X.; Yu, Y. H.; Xia, W. Role of Planar Chirality of S,N-and P,N-Ferrocene Ligands in Palladium-Catalyzed Allylic Substitutions. J. Org. Chem.2002,67,4684-4695.
    36. Gibson, S. E.; Ibrahim, H. Asymmetric catalysis using planar chiral arene chromium complexes. Chem. Commun.2002,21,2465-2466.
    37. Bolm, C.; Muniz, K. Planar chiral arene chromium(0) complexes:potential ligands for asymmetric catalysis. Chem. Soc. Rev.1999,28,51-59.
    38. Noyori, R.; Ohkuma, T. Asymmetric Catalysis by Architectural and Functional Molecular Engineering:Practical Chemo- and Stereoselective Hydrogenation of Ketones. Angew. Chem. Int. Ed.2001,40,40-73.
    39. Kitamura, M.; Tsukamoto, M.; Bessho, Y.; Yoshimura, M.; Kobs, U.; Widhalm, M.; Noyori, R. Mechanism of Asymmetric Hydrogenation of a-(Acylamino) acrylic Esters Catalyzed by BINAP-Ruthenium(II) Diacetate. J. Am. Chem. Soc. 2002,124,6649-6667.
    40. Reyes, C.; Prock, A. Giering, W. P. Kinetic Study of the Hydrosilylation of Acetophenone by [Rh(cod)Cl]2/(R)-BINAP. Organometallics 2002,21, 546-560.
    41. Cram, D. J.; Allinger, N. Macro Rings.Ⅻ. Stereochemical Consequences of Steric Compression in the Smallest Paracyclophane'J. Am. Chem. Soc.1955,77, 6289-6294.
    42. Burk, M. J.; Hems, W.; Herzberg, D.; Malan. C. Zanotti-Gerosa, A. A Catalyst for Efficient and Highly Enantioselective Hydrogenation of Aromatic, Heteroaromatic, and α,β-Unsaturated Ketones. Org. Lett.2000,2,4173-4176.
    43. Zanotti-Gerosa, A.; Malan, C.; Herzberg, D. Phosphonites Based on the Paracyclophane Backbone:New Ligands for Highly Selective Rhodium-Catalyzed Asymmetric Hydrogenation. Org. Lett.2001,3,3687-3690.
    44. Focken, T.; Raabe, G.; Bolm, C. Synthesis of iridium complexes with new planar chiral chelating phosphinyl-imidazolylidene ligands and their application in asymmetric hydrogenation. Tetrahedron:Asymmetry 2004,15,1693-1706.
    45. Tanji, S.; Ohno, A.; Sato, I.; Soai, K. Asymmetric Autocatalysis of a Pyrimidyl Alkanol Induced by Chiral Monosubstituted [2.2]Paracyclophanes. Org. Lett. 2001,3,287-289.
    46. Dahmen, S.; Brase, S. Planar and central chiral [2.2]paracyclophane-based N,O-ligands as highly active catalysts in the diethylzinc addition to aldehydes. Chem. Commun.2002,26-27.
    47. Dahmen, S.; Brase, S. [2,2]Paracyclophane-Based N,O-Ligands in Alkenylzinc Additions to Aldehydes. Org. Lett.,2001,3,4119-4122.
    48. Lauterwasser, S.; Gall, J.; Hofener, S.; Brase, S. Second-Generation N,O-[2.2]Paracyclophane Ketimine Ligands for the Alkenylzinc Addition to Aliphatic and Aromatic Aldehydes:Scope and Limitations. Adv. Synth. Catal. 2006,348,2068-2074.
    49. Dahmen, S.; Brase, S. The Asymmetric Dialkylzinc Addition to Imines Catalyzed by [2.2]Paracyclophane-Based N,O-Ligands. J. Am. Chem. Soc.2002,124, 5940-5941.
    50. Dahmen, S. Enantioselective Alkynylation of Aldehydes Catalyzed by [2.2]Paracyclophane-Based Ligands. Org. Lett.,2004,6,2113-2116.
    51. Brase, S.; Hofener, S. Asymmetric Conjugate Addition of Organozinc Compounds to a,b-Unsaturated Aldehydes and Ketones with [2.2]Paracyclophaneketimine Ligands without Added Copper Salts. Angew. Chem. Int. Ed.2005,44, 7879-7881.
    52. Danilova, T. I.; Rozenberg, V. I.; Sergeeva, E. V.; Starikova, Z. A.; Brase, S. Novel chiral tridentate Schiff base ligands of the [2.2]paracyclophane series: synthesis and application. Tetrahedron:Asymmetry 2003,14,2013-2019.
    53. Wu, X. W.; Hou, X. L.; Dai, L. X.; Tao, J.; Cao, B. X.; Sun, J. Synthesis of novel N,O-planar chiral [2,2]paracyclophane ligands and their application as catalysts in the addition of diethylzinc to aldehydes. Tetrahedron:Asymmetry 2001,12, 529-532.
    54. Zhang, T. Z.; Dai, L. X.; Hou, X. L. Synthesis of planar chiral [2.2]paracyclophane monophosphine ligands and their application in the umpolung allylation of aldehydes. Tetrahedron:Asymmetry 2007,18,251-259.
    55. Wu, X.-W.; Yuan, K.; Sun, W.; Zhang, M.-J.; Hou, X.-L. Novel planar chiral P,N-[2.2]paracyclophane ligands:synthesis and application in palladium-catalyzed allylic alkylation. Tetrahedron:Asymmetry 2003,14, 107-112.
    56. Whelligan, D. K.; Bolm, C. Synthesis of Pseudo-geminal-, Pseudo-ortho-, and ortho-Phosphinyl-oxazolinyl-[2.2]paracyclophanes for Use as Ligands in Asymmetric Catalysis. J. Org. Chem.2006,71,4609-4618.
    57. Belokon, Y.; Moscalenko, M.; Ikonnikov, N.; Yashkina, L.; Antonov, D.; Vorontsov, E.; Rozenberg, V. Asymmetric trimethylsilylcyanation of benzaldehyde catalyzed by (salen)Ti(IV) complexes derived from (R)- and/or (S)-4-hydroxy-5-formyl[2.2]paracyclophane and diamines. Tetrahedron: Asymmetry 1997,8,3245-3250.
    58. Bolm, C.; Kiihn, T. Asymmetric epoxidation of allylic alcohols using vanadium complexes of (N)-hydroxy-[2.2]paracyclophane-4-carboxylic amides. Synlett. 2000,6,899-901.
    59. Michaelson, R. C.; Palermo, R. E.; Sharpless, K. B. Chiral hydroxamic acids as ligands in the vanadium catalyzed asymmetric epoxidation of allylic alcohols by tert-butyl hydroperoxide. J. Am. Chem. Soc.1977,99,1990-1991.
    60. Murase, N.; Hoshino, Y.; Oishi, M.; Yamamoto, H. Chiral Vanadium-Based Catalysts for Asymmetric Epoxidation of Allylic Alcohols. J. Org. Chem.1999, 64,338-339.
    61. Masterson, D. S.; Hobbs, T. L.; Glatzhofer, D. T. Catalytic enantioselective cyclopropanation of olefins using N-salicylidene-4-amino[2.2]paracyclophane as an asymmetric ligand. J. Mol. Cat. A:Chem.1999,145,75-81.
    62. Ma, Q.; Ma. Y.; Liu, X.; Duan, W.; Qu, B. Song, C. Planar chiral imidazolium salts based on [2.2]paracyclophane in the asymmetric rhodium-catalyzed 1,2-addition of arylboronic acids to aldehydes. Tetrahedron:Asymmetry 2010, 21,292-298.
    63. Xin, D. Y.; Ma, Y. D.; He, F. Y. Synthesis of new planar chiral [2.2]paracyclophane Schiff base ligands and their application in the asymmetric Henry reaction. Tetrahedron:Asymmetry 2010,21,333-338.
    1. Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Artifical moleclar machines. Angew. Chem. Int. Ed.2000,39,3348-3391.
    2. Watson J. D.; Crick, F. H. C. Molecular structure of nucleic acids-a structure for deoxyribose nucleic acid. Nature,1953,171,737-738.
    3. Newman, M. S.; Wolf, M. A New synthesis of benzo(c)phenanthrene: 1,12-dimethylbenzo(c)phenanthrene. J. Am. Chem. Soc.1952,74,3225-3228.
    4. Newman, M. S.; Lutz, W. B.; Lednicer, D. A new reagent for resolution by complex formation; the resolution of phenanthro-[3,4,-c]phenanthrene. J. Am. Chem. Soc. 1955,77,3420-3421.
    5. Newman, M. S.; Lednicer, D. The synthesis and resolution of hexahelicene. J. Am. Chem. Soc.1956,78,4765-4770.
    6. Newman, M. S.; Wise, R. M. The synthesis and resolution of 1,12-dimethylbenzo[c]phenanthrene-5-acetic Acid. J. Am. Chem. Soc.1956,78, 450-454.
    7. Miyasaka, M.; Pink, M.; Rajca, S.; Rajca, A. Noncovalent interactions in the asymmetric synthesis of rigid, conjugated helical structures. Angew. Chem. Int. Ed.2009,48,5954-5957.
    8. Rajca, A.; Rajca, S. Asymmetric synthesis of chiral tetraphenylenes. Angew. Chem. Int. Ed.2010,49,672-674.
    9. Dong, Z.; Plampin, J. N.; Yap, G. P. A.; Fox, J. M. Minimalist end groups for control of absolute helicity in salen- and salophen-based metallofoldamers. Org. Lett.2010,12,4002-4005.
    10. Collins, S. K.; Vachon, M. P. Unlocking the potential of thiaheterohelicenes: chemical synthesis as the key. Org. Biomol. Chem.2006,4,2518-2524.
    11. Misek, J.; Teply, F.; Stara, I. G.; Tichy, M.; Saman, D.; Cisarova, I.; Vojtisek. P. A straightforward route to helically chiral N-heteroaromatic compounds:practical synthesis of racemic 1,14-diaza[5]helicene and optically pure 1- and 2-aza[6]helicenes. Angew. Chem. Int. Ed.2008,47,3188-3191.
    12. Grimme, S.; Harren, J.; Sobanski, A.; Vogtle, F. Structure/chiroptics relationships of planar chiral and helical molecules. Eur. J. Org. Chem.1998,1491-1509.
    13. Katz, T. J.; Pesti, J. The synthesis of a helical ferrocene. J. Am. Chem. Soc.1982, 104,346-347.
    14. Herse, C.; Bas, D.; Krebs, F. C.; Burgi, T.; Weber, J.; Wesolowski, T.; Laursen, B. W.; Lacour, J. A highly configurationally stable [4]heterohelicenium Cation. Angew. Chem.2003,115,3270-3274.
    15. Zhang, Y.; Petersen, J. L.; Wang, K. K. Synthesis and structures of diindeno-fused 1,12-diphenylbenzo[c]phenanthrene and 1,14-diphenyl[5]helicene bearing severe helical twists. Org. Lett.2007,9,1025-1028.
    16. Carreno, M. C.; Garcia-Cerrada, S.; Urbano, A. Divergent enantioselective synthesis of (P)- and (M)-dihydro[5]helicenequinones from a common tetrahydroaromatic precursor. Chem. Commun.2002,1412-1413.
    17. Adriaenssens, L.; Severa, L.; Salova, T.; Cisarova, I.; Pohl, R.; Saman, D.; Rocha, S. V.; Finney, N. S.; Pospisil, L.; Slavicek, P.; Teply, F. Helquats:A Facile, Modular, Scalable route to novel helical dications. Chem. Eur. J.2009,15, 1072-1076.
    18. Han, S. D.; Bond, A. D.; Disch, R. L.; Holmes, D.; Schulman, J. M.; Teat, S. J.; Vollhardt, K. P. C.; Whitener, G. D. Total syntheses and structures of angular [6]-and [7]phenylene:The first helical phenylenes (heliphenes). Angew. Chem. Int. Ed.2002,41,3223-3227.
    19. Rajca, A.; Wang, H.; Pink, M.; Rajca, S. Annelated heptathiophene:a fragment of a carbon-sulfer helix. Angew. Chem. Int. Ed.2000,39,4481-4483.
    20. Rozen, S.; Dayan, S. At Last, 1,10-phenanthroline-N,N'-dioxide, a new type of helicene, has been synthesized using HOF·CH3CN. Angew. Chem. Int. Ed.1999, 38,3471-3473.
    21. Zarges, W.; Hall, J.; Lehn, J.-M.; Bolm, C. Helicity induction in helicate self-organisaton from chiral tris(bipyridine)ligand strands. Helv. Chim. Acta. 1991,74,1843-1852.
    22. An, D; Nakano, T.; Orita, A.; Otera, J. Enantiopure double-helical alkynyl cyclophanes. Angew. Chem. Int. Ed.2000,41,171-173.
    23. Orita, A.; An, D.; Nakano, T.; Yaruva, J.; Ma, N.; Otera, J. Sulfoximine version of double elimination protocol for synthesis of chiral acetylenic cyclophanes. Chem. Eur.J.2002,8,2005-2010.
    24. Meurer, K. P.; Vogtle, F. Helical molecules in organic chemistry. Top. Curr. Chem. 1985,127,1-76.
    25. Laarhoven, W. H.; Prinsen, W. J. C. Carbohelicenes and heterohelicenes. Top. Curr. Chem.1984,125,63-130.
    26. Urbano, A. Recent developments in the synthesis of helicene-like molecules. Angew. Chem. Int. Ed.2003,42,3986-3989.
    27. Martin, R. H. The helicenes. Angew. Chem. Int. Ed.1974,13,649-660.
    28. Katz, T. J. Syntheses of functionalized and aggregating helical conjugated molecules. Angew. Chem. Int. Ed.2000,39,1921-1923.
    29. Verbiest, T.; Sioncke, S.; Persoons, A.; Vyklicky, L.; Katz, T. J. Electric-field-modulated circular-difference effects in second-harmonic generation from a chiral liquid crystal. Angew. Chem. Int. Ed.2002,41, 3882-3884.
    30. Graule, S.; Rudolph, M.; Shen, W.; Williams, J. A. G.; Lescop,C.; Autschbach, J.; Crassous, J.; Reau, R. Assembly of π-conjugated phosphole azahelicene derivatives into chiral coordination complexes:an experimental and theoretical study. Chem. Eur. J.2010,16,5976-6005.
    31. Reetz, M. T.; Sostmann, S.2,15-Dihydroxy-hexahelicene (HELIXOL):synthesis and use as an enantioselective fluorescent sensor. Tetrahedron 2001,57, 2515-2520.
    32. Clays, K.; Wostyn, K.; Persoons, A.; Maiorana, S.; Papagni, A.; Daul, C. D.; Weber, V. Experimental study of the second-order non-linear optical properties of tetrathia-[7]-helicene. Chem. Phys. Lett.2003,372,438-442.
    33. Donovan, P. M.; Scott, L. T. Elaboration of diaryl ketones into naphthalenes fused on two or four sides:a naphthoannulation procedure. J. Am. Chem. Soc.2004, 126,3108-3112.
    34. Amemiya, R.; Yamaguchi, M. Chiral recognition in noncovalent bonding interactions between helicenes:right-handed helix favors right-handed helix over left-handed helix. Org. Biomol. Chem.2008,6,26-35.
    35. Murguly, E.; McDonald R.; Branda, N. R. Chiral discrimination in hydrogen-bonded [7]Helicenes. Org. Lett.2000,2,3169-3172.
    36. Shinohara, K.; Sannohe, Y.; Kaieda, S.; Tanaka, K.; Tahara, H.; Xu, Y.; Kawase, T.; Bando, T.; Sugiyama, H. A chiral wedge molecule inhibits telomerase activity. J. Am. Chem. Soc.2010,132,3778-3782.
    37. Owens, L.; Thilgen, C.; Diederich, F.; Knobler, C. B. A new helicopodand: molecular recognition of dicarboxylic acids with high diastereoselectivity. Helv. Chim. Acta 1993,76,2757-2774.
    38. Reetz, M. T.; Beuttenmuller, E. W.; Goddard, R. First enantioselective catalysis using a helical diphosphane. Tetrahedron Lett.1997,38,3211-3214.
    39. Reetz, M. T.; Sostmann, S. Kinetic resolution in Pd-catalyzed allylic substitution using the helical PHelix ligand. J. Organomet. Chem.2000,603,105-109.
    40. Wang, D. Z.; Katz, T. J. A [5]HELOL analogue that senses remote chirality in alcohols, phenols, amines, and carboxylic acids. J. Org. Chem.2005,70, 8497-8502.
    41. Sato, I.; Yamashima, R.; Kadowaki, K.; Yamamoto, J.; Shibata, T.; Soai, K. Asymmetric induction by helical hydrocarbons:[6]- and [5]helicenes. Angew. Chem. Int. Ed.2001,40,1096-1098.
    42. Takenaka, N.; Sarangthem, R. S.; Captain, B. Helical chiral pyridine N-oxides:A new family of asymmetric catalysts. Angew. Chem. Int. Ed.2008,47, 9708-9710.
    43. Takenaka, N.; Chen, J.; Captain, B.; Sarangthem, R. S.; Chandrakumar, A. Helical chiral 2-aminopyridinium ions:a new class of hydrogen bond donor catalysts. J. Am. Chem. Soc.2010,132,4536-4537.
    44. Gingras, M.; Collet, C. Functionalized heptahelicene bidentate ligands and chiral building blocks. Synlett.2005,15,2337-2341.
    45. Terfort, A.; Gorls, H.; Brunner, H. The first helical-chiral phosphane ligands: rac-[5]- and rac-[6]-Heliphos. Synthesis 1997,79-86.
    46. Nakazaki, M.; Yamamoto, K; Maeda, M. Preparation of (-)-(M)-[2.2]paracyclophanohexahelicene from (-)-(M)-1,4-dimethylhexahelicene and the absolute configuration of 4-substituted [2.2]paracyclophanes. J. Org. Chem.1981,46,1985-1987.
    47. Minuti, L.; Taticchi, A.; Marrocchi, A.; Costantini, L.; Gacs-Baitz, E. Stereoselective synthesis of enantiopure condensed [2.2]paracyclophanes. Tetrahedron:Asymmetry 2001,12,1179-1183.
    48. Taticchi, A.; Minuti, L.; Marrocchi, A.; Lanari, D.; Gacs-Baitz, E. Synthesis of some new enantiopure [2.2]paracyclophanes bearing polycyclic aromatic subunits. Tetrahedron:Asymmetry 2002,13,1331-1335.
    49. Minuti, L.; Taticchi, A.; Marrocchi, A.; Lanari, D.; Broggi, A.; Gacs-Baitz, E. Synthesis of enantiopure angularly condensed [2.2]paracyclophanes containing five-membered rings. Tetrahedron:Asymmetry 2003,14,481-487.
    50. Taticchi,A.; Minuti, L.; Lanari, D.; Marrocchi, A.; Tesei, I.; Gacs-Baitz, E. Synthesis of helical [2.2]paracyclophanes containing carbocyclic and heterocyclic five-membered rings. Tetrahedron 2004,60,11759-11764.
    51. Comba, P.; Fath, A.; Hambley, T. W.; Kuhner, A.; Richens, D. T.; Vielfort, A. Helical figure-of-eight loop dicopper(Ⅰ) compounds:syntheses, structures, and dynamics. Inorg. Chem.1998,37,4389-4401.
    52. Boydston, A. J.; Bondarenko, L.; Dix, I.; Weakley, T. J. R.; Hopf, H.; Haley, M. M. [2.2]Paracyclophane/dehydrobenzoannulene hybrids:transannular delocalization in open-circuited conjugated macrocycles. Angew. Chem. Int. Ed.2001,40, 2986-2989.
    53. Glatzhofer, D. T.; Roy, R. R.; Cossey, K. N. Conversion of N-Aromatic Amides to O-Aromatic Esters Org. Lett.2002,4,2349-2352.
    54. D. J. Cram, H. Steinberg, Macro Rings. I. Preparation and spectra of the paracyclophanes. J. Am. Chem. Soc.1951,73,5691-5704.
    55. Hopf, H.; Lenich, F. T. [2.2]Paracyclophane durch addition von acetylenderivaten an 1,2,4,5-hexatetraen. Chem. Ber.1974,107,1891-1902.
    56. Shi, Z.; Wang, J. H. Syntheses of tetra-substituted and dibridged tetraazaparacyclophanes. Chin. Sci. Bull.1995,40,1581-1587.
    57. Reich, H. J.; Cram, D. J. Macro rings.ⅩⅩⅩⅦ. Multiple electrophilic substitution reactions of [2.2]paracyclophanes and interconversions of polysubstituted derivatives. J. Am. Chem. Soc.1969,91,3527-3533.
    58. Duan, W.; Ma, Y.; Xia, H.; Liu, X.; Ma, Q.; Sun, J. Design and Synthesis of Planar Chiral Heterocyclic Carbene Precursors Derived from [2.2]Paracyclophane. J. Org. Chem.2008,73,4330-4333.
    59. Qu, B.; Ma, Y.; Ma, Q.; Liu, X.; He, F.; Song, C. An Efficient Catalyst System for Pd-Catalyzed Amination of [2.2]Paracyclophanyl Bromides. J. Org. Chem. 2009,74,6867-6869.
    60. Miyasaka, M.; Rajca, A.; Pink, M.; Rajca, S. Chiral Molecular Glass:Synthesis and Characterization of Enantiomerically Pure Thiophene-Based [7]Helicene. Chem. Eur.J.2004,10,6531-6539.
    1. Rozenberg, V.; Sergeeva, E.; Hopf, H. Cyclophanes as Templates in Stereoselective Synthesis. In Modern Cyclophane Chemistry; Gleiter, R.; Hopf, H., Eds.; Wiley-VCH:Weinheim, Germany,2004; p 435.
    2. Gibson, S. E.; Knight, J. D. [2.2]Paracyclophane derivatives in asymmetric catalysis. Org. Biomol. Chem.2003,1,1256-1269.
    3. Aly, A. A.; Brown, A. B. Asymmetric and fused heterocycles based on [2.2]paracyclophane. Tetrahedron 2009,65,8055-8089.
    4. Dahmen, S. Enantioselective Alkynylation of Aldehydes Catalyzed by [2.2]Paracyclophane-Based Ligands. Org. Lett.,2004,6,2113-2116.
    5. Brase, S.; Hofener, S. Asymmetric Conjugate Addition of Organozinc Compounds to a,b-Unsaturated Aldehydes and Ketones with [2.2]Paracyclophaneketimine Ligands without Added Copper Salts. Angew. Chem. Int. Ed.2005,44, 7879-7881.
    6. Danilova, T. I.; Rozenberg, V. I.; Sergeeva, E. V.; Starikova, Z. A.; Brase, S. Novel chiral tridentate Schiff base ligands of the [2.2]paracyclophane series: synthesis and application. Tetrahedron:Asymmetry 2003,14,2013-2019.
    7. Hou, X. L.; Wu, X. W.; Dai, L. X.; Cao, B. X.; Sun, J. Novel N,S- and N,Se-planar chiral [2,2]paracyclophane ligands:synthesis and application in Pd-catalyzed allylic alkylation. Chem. Commun.2000,1195-1196.
    8. Zhang, T. Z.; Dai, L. X.; Hou, X. L. Synthesis of planar chiral [2.2]paracyclophane monophosphine ligands and their application in the umpolung allylation of aldehydes. Tetrahedron:Asymmetry 2007,18,251-259.
    9. Whelligan, D. K.; Bolm, C. Synthesis of Pseudo-geminal-, Pseudo-ortho-, and ortho-Phosphinyl-oxazolinyl-[2.2]paracyclophanes for Use as Ligands in Asymmetric Catalysis. J. Org. Chem.2006,71,4609-4618.
    10. Pye, P. J.; Rossen, K.; Reamer, R. A.; Tsou, N. N.; Volante, R. P.; Reider, P. J. A New Planar Chiral Bisphosphine Ligand for Asymmetric Catalysis:Highly Enantioselective Hydrogenations under Mild Conditions. J. Am. Chem. Soc. 1997,119,6207-6208.
    11. Jiang, B.; Lei, Y.; Zhao, X. [2.2]Paracyclophane-Derived Chiral P,N-Ligands: Design, Synthesis, and Application in Palladium-Catalyzed Asymmetric Allylic Alkylation. J. Org. Chem.2008,73,7833-7836.
    12. Ma, Y. D.; Song, C.; Ma, C. Q.; Sun, Z. J.; Chai, Q.; Andrus, M. B. Asymmetric Addition of Aryl Boron Reagents to Enones with Rhodium Dicyclophane Imidazolium Carbene Catalysis. Angew. Chem., Int. Ed.2003,42,5871-5874.
    13. Focken, T.; Raabe, G.; Bolm, C. Synthesis of iridium complexes with new planar chiral chelating phosphinyl-imidazolylidene ligands and their application in asymmetric hydrogenation. Tetrahedron:Asymmetry 2004,15,1693-1706.
    14. Czuchajowski, L.; Lozynski, M. J. Porphyrin system containing [2.2]paracyclophane units. J. Heterocycl. Chem.1988,25,349-350.
    15. Czuchajowski, L.; Goszczynski, S.; Wisor, A. K. Meso-tetrakis[2.2]para-cyclophanylporphyrin:unusual stereoisomerism of a porphyrin derivative. Heterocycles 1989,29,887-894.
    16. Czuchajowski, L.; Bennett, J. E.; Goszczynski, S.; Wheeler, D. E.; Wisor, A. K.; Malinski, T. meso-[2.2]Paracyclophenyltriphenylporphyrin. Electronic consequences of linking paracycliphane to porphyrin. J. Am. Chem. Soc.1989, 111,607-616.
    17. Czuchajowski, L.; Goszczynski, S.; Wisor, A. K.; Bennett, J. E.; Malinski, T. meso-tetrakis[2.2]paracyclophanylporphyrin:Electronic structure and electrochemical behavior. J. Heterocycl. Chem.1989,26,1477-1484.
    18. Bennett, J. E.; Burewicz, A.; Wheeler, D. E.; Eliezer, I.; Czuchajowski, L.; Malinski, T. Conductive polymeric films of meso-tetrakis [2,2]-para-cyclophanylmetalloporphyrins spectroelectrochemistry and catalytic properties. Inorg. Chim. Acta.1998,271,167-173.
    19. H. Ficsher et al. "Die Chemie des pyrrols" Vol 2, part 1, Akademic Verlagsegesllschft, Liepzig,1937,158.
    20.计亮年,彭小彬,黄锦汪,“金属卟啉配合物模拟某些金属酶的研究进展”,自然科学进展,2002,12,120-128.
    21.李德平,胡静,“血卟啉类化合物诊治肿瘤的研究进展及应用”,中国生化药物杂志,2003,24,162.
    22.杨新国,孙景志,汪茫,陈红征,黄骥,“卟啉类光电功能材料的研究进展”,功能材料,2003,34,113-117.
    23. Kadish, K. M.; Smith, K. M.; Guilard, R., Eds. The Porphyrin Handbook; Academic Press:San Diego,2000.
    24. Senge, M. O. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press:San Diego, CA,2000; Vol.1, p 239.
    25. Jaquinod, L. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press:San Diego, CA,2000; Vol.1, p 201.
    26. Wagner R. W.; Lindsey J. S.; Seth J.; Pallnaippan V.; Bocian D. J. Molecular Optoelectronic Gates. J. Am. Chem. Soc.1996,118,3996-3997.
    27. Wagner R. W.; Lindsey J. S. A molecular photonic wire. J. Am. Chem. Soc.1994, 116,9759-9760.
    28. Sessler J. L.; Wang B.; Harriman A. Photoinduced energy transfer in associated, but noncovalently-linked photosynthetic model systems. J. Am. Chem. Soc. 1995,117,704-714.
    29. Drain C. M.; Russel K. C.; Lehn J.-M. Self-assembly of a multi-porphyrin supramolecular macrocycle by hydrogen bond molecular recognition. Chem. Commun.1996,337-338.
    30. Arimura T.; Brown C. T.; Springs S. L.; Sessler J. L. Intracomplex electron transfer in a hydrogen-bonded calixarene-porphyrin system. Chem. Commun. 1996,2293-2294.
    31. Prathapan S.; Johnson T. E.; Lindsey J. S. Building-block synthesis of porphyrin light-harvesting arrays. J. Am. Chem. Soc.1993,115,7519-7520.
    32. Schouten P. G.; Warman J. M.; de Haas M. P.; Fox M. A.; Pan H-L. Charge migration in supramolecular stacks of peripherally substituted porphyrins. Nature 1991,353,736-737.
    33. Simon J.; Andre J.-J. Molecular Semiconductors Springer:Berlin,1985.
    34. Mackay L. G.; Wylie R. S.; Sanders J. K. M. Catalytic Acyl Transfer by a Cyclic Porphyrin Trimer:Efficient Turnover without Product Inhibition. J. Am. Chem. Soc.1994,116,3141-3142.
    35. Collman J. P.; Fu L.; Herrman P. C.; Zhang X. A Functional Model Related to Cytochrome c Oxidase and Its Electrocatalytic Four-Electron Reduction of O2 Science 1997,275,949-951.
    36. Sharman W. M.; Allen C. M.; van Lier J. E. Photodynamic therapeutics:basic principles and clinical applications. Drug Discov Today 1999,4,507-517.
    37. Dougherty T. J.; Gomer C. J.; Henderson B. W.; Jori G.; Kessel D.; Korbelik M.; Moan J.; Peng Q. Photodynamic Therapy. J. Natl. Cancer Inst.1998,90, 889-905.
    38. Traylor, P. S.; Dolphin, D.; Traylor, T. G. Sterically protected hemins with electronegative substituents:efficient catalysts for hydroxylation and epoxidation. J. Chem. Soc., Chem. Commun.1984,279-280.
    39. Groves, J. T.; Myers, R. S. Catalytic asymmetric epoxidations with chiral iron porphyrins. J. Am. Chem. Soc.1983,105,5791-5796.
    40. Mansuy, D.; Battioni, P.; Renaud, J. P.; Guerin, P. Asymmetric epoxidation of alkenes catalysed by a 'basket-handle' iron-porphyrin bearing amino acids. J. Chem. Soc., Chem. Commun.1985,155-156.
    41. Naruta, Y.; Ishihara, N.; Tani, F.; Maruyama, K. Asymmetric Epoxidation of Simple Olefins by Chiral Bitetralin-Linked "Twin-Coronet" Porphyrin Catalysts. Bull. Chem. Soc. Jpn.1993,158-166.
    42. Collman, J. P.; Lee, V. J.; Zhang, X.; Ibers, J. A.; Brauman, J. I. Enantioselective epoxidation of unfunctionalized olefins catalyzed by threitol-strapped manganese porphyrins. J. Am. Chem. Soc.1993,115,3834-3835.
    43. Gross, Z.; Ini, S. Remarkable Effects of Metal, Solvent, and Oxidant on Metalloporphyrin-Catalyzed Enantioselective Epoxidation of Olefins. J. Org. Chem.1997,62,5514-5521.
    44. Collman, J. P.; Wang, Z.; Straumanis, A.; Quelquejeu, M.; Rose, E. An Efficient Catalyst for Asymmetric Epoxidation of Terminal Olefins. J. Am. Chem. Soc. 1999,121,460-461.
    45. Banfi, S.; Manfredi, A.; Montanari, F.; Pozzi, G.; Quici, S. Synthesis of chiral Mn(III)-meso-tetrakis-[2.2]-p-cyclophanyl-porphyrin:a new catalyst for enantioselective epoxidation. Journal of Molecular Catalysis A:Chemical 1996, 113,77-86.
    46. Rispens, M. T.; Manfredi, A.; Pozzi, G.; Banfi, S.; Quici, S. [2.2]-para-Cyclophane-4-carbaldehyde as building-block for chiral ligands:Part Ⅱ:Epoxidation of alkenes catalyzed by the Mn(III)-complex of an atropoisomerically pure (α,β,α,β)-tetraarylporphyrin. Journal of Molecular Catalysis A:Chemical 1998,136,13-22.
    47. Groves, J. T.; Nemo, T. E. Hydroxylation and epoxidation catalyzed by iron-porphine complexes. Oxygen transfer from iodosylbenzene. J. Am. Chem. Soc.1979,101,1032-1033.
    48. Murahashi, S.; Naota, T.; Komiya, K. Metalloporphyrin-Catalyzed Oxidation of Alkanes with Molecular Oxygen in the Presence of Acetaldehyde. Tetrahedron Lett.1995,36,8059-8062.
    49. Vinhado, F. S.; Gandini, M. E. F.; Iamamoto, Y.; Silva, A. M. G.; Simoes, M. M. Q.; Neves, M. G. P. M.; Tome, A. C.; Rebelo, S. L. H.; Pereira, A. M. V. M.; Cavaleiro, J. A. S. Novel Mn(III)chlorins as versatile catalysts for oxyfunctionalisation of hydrocarbons under homogeneous conditions. Journal of Molecular Catalysis A:Chemical 2005,239,138-143.
    50. Zhang, R.; Yu, W.-Y.; Che, C.-M. Catalytic enantioselective oxidation of aromatic hydrocarbons with D4-symmetric chiral ruthenium porphyrin catalysts. Tetrahedron:Asymmetry 2005,16,3520-3526.
    51. Rebelo, S. L. H.; Simoes, M. M. Q.; Neves, M. G. P. M. S.; Cavaleiro, J. A. S. Oxidation of alkylaromatics with hydrogen peroxide catalysed by manganese(III) porphyrins in the presence of ammonium acetate Journal of Molecular Catalysis A:Chemical 2003,201,9-22.
    52. Littler, B. J.; Miller, M. A.; Hung, C.-H.; Wagner, R. W.; O'Shea, D. F.; Boyle, P. D.; Lindsey, J. S. Refined Synthesis of 5-Substituted Dipyrromethanes. J. Org. Chem.1999,64,1391-1396.
    53. Sobral, A. J. F. N.; Rebanda, N. G. C. L.; da Silva, M.; Lampreia, S. H.; Silva, M. R.; Beja, A. M.; Paixao, J. A.; Gonsalvesa, A. M. R. One-step synthesis of dipyrromethanes in water. Tetrahedron Letters 2003,44,3971-3973.
    54. Milbradt, R.; Weiss, J. Efficient combination of calix[4]arenes and meso-diphenylporphyrins. Tetrahedron Letters 1995,36,2999-3002.
    55. Gryko, D. T.; Tasior, M. Simple route to meso-substituted trans-A2B2-porphyrins bearing pyridyl units. Tetrahedron Letters 2003,44,3317-3321.
    56. Gao, G.-Y.; Chen, Y.; Zhang, X. P. General Synthesis of meso-Amidoporphyrins via Palladium-Catalyzed Amidation. Org. Lett.2004,6,1837-1840.
    57. Nudy, L. R.; Hutchinson, H. G.; Schieber, C.; Longo, F. R. A study of bromoporphins. Tetrahedron 1984,40,2359-2363.
    58. Shi, B.; Scobie, M.; Boyle, R. W. Parallel synthesis of unsymmetrically substituted tetraphenyl porphyrins on Wang resin. Tetrahedron Lett.2003,44, 5083-5086.
    59. Naik, R.; Joshi, P.; Kaiwar, S. P.; Deshpande, R. K. Facile synthesis of meso-substituted dipyrromethanes and porphyrins using cation exchange resins. Tetrahedron 2003,59,2207-2213.
    60. Shoji, O.; Okada, S.; Satake, A.; Kobuke, Y. Coordination Assembled Rings of Ferrocene-Bridged Trisporphyrin with Flexible Hinge-like Motion:Selective Dimer Ring Formation, Its Transformation to Larger Rings, and Vice Versa. J. Am. Chem. Soc.2005,127,2201-2210.
    61. Holmes, A. E.; Das, D.; Canary, J. W. Chelation-Enhanced Circular Dichroism of Tripodal Bisporphyrin Ligands. J. Am. Chem. Soc.2007,129,1506-1507.
    62. Esdaile, L. J.; Sengeb, M. O.; Arnold, D. P. New palladium catalysed reactions of bromoporphyrins:synthesis and crystal structures of nickel(II) complexes of primary 5-aminoporphyrin,5,5'-bis(porphyrinyl) secondary amine, and 5-hydroxyporphyrin. Chem. Commun.2006,4192-4194.
    63. Hyslop, A. G.; Kellett, M. A.; Iovine, P. M.; Therien, M. J.Suzuki Porphyrins: New Synthons for the Fabrication of Porphyrin-Containing Supramolecular Assemblies.J. Am. Chem. Soc.1998,120,12676-12677.
    64. Vaz, B.; Alvarez, R.; Nieto, M.; Paniello, A. I.; de Lera, A. R. Suzuki cross-coupling of meso-dibromoporphyrins for the synthesis of functionalized A2B2 porphyrins. Tetrahedron Lett.2001,42,7409-7412.
    65. Tramblay-Morin, J.-P.; Ali, H.; van Lier, J. E. Palladium catalyzed coupling reactions of cationic porphyrins with organoboranes (Suzuki) and alkenes (Heck). Tetrahedron Let.2006,47,3043-3046.
    66. Shi, B.-L.; Scobie, M.; Boyle, R. W. Parallel synthesis of unsymmetrically substituted tetraphenyl porphyrins on Wang resin. Tetrahedron Lett.2003,44, 5083-5086.
    67. Ali, H.; St-Jean, O.; Tramblay-Morin, J.-P.; van Lier, J. E. Functionalization of sulfophthalocyanines in aqueous medium by palladium-catalyzed cross-coupling reactions. Tetrahedron Lett.2006,47,8275-8278.
    68. Vaz, B.; Alvarez, R.; Nieto, M.; Paniello, A. I.; de Lera, A. R. Suzuki cross-coupling of meso-dibromoporphyrins for the synthesis of functionalized A2B2 porphyrins. Tetrahedron Lett.2001,42,7409-7412.
    69. Roche, A. J.; Canturk, B. An exploration of Suzuki aryl cross coupling chemistry involving [2.2]paracyclophane derivatives. Org. Biomol. Chem.2005,3, 515-519.
    70. Duan, W. Z.; Ma, Y. D.; Xia, H. Q.; Liu, X. Y.; Ma, Q. S.; Sun, J. Design and Synthesis of Planar Chiral Heterocyclic Carbene Precursors Derived from [2.2]Paracyclophane. J. Org. Chem.2008,73,4330-4333.
    71. Rozenberg, V.; Zhuravsky, R.; Sergeeva, E. Design, classification, and strategies of synthesis of modular bidentate ligands based on aryl [2.2] paracyclophane backbone. Charality 2006,102,95-102.
    72. Rozenberg, V. I.; Antonov, D. Y.; Zhuravsky, R. P.; Vorontsov, E. V.; Starikova Z. A. A novel class of bidentate ligands with a conformationally flexible biphenyl unit built into a planar chiral [2.2]paracyclophane backbone. Tetrahedron Lett.2003,44,3801-3804.
    73. Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. Highly Active Palladium Catalysts for Suzuki Coupling Reactions. J. Am. Chem. Soc.1999, 121,9550-9561.
    1. Deisenhoper, J.; Epp, O.; Miki, K.; Huver, R.; Michel, H. Structure of the protein subunits in the photosynthetic reaction centers of the Rhodopseudomonas viridis at 3 A resolution. Nature,1985,318,618-624.
    2.董晓阳硕士论文,中科院感光化学研究所,1993,p4.
    3. Sirishi, M.; Kache, R.; Maiya, B. G. Intramolecular excitation energy transfer in isomeric porphyrinanthracene dyads. J. Photochem. Photobio.:A Chem.,1996, 93,129-136.
    4. Gust, D.; Moore T. A.; Moore, A. L. Molecular mimicry of photosynthetic energy and electron transfer. Acc. Chem. Res.,1993,26,198-205.
    5. Seller, J. L.; Wang, B.; Harriman, A. Long-range photoinduced electron transfer in an associated but non-covalently linked photosynthetic model system. J. Am. Chem. Soc.,1993,115,10418-10419.
    6. Drain, C. M.; Russell, K. C.; Lehn, J. M. Self-assembly of a multi-porphyrin supramolecular macrocycle by hydrogen bond molecular recognition. Chem. Commun.,1996,337-338.
    7. Wasielewski, M. R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem. Rev.1992,92,435-461.
    8. Gust, D.; Moore, T.A.; Moore, A. L. Mimicking photosynthetic solar energy transduction. Acc. Chem. Res.2001,34,40-48.
    9. Meyer, T. J. Chemical approaches to artificial photosynthesis. Acc. Chem. Res. 1989,22,163-170.
    10. Law, K.-Y. Organic photoconductive materials:recent trends and developments. Chem. Rev.1993,93,449-486.
    11. Gust, D.; Moore, T.A.; Moore, A. L. Solar fuels via artificial photosynthesis. Acc. Chem. Res.2009,42,1890-1898.
    12. Huijser, A.; Savenijie, T. J.; Kotlewski, A.; Picken, S. J.; Siebbeles, L. D. A. Efficient light-harvesting layers of homeotropically aligned porphyrin derivatives. Adv. Mater.2006,18,2234-2239.
    13. Kim, D.; Osuka, A. Directly linked porphyrin arrays with tunable excitonic interactions. Ace. Chem. Res.2004,37,735-744.
    14. Wasielewski, M. R. Self-Assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res.2009,42, 1910-1921.
    15. Wasielewski, M. R. Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis. J. Org. Chem.2006, 71,5051-5066.
    16. Li, X.-Y.; Sinks, L.E.; Rybtchinski, B.; Wasielewski, M. R. Ultrafast aggregate-to-aggregate energy transfer within self-assembled light-harvesting columns of Zinc phthalocyanine tetrakis(perylenediimide). J. Am. Chem. Soc. 2004,126,10810-10811.
    17. Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev.2007,107,1324-1338.
    18. Gomez, R.; Coya, C.; Segura, J. L. Synthesis of a π-extended TTF-perylene diimide donor-acceptor dyad. Tetrahedron Lett.2008,49,3225-3228.
    19. Ambroise, A.; Kirmaier, C.; Wagner, R. W.; Loewe, R. S.; Bocian, D. F. Holten, D.; Lindsey, J. S. Weakly coupled molecular photonic wires:synthesis and excited-state energy-transfer dynamics. J. Org. Chem.2002,67,3811-3826.
    20. Liang, M.; Xu, W.; Cai, F.-S.; Chen, P.-Q.; Peng, B.; Chen, J.; Li, Z.-M. New triphenylamine-based organic dyes for efficient dye-sensitized solar cells. J. Phys. Chem. C.2007,111,4465-4472.
    21. Gouloumis, A.; de La Escosura, A.; Vazquez, P.; Torres, T.; Kahnt, A.; Guldi, D. M.; Neugebauer, H.; Winder, C.; Drees, M.; Sariciftci, N. S. Photoinduced electron transfer in a new bis(C60)-phthalocyanine triad. Org. Lett.2006,8, 5187-5190.
    22. Martin-Gomis, L.; Ohkubo, K.; Fernandez-Lazaro, F.; Fukuzumi, S.; Sastre-Santos, A. Synthesis and photophysical studies of a new nonaggregated C60-silicon phthalocyanine-C60 triad. Org. Lett.2007,9,3441-3444.
    23. Torres, T.; Gouloumis, A.; Sanchez-Garcia, D.; Jayawickramarajah, J.; Seitz, W.; Guldi, D. M.; Sessler, J. L. Photophysical characterization of a cytidine-guanosine tethered phthalocyanine-fullerene dyad. Chem. Commun. 2007,292-294.
    24. Kadish, K. M.; Smith, K. M.; Guilard, R. the Porphyrin Handbook, Academic Press, Amsterdam,2003.
    25. Pognon, G.; Boudon, C.; Schenk, K. J.; Bonin, M.; Bach, B.; Weiss, J. Electrochemically triggered open and closed pacman bis-metalloporphyrins. J. Am. Chem. Soc.2006,128,3488-3489.
    26. Rosenthal, J.; Luckett, T. D.; Hodgkiss, J. M.; Nocera, D. G. Photocatalytic oxidation of hydrocarbons by a bis-iron(Ⅲ)-μ-oxo pacman porphyrin using O2 and visible light. J. Am. Chem. Soc.2006,128,6546-6547.
    27. Kuciauskas, D.; Lin, S.; Seely, G. R.; Moore, A. L.; Moore, T. A.; Gust, D.; Drovestkaya, T.; Reed, C. A.; Boyd, P. D. W. Energy and photoinduced electron transfer in porphyrin-fullerene dyads. Energy and photoinduced electron transfer in porphyrin-fullerene dyads. J. Phys. Chem.1996,100,15926-15932.
    28. Helms, A.; Heiler, D.; McLendon, G. Electron transfer in bis-porphyrin donor-acceptor compounds with polyphenylene spacers shows a weak distance dependence.J.Am. Chem. Soc.1992,114,6227-6238.
    29. Liddell, P. A.; Sumida, J. P.; MacPherson, A. N.; Noss, L.; Seely, G. R.; Clark, K. N.; Moore, A. L.; Moore, T. A.; Gust, D. Preparation and photophysical studies of porphyrin-C60 dyes. Photochem. Photobiol.1994,60,537-541.
    30. Takai, A.; Gros, C. P.; Barbe, J.-M.; Guilard, R.; Fukuzumi, S. Enhanced electron-transfer properties of cofacial porphyrin dimers through π-π interactions. Chem. Eur. J.2009,15,3110-3122.
    31. Serin, J. M.; Brousmiche, D. W.; Frechet, J. M. J. Cascade energy transfer in a conformationally mobile multichromophoric dendrimer. Chem. Commun.2002, 2605-2607.
    32. Kohl, K.; Weil, T.; Qu, J.-Q.; Mullen, K. Towards highly fluorescent and water-soluble perylene dyes. Chem. Eur. J.2004,10,5297-5310.
    33. Jones, B. A.; Ahrens, M. J.; Yoon, M.-H.; Facchetti, A.; Marks, T. J.; Wasielewski, M. R. High-mobility air-dtable n-type semiconductors with processing versatility: dicyanoperylene-3,4:9,10-bis(dicarboximides). Angew. Chem. Int. Ed.2004,43, 6363-6366.
    34. Wurthner, F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. Chem. Commun.2004,1564-1579.
    35. Wurthner, F.; Chen, Z.-J.; Dehm, V.; Stepanenko, V. One-dimensional luminescent nanoaggregates of perylene bisimides. Chem. Commun.2006,1188-1190.
    36. Beckers, E. H. A.; Meskers, S. C. J.; Schenning, A. P. H. J.; Chen, Z. J.; Wurthner, F.; Janssen, R. A. J. Charge separation and recombination in photoexcited oligo(p-phenylene vinylene):perylene bisimide arrays close to the marcus inverted region. J. Phys. Chem. A 2004,108,6933-6937.
    37. Bell, T. D. M.; Stefan, A.; Masuo, S.; Vosch, T.; Lor, M.; Cotlet, M.; Hofkens, J.; Bernhardt, S.; Mullen, K.; van der Auweraer, M.; Verhoeven, J. W.; De Schryver, F. C. Electron transfer at the single-nolecule level in a triphenylamine-perylene imide molecule. Chem. Phys. Chem.2005,6,942-948.
    38. Chen, Z. J.; Stepanenko, V.; Dehm, V.; Prins, P.; Siebbeles, L. D. A.; Seibt, J.; Marquetand, P.; Engel, V.; Wurthner, F. Photoluminescence and conductivity of self-assembled π-π stacks of perylene bisimide dyes. Chem. Eur. J.2007,13, 436-449.
    39. Rohr, U.; Kohl, C.; Mullen, K.; van de Craats, A.; Warman, J. Liquid crystalline coronene derivatives.J. Mater. Chem.2001,11,1789-1799.
    40. Chao, C. C.; Leung, M.; Su, Y. O.; Chiu, K. Y.; Lin, T. H.; Shieh, S. J.; Lin, S. C. Photophysical and electrochemical properties of 1,7-diaryl-substituted perylene diimides. J. Org. Chem.2005,70,4323-4331.
    41. Lukas, A. S.; Zhao, Y.-Y.; Miller, S.E.; Wasielewski, M. R. Biomimetic electron transfer using low energy excited states:a green perylene-based analogue of chlorophyll a. J. Phys. Chem. B 2002,106,1299-1306.
    42. Li, Y.-J.; Zheng, H.-Y.; Li, H.-L.; Wang, S.; Wu, Z.-Y.; Liu, P.; Gao, Z.-Q.; Liu, H.-B.; Zhu, D.-B. Photonic logic gates based on control of FRET by a solvatochromic perylene bisimide. J. Org. Chem.2007,72,2878-2885.
    43. Rybtchinski, B.; Sinks, L. E.; Wasielewski, M. R. Combining light-harvesting and charge separation in a self-assembled artificial photosynthetic system based on perylenediimide chromophores. J. Am. Chem. Soc.2004,126,12268-12269.
    44. Ego, C.; Marsitzky, D.; Becker, S.; Grimsdale, A. C.; Mullen, K.; Friend, R. H. Attaching perylene dyes to polyfluorene:three simple, efficient methods for facile color tuning of light-emitting polymers. J. Am. Chem. Soc.2003,125, 437-443.
    45. Li, T.; Curtis, M. D.; Francis, A. H. Simulation of transient photoconduction in organic p-n junction bilayer photodiodes. Chem. Mater.2004,16,2134-2141.
    46. Hippius, C.; Schlosser, F.; Vysotsky, M. O.; Wiithner, F. Energy transfer in calixarene-based cofacial-positioned perylene bisimide arrays. J. Am. Chem. Soc. 2006,128,3870-3871.
    47. Zhan, X.; Tan, Z.; Zhu, D. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J. Am. Chem. Soc.2007,129,7246-7247.
    48. Zhou, J.; Yuan, G.; Liu, J. Formation and stability of G-quadruplexes self-assembled from guanine-rich strands. Chem. Eur. J.2007,13,945-949.
    49. Wurthner, F. Angew. Chem. Int. Ed.2001,40,1037-1039.
    50. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Electroluminescent conjugated polymers-seeing polymers in a new light. Angew. Chem. Int. Ed.1998,37, 402-428.
    51. Ranke, P.; Bleyl, I.; Simmerer, J.; Haarer, D.; Bacher, A.; Schmidt, H. W. Electroluminescence and electron transport in a perylene dye. Appl. Phys. Lett. 1997,71,1332-1334.
    52. Yang, S. I.; Lammi, R. K.; Prathapan, S.; Miller, M. A.; Seth, J.; Diers, J. R.; Bocian, D. F.; Lindsey, J. S.; Holten, D. Synthesis and excited-state photodynamics of perylene-porphyrin dyads Part 3. Effects of perylene, linker, and connectivity on ultrafast energy transfer. J. Mater. Chem.2001,11, 2420-2430.
    53. Loewe, R. S.; Tomizaki, K.-Y.; Youngblood, W. J.; Bo, Z.; Lindsey, J. S. Synthesis of perylene-porphyrin building blocks and rod-like oligomers for light-harvesting applications. J. Mater. Chem.2002,12,3438-3451.
    54. Miller, M. A.; Lammi, R. K.; Sreedharan, P.; Holten, D.; Lindsey, J. S. A tightly coupled linear array of perylene, bis(Porphyrin), and phthalocyanine units that functions as a photoinduced energy-transfer cascade. J. Org. Chem.2000,65, 6634-6649.
    55. Prathapan, S.; Yang, S. I.; Seth, J.; Miller, M. A.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Synthesis and excited-state photodynamics of perylene-porphyrin dyads.1. Parallel energy and charge transfer via a diphenylethyne linker. J. Phys. Chem. B 2001,105,8237-8248.
    56. Yang, S. I.; Prathapan, S.; Miller, M. A.; Seth, J.; Bocian, D. F.; Lindsey, J. S.; Holten, D. Synthesis and excited-state photodynamics of perylene-porphyrin dyads.2. Effects of porphyrin metalation state on the energy-transfer, charge-transfer, and deactivation channels. J. Phys. Chem. B 2001,105, 8249-8258.
    57. Muthukumaran, K.; Loewe, R. S.; Kirmaier, C.; Hindin, E.; Schwartz, J. K.; Sazanovich, I. V.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Synthesis and excited-state photodynamics of a perylene-monoimide-oxochlorin dyad. A light-harvesting array. J. Phys. Chem. B 2003,107,3431-3442.
    58. Kirmaier, C.; Hindin, E.; Schwartz, J. K.; Sazanovich, I. V.; Diers, J. R.; Muthukumaran, K.; Taniguchi, M.; Bocian, D.F.; Lindsey, J. S.; Holten, D. Synthesis and excited-state photodynamics of perylene-bis(Imide)-oxochlorin dyads. A charge-separation motif. J. Phys. Chem. B 2003,107,3443-3454.
    59. Tomizaki, K. Y.; Loewe, R. S.; Kirmaier, C.; Schwartz, J. K.; Retsek, J. L.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Synthesis and photophysical properties of light-harvesting arrays comprised of a porphyrin bearing multiple perylene-monoimide accessory pigments. J. Org. Chem.2002,67,6519-6534.
    60. You, C.-C.; Wiirthner, F. Porphyrin-perylene bisimide dyads and triads:synthesis and optical and coordination properties. Org. Lett.2004,6,2401-2404.
    61. Ghirotti, M.; Chiorboli, C.; You, C.-C.; Wiirthner, F.; Scandola, F. Photoinduced energy and electron-transfer processes in porphyrin-perylene bisimide symmetric triads. J. Phys. Chem. A 2008,112,3376-3385.
    62. Prodi, A.; Chiorboli, C.; Scandola, F.; Iengo, E.; Alessio, E.; Dobrawa, R.; Wiirthner, F. Wavelength-dependent electron and energy transfer pathways in a side-to-face ruthenium porphyrin/perylene bisimide assembly. J. Am. Chem. Soc. 2005,127,1454-1462.
    63. Kelley, R. F.; Shin, W. S.; Rybtchinski, B.; Sinks, L. E.; Wasielewski, M. R. Photoinitiated charge transport in supramolecular assemblies of a 1,7,N,N'-tetrakis(zinc porphyrin)-perylene-3,4:9,10-bis(dicarboximide). J. Am. Chem. Soc.2007,129,3173-3181.
    64. van der Boom, T.; Hayes, R. T.; Zhao, Y.-Y.; Bushard, P. J.; Weiss, E. A.; Wasielewski, M. R. Charge transport in photofunctional nanoparticles self-assembled from zinc 5,10,15,20-tetrakis(perylenediimide)porphyrin building blocks. J. Am. Chem. Soc.2002,124,9582-9590.
    65. Ahrens, M. J.; Kelley, T. F.; Dance, Z. E. X.; Wasielewski, M. R. Photoinduced charge separation in self-assembled cofacial pentamers of zinc-5,10,15, 20-tetrakis (perylenediimide) porphyrin. Phys. Chem. Chem. Phys.2007,9, 1469-1478.
    66. Odom, S.A.; Kelley, R. F.; Ohira, S.; Ensley, T. R.; Huang, C.; Padilha, L. A. Webster, S.; Coropceanu, V.; Barlow, S.; Hagan, D. J.; Stryland, E. W. V.; Bredas, J.-L.; Anderson, H. L.; Wasielewski, M. R.; Marder, S. R. Photophysical properties of an alkyne-bridged bis(zinc porphyrin)-perylene bis(dicarboximide) derivative. J. Phys. Chem. A 2009,113,10826-10832.
    67. Mathew, S.; Johnston, M. R. The synthesis and characterisation of a free-base porphyrin-perylene dyad that exhibits electronic coupling in both the ground and excited states. Chem. Eur. J.2009,15,248-253.
    68. Xiao, S.-Q.; El-Khouly, M. E.; Li, Y.-L.; Gan, Z.-H.; Liu, H.-B.; Jiang, L.; Araki, Y.; Ito, O.; Zhu, D.-B. Dyads and triads containing perylenetetracarboxylic diimide and porphyrin:efficient photoinduced electron transfer elicited via both excited singlet states. J. Phys. Chem. B 2005,109,3658-3667.
    69. Liu, M. O.; Tai, C.-H.; Chen, C.-H.; Chang, W.-C.; Hu, A.-T. The fluorescent and photoelectric conversion properties of porphyrin-perylene tetracarboxylic complex. J. Photochem. Photobiol. A:Chem.2004,163,259-266.
    70. de la Escosura, A.; Martinez-Diaz, M. V.; Thordarson, P.; Rowan, A. E.; Nolte, R. J. M.; Torres, T. Donor-acceptor phthalocyanine nanoaggregates. J. Am. Chem. Soc.2003,125,12300-12308.
    71. Kahnt, A.; Guldi, D. M.; de la Escosura, A.; Martinez-Diaz, M. V.; Torres, T. [2.2]Paracyclophane:a pseudoconjugated spacer for long-lived electron transfer in phthalocyanine-C60 dyads. J. Mater. Chem,2008,18,77-82.
    72. O'neil, M. P.; Niemczyk, M. P.; Svee, W. A.; Gosztola, D.; Gaineslll, G. L. Wasielewski, M. R. Picosecond optical switching based on biphotonic excitation of an electron donor-acceptor-donor molecule. Science,1992,257, 63-65.
    73. Debreczeny, M. P.; Svec, W. A.; Wasielewski, M. R. Optical control of photogenerated ion pair lifetimes:an approach to a molecular switch. Science, 1996,274,584-587.
    74. Sakata, Y.; Imahori, H.; Tsue, H.; Higashida, S.; Akayama, T.; Yoshizawa, E.; Aoki, M.; Yamada, K.; Hagiwara, K.; Taniguchi, S.; Okada, T. Control of electron transfer and its utilization. Pure. Appl. Chem.1997,69,1951-1956.
    75. Gosztola, D.; Wang, B.; Wasielewski, M. R. Factoring through-space and through-bond contributions to rates of photoinduced electron transfer in donor-spacer-acceptor molecules. J. Photochem. Photobiol. A:Chem.1996,102, 71-80.
    76. Rochford, J.; Chu, D.; Hagfeldt, A.; Galoppini, E. Tetrachelate porphyrin chromophores for metal oxide semiconductor sensitization:effect of the spacer length and anchoring group position. J. Am. Chem. Soc.2007,129,4655-4665.
    77. Albinsson, B.; Martensson, J. Long-range electron and excitation energy transfer in donor-bridge-acceptor systems. J. Photochem. Photobiol. C:Photochem. Rev. 2008,9,138-155.
    78. Paddon-Row, M. N. in Stimulating Concepts in Chemistry, ed. Vogtle, F.; Stoddart, J. F.; Shibasaki, M. Wiley-VCH, Weinheim,2000, pp.267-292.
    79. Treadway, C. R.; Hill, M. G.; Barton, J. K. Charge transport through a molecular π-stack:double helical DNA. Chem. Phys.2002,281,409-428.
    80. Hong, J.W.; Woo, H. Y.; Liu, B.; Bazan, G. C. Solvatochromism of distyrylbenzene pairs bound together by [2.2]paracyclophane:evidence for a polarizable "through-space" delocalized state. J. Am. Chem. Soc.2005,127, 7435-7443.
    81. Rozenberg, V.; Sergeeva, E.; Hopf, H. Cyclophanes as templates in stereoselective synthesis. In Modern cyclophane chemistry; Gleiter, R.; Hopf, H., Eds.; Wiley-VCH:Weinheim, Germany,2004; p 435.
    82. Gibson, S. E.; Knight, J. D. [2.2]Paracyclophane derivatives in asymmetric catalysis. Org. Biomol. Chem.2003,1,1256-1269.
    83. Aly, A. A.; Brown, A. B. Asymmetric and fused heterocycles based on [2.2]paracyclophane. Tetrahedron 2009,65,8055-8089.
    84. Zyss, J.; Ledoux, I.; Volkov, S.; Chernyak, V.; Mukamel, S.; Bartholomew, G. P.; Bazan, G. C. Through-space charge transfer and nonlinear optical properties of substituted paracyclophane. J. Am. Chem. Soc.2000,122,11956-11962.
    85. Moran, A. M.; Bartholomew, G. P.; Bazan, G. C.; Kelley, A. M. Effects of a paracyclophane linker on the charge-transfer transition of 4-(dimethylamino)-4'-nitrostilbene. J. Phys. Chem. A 2002,106,4928-4937.
    86. Oldham, W. J.; Miao, Y.-J.; Lachicotte, R. J.; Bazan, G. C. Stilbenoid dimers: effect of conjugation length and relative chromophore orientation. J. Am. Chem. Soc.1998,120,419-420.
    87. Bazan, G. C.; Oldham, W. J.; Lachicotte, R. J.; Tretiak, S.; Chernyak, V.; Mukamel, S. Stilbenoid dimers:dissection of a paracyclophane chromophore. J. Am. Chem. Soc.1998,120,9188-9204.
    88. Bartholomew, G. P.; Bazan, G. C. Bichromophoric paracyclophanes:models for interchromophore delocalization. Acc. Chem. Res.2001,34,30-39.
    89. Wang, S.; Bazan, G. C.; Tretiak, S.; Mukamel, S. Oligophenylenevinylene phane dimers:probing the effect of contact site on the optical properties of bichromophoric pairs. J. Am. Chem. Soc.2000,122,1289-1297.
    90. Bartholomew, G. P.; Bazan, G. C. Synthesis, characterization, and spectroscopy of 4,7,12,15-[2.2]paracyclophane containing donor and acceptor groups:impact of substitution patterns on through-space charge transfer. J. Am. Chem. Soc.2002, 124,5183-5196.
    91. Bartholomew, G. P.; Rumi, M.; Pond, S. J. K.; Perry, J. W.; Tretiak, S.; Bazan, G. C. Two-photon absorption in three-dimensional chromophores based on [2.2]-paracyclophane. J. Am. Chem. Soc.2004,126,11529-11542.
    92. Hong, J. W.; Woo, H. Y.; Liu, B.; Bazan, G. C. Solvatochromism of distyrylbenzene pairs bound together by [2.2]paracyclophane:evidence for a polarizable "through-space" delocalized state. J. Am. Chem. Soc.2005,127, 7435-7443.
    93. Morisaki, Y.; Ishida, T.; Chujo, Y. Synthesis and properties of novel through-space π-conjugated polymers based on poly(p-phenylenevinylene)s having a [2.2]paracyclophane skeleton in the main chain. Macromolecules 2002,35, 7872-7877.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700