跟骨关节内骨折微创治疗的基础和临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分跟骨关节内骨折微创治疗的尸体解剖及影像学研究
     目的通过尸体解剖及影像学研究,明确足外侧、跗骨窦及跟骨的解剖学特点,为跟骨关节内骨折的微创治疗提供解剖学依据。
     方法取8具尸体标本,定义X点是外踝尖,以X点为中心确定3条参考线,分别为外踝尖至跟腱后缘的连线(XA线)、外踝尖至足底的垂线(XB线)、外踝尖至第五跖骨基底部的连线(XC线)。解剖后探及腓骨肌腱、腓肠神经、跟外侧血管,标记3条参考线与上述结构的交点,测量交点与外踝尖的距离。观察各血管之间的吻合情况。然后对标本进一步解剖,观察跗骨窦的解剖学特征。另取15名Sanders II型跟骨关节内骨折患者,拍摄双侧跟骨侧、轴位片,测量摄片中跟骨的高度、宽度、长度、跟骨结节关节角(B hler角)、跟骨交叉角(Gissane角)、后关节面倾斜角,并对测得参数作统计学分析。
     结果腓骨短肌腱与XA、XB、XC线相交,交点至X点的距离分别为:2.90±1.16mm、6.09±1.63mm、47.42±12.64mm、腓骨长肌腱与XA、XB线相交,位于XC下方,交点至X点的距离分别为7.07±2.15mm和10.40±3.04mm;腓肠神经与XA、XB和XC线相交,交点至X点的距离分别为:17.22±6.48mm,17.40±3.77mm和44.48±8.81mm;跟外侧血管与XA、XB与XC线相交,交点至X点的距离分别为19.14±6.51mm、24.75±5.95mm和33.99±7.27mm。跟骨外侧主要血管及其分支血管之间存在相互吻合,血管网丰富。跗骨窦由前外侧向后内侧斜向走形,前方为距下关节的前、中关节面,后方为后关节面。其内有足背动脉发出的跗骨窦动脉及静脉伴行。腓肠神经发出分支分布于跗骨窦。15例双侧跟骨侧轴位片中测得的跟骨高度平均分别为47.34±6.91mm和38.33±7.43mm(t=9.47,P<0.0001)、宽度为32.62±4.52mm和41.72±4.69mm(t=8.07,P<0.0001)、长度为73.67±9.18mm和72.34±9.92mm(t=1.83,P=0.1893)、 B hler角为33.53°±4.87°和8.87°±7.57°(t=22.46,P<0.0001)、Gissane角为122.87°±14.65°和112.87°±17.45°(t=1.77,P=0.1976)、后关节面倾斜角为64.33°±8.25°和32.60°±17.46°(t=10.43,P<0.0001)。
     结论足外侧皮瓣内存在广泛的血管网,跗骨窦外侧区域软组织也存在多条血管吻合,跗骨窦切口对血供破坏影响小,是安全的手术入路。跟骨侧轴位摄片仍是临床评估跟骨骨折的主要影像学方法;跟骨关节内骨折的基本解剖特征为其高度、宽度的丢失,为临床治疗提供了解剖学基础。
     第二部分跟骨关节内骨折微创治疗的生物力学对照研究及三维有限元分析
     目的通过生物力学对照研究,明确关节面下排钉结合纵向螺钉内固定治疗跟骨关节内骨折的生物力学稳定性。
     方法取15例成人跟骨尸体标本,制备Sanders II型跟骨关节内骨折模型后,随机分成3组。其中传统固定组(A组)采用3.5mm传统跟骨锁定钢板固定、微创螺钉固定组(B组)采用4枚4.0/6.5mm空心螺钉固定,微创钢板结合螺钉固定组(C组)采用3.5mm微型解剖型跟骨锁定钢板结合两枚4.0/6.5mm纵向螺钉固定。分别进行循环负载测试及固定失效负载测试,记录两项实验的最大位移值及固定失效时负载值,并对结果进行统计学分析。建立跟骨骨折的三维有限元模型,并对两种微创固定方式进行三维有限元分析。
     结果循环负载测试时,三组固定方式所测出的骨块最大移位值分别是A组为3.60±0.14mm、B组5.63±0.37mm和C组3.55±0.18mm,其中A组和C组间差异无统计学意义(P>0.05),而均与B组有明显差异(P<0.05)。固定失效时的负载三组分别是:A组为1876.00±162.66N、B组为1140.20±84.85N和C组1811.80±141.09N,其中,A组与C组之间无明显统计学差异(P>0.05),但都与B组有明显统计学差异(P<0.05),最大移位值平均为A组8.17±0.78mm、B组8.31±0.97mm和C组8.23±0.66mm,其差异无统计学意义(P>0.05)。建立跟骨关节内骨折三维有限元模型后,在800N的垂直应力下,螺钉固定的骨块最大移位值平均为5.10±0.60mm(4.13mm-6.00mm),微创钢板固定组骨块的最大移位值平均为4.25±0.45mm(3.75mm-5.12mm)。其差异有统计学意义(t=3.19,P=0.0065<0.05)。
     结论采用微型钢板关节面下排钉结合纵向螺钉的固定效果及生物力学稳定性与传统锁定钢板相比无明显差异,但较之传统螺钉微创固定效果更佳,是稳定、坚强的固定方式。
     第三部分跗骨窦切口微创锁定板内固定治疗跟骨关节内骨折
     目的总结和评价采用跗骨窦切口切开复位锁定板内固定微创治疗跟骨关节内骨折的技术及临床效果。
     方法自2011年2月至2012年2月共微创治疗16例跟骨关节内骨折患者,术前常规摄片、CT扫描确定骨折类型和关节面受累情况。于伤后平均4d(3~6d)行经跗骨窦有限切口切开复位结合锁定板及经皮螺钉固定。术后患者定期复查X线片,测量B hler角和Gissane角,并采用直观模拟量表(VAS)、美国骨科足踝外科协会(AOFAS)踝与后足评分系统及简明健康状况调查表(SF-36)综合评估最终治疗效果,同时记录相关并发症情况。
     结果13例患者最终获得至少1年的术后随访,平均为18个月(12~24个月)。所有患者术后均无切口感染、边缘和皮瓣坏死及内固定失败等并发症发生。X线摄片确定平均术后10周骨折端愈合(8~12周), B hler角从术前平均13.4°±3.4°(8°~19°)改善至术后平均26.5°±4.5°(21°~38°),差异有统计学意义(t=9.781,P<0.001),Gissane角从术前平均88.1°±7.6°(77°~100°)改善至术后平均116.2°±7.5°(100°~124°),差异有统计学意义(t=12.934,P<0.001)。术后末次随访平均VAS评分为(1.5±1.7)分(0~6分),平均AOFAS踝与后足评分为(84.2±5.9)分(74~95分),平均SF-36评分为(79.5±8.1)分(64~95分)。随访期间未见创伤性关节炎发生。
     结论采用跗骨窦有限切口切开复位锁定板微创内固定治疗相对简单的跟骨关节内骨折,在获得关节面直接复位及稳定固定的同时,还可避免和减少软组织并发症,是一种安全可靠的治疗技术。
     第四部分微创与传统术式治疗Sanders II型跟骨关节内骨折的疗效分析
     目的比较和评估经跗骨窦切口与传统外侧扩大切口切开复位内固定两种方法治疗Sanders II型跟骨关节内骨折的疗效。
     方法自2011年2月至2012年2月,经筛选共30名患者纳入研究,入选患者随机分为微创组及切开组。待软组织肿胀消退后,微创组采用经跗骨窦间隙入路的有限切开复位内固定,而切开组则采用经传统的“L”形外侧扩大切口行切开复位内固定。记录两组手术时间、引流量。术后常规定期随访,拍摄X线片明确骨折愈合情况,测量B hler角和Gissane角,记录相关并发症。末次随访时采用直观模拟量表(VAS)、美国骨科足踝外科协会(American Orthopedic Foot and Ankle Society, AOFAS)踝与后足评分系统及简明健康状况调查表(SF-36)综合评估最终治疗效果。
     结果两组手术等待时间及手术时间的差异无统计学意义。微创组术后引流量要明显少于切开组(t=9.792,P<0.001)。切开组中有2例早期并发症,表现为皮肤切缘表皮坏死,而微创组未发现类似早期并发症。影像学检查证实两组病例在术后3月时骨折均已愈合,所有患者均未见内固定断裂、松动和脱出。两组术后B hler角及Gissane角改善度数无明显差异。末次随访时,两组患者的平均AOFAS、VAS评分无统计学差异,但SF-36评分微创组要优于切开组(t=2.049,P=0.047)。微创组中4例患者出现不同程度距下关节僵硬,而切开组15例患者均出现不同程度距下关节僵硬,其中6例严重影响距下关节活动。另有1例于术后10个月出现距下创伤性关节炎伴持续性疼痛,经口服非甾体类消炎止痛药物后症状缓解。
     结论对于Sanders II型跟骨关节内骨折,两种方法获得的近期疗效无明显差异。但采用有限切开复位内固定术后软组织并发症率低,距下关节功能恢复良好,是一种安全可靠的治疗方式。
Part I The anatomic and radiographic study in the minimal invasive
     treatment of intra-articular fractures of the calcaneusObjective To carry out anatomic and radiographic study on the detailed skeletal andsoft tissue characters of the lateral hind-foot, the sinus tarsi and the calcaneus in order toprovide the functional morphology for the minimal invasive treatment of intra-articularfractures of the calcaneus.
     Methods8cadaveric lower leg specimens were used in present study.Based on theanatomic landmark of the tip of lateral malleolus (X), three reference lines were drawn inthe hind-foot.XA was the horizon line measured from the tip of the lateral malleolus to theposterior border of the achilles tendon, XB was a vertical1ine measured from the tip of thelateral malleolus to the plantar floor of the foot, XC was obtained from the tip of the lateralmalleolus to the base of the fifth metatarsal. The peroneal tendons, the sural nerve andlateral calcaneal vessels were identified. The distance was recorded from the intersectionpoint of the soft tissues and the reference lines to the tip of lateral malleolus.The vascularanastomosis was also observed between the various vessels.Then the sinus tarsi wascarefully dissected to explore the anatomical characters.15cases of unilateral Sanders typeII calcaneal fractures were enrolled in this study, bilateral axial and lateral view of thecalcaneus were taken, different angles included the B hler, Gissane, and inclination angelof posterior articular surface were measured, at the same time the height, width and lengthwere also calculated and recorded. The differences in values of the angles and distancesbetween the injured and uninjured (control) foot were compared accordingly for statisticalanalysis.
     Results The peroneal brevis tendon was intersected with line XA, XB and XC, the distance between the intersection point and point X was2.90±1.16mm,6.09±1.63mmand47.42±12.64mm respectively. The peroneal longus tendon was also intersectedwith line XA and XB, but located below the line XC, the distance from the intersection tothe point X were7.07±2.15mm and10.40±3.04mm. The sural nerve was intersectedwith line XA, XB and XC, the distance to the intersection point X was17.22±6.48mm,17.40±3.77mm and44.48±8.81mm. Rich vascular network and vessel anastomosis existbetween the major lateral calcaneal vessels and their branch. Sinus tarsi takes the shapeoblique from anterolateral to posterior medial, the anterior and middle facet of the subtalarjoint were located in front of the sinus tarsi, and the posterior facet was in the rear. Onthe top there were sinus tarsal artery and vein came from dorsalis pedis vessels, andbranches from the sural nerve also located in the sinus tarsi.15cases of bilateral calcaneallateral and axial views were measured accordingly, the mean calcaneal height was47.34±6.91mm and38.33±7.43mm (t=9.47, P <0.0001), the mean width was32.62±4.52mmand41.72±4.69mm (t=8.07, P <0.0001), and the length was73.67±9.18mm and72.34±9.92mm (t=1.83, P=0.1893), the mean B hler angle was33.53°±4.87°and8.87°±7.57°(t=22.46, P <0.0001), the Gissane angle was122.87°±14.65°and112.87°±17.45°(t=1.77, P=0.1976), the inclination angle of the posterior articular surface was64.33°±8.25°and32.60°±17.46°(t=10.43, P <0.0001).
     Conclusion There were abundant vascular network in the lateral calcaneal flap, andthere were also a number of vascular anastomosis in the sinus tarsal area, but the sinustarsal incision used in minimal invasive treatment of calcaneal fractures has little damageand effect on the blood supply, which is a safe surgical approach. Lateral and axial viewsof the calcaneus is still the major clinical imaging methods to evaluate the calcanealfractures, the basic anatomical features of intra-articular calcaneal fracture were the loss ofthe height and the width, which provide the anatomical basis for the treatment ofintra-articular calcaneal fractures.
     Part II Biomechanical and three dimensional finite element study ofminimal invasive treatment of intra-articular fracture of the calcaneus
     Objective To identify the biomechanical stability of the rafting technique combined withlongitudinal screw fixation in the treatment of intra-articular calcaneal fractures bybiomechanical comparative study.
     Methods15cadaveric lower leg specimens were prepared to establish the Sanders typeII models and randomly divided into three groups. While the spicemens in the traditionalgroup (group A) were fixed with the3.5mm traditional calcaneal locking plate, theminimal invasive screw fixation group (group B) was fixed with four4.0/6.5mm screws,and the combined group (group C) was used3.5mm mini-plate combined with4.0/6.5mmlongitudinal screws. Cyclic loading tests and the failure load test were carried out, themaximum displacement values and fixation failure load values of two experiments wererecorded, then the results were analyzed statistically. Three dimensional finite elementmodel of calcaneal fractures were also established, and the two minimal invasive fixationgroups were analysised with the three-dimensional finite element method.
     Results When cyclic loading tests were carried out, the measured values of themaximum displacement of the three groups were differed as3.60±0.14mm in the group A,5.63±0.37mm in group B and3.55±0.18mm in group C. There was no significantdifference between group A and group C (P>0.05), while both of the two groups have thesignificant differences with group B (P<0.05). The fixation failure load values varied in thethree groups as1876.00±162.66N in group A,1140.20±84.85N in group B and1811.80±141.09N in group C, there was also no significant statistical difference between group Aand C (P>0.05). However, there are significant difference between these two groups andgroup B (P<0.05). The mean displacement value of the three groups were8.17±0.78mmin group A,8.31±0.97mm in group B and8.23±0.66mm in group C, there was was nostatistically significant difference (P>0.05). According to the three dimensional finiteelement model of Sanders type II calcaneal fracture, the average maximum shift value under the800N vertical stress test in the screw fixation group was5.10±0.60mm(4.13mm-6.00mm), while the average maximum shift value in the mini-plate group was4.25±0.45mm (3.75mm-5.12mm), the difference has statistically significance (t=3.19, P=0.0065<0.05).
     Conclusion The biomechanical stability of rafting plate technique under articularsurface combined with longitudinal screws was stronger than traditional screws fixation,and there was no statistically significant difference with traditional locking plate, which isproved to be a safe, biomechanical stable method for the treatment of intra-articularcalcaneal fractures.
     Part III Locking plate internal fixation for minimally invasive treatmentof intra-articular calcaneal fractures
     Objective To summarize and evaluate the surgical technique and clinical outcome oflimited tarsal sinus incision with locking plate internal fixation for minimally invasivetreatment of intra-articular calcaneal fractures.Methods Between February2011and February2012,16cases of intra-articularcalcaneal fractures were treated minimally invasive in our department. All cases wereevaluated carefully with routine X-rays and CT scans pre-operatively to define the type offracture and the involvement of articular surface. Open reduction with locking plateinternal fixation and percutaneous screw fixation was performed via a limited tarsal sinusapproach at the average4th day (3-6days)after injury. X-rays were taken in the regularfollow-up, B hler’s and Gissane angle were recorded. Overall functional evaluation wascarried out according to Visual Analogue Scale (VAS), the Hind-foot score of AmericanOrthopedic Foot and Ankle Society (AOFAS) and SF-36, complications were also beenrecorded.
     Results13cases got at least1year follow-up, with a mean duration of18months (12to 24months). There were no complications of wound infection, skin and flap necrosis orimplant failure. X-ray demonstrated the bone union at an average10week (8-12weeks)post-operatively. The average B hler’s angle was improved from13.4±3.4°(8-19°)pre-operatively to26.5±4.5(21-38°) post-operatively, which had a significant difference(t=9.781,P<0.001)and the average Gissane angle was improved from88.1±7.6°(77-100°)pre-operatively to116.2±7.5°(100-124°)post-operatively, which had asignificant difference(t=12.934,P<0.001). The average VAS score was1.5±1.7(0-6), themean post-operative AOFAS Hind-foot score was84.2±5.9(74-95) and average SF-36score was79.5±8.1(64-95) at the final follow-up. There was no post-traumatic arthritisoccurred during the follow-up.
     Conclusion A minimally invasive open reduction with locking plate and percutaneousscrew fixation via a limited tarsal sinus incision for treatment of intra-articular calcanealfractures has the advantages of direct reduction of articular surface and solid fixation,while avoiding the soft tissue complications, which is proved to be a safe and reliabletechnique.
     Part IV The clinical evaluation of minimal invasive and traditionalsurgical technique for the treatment of Sanders type II calcanealfractures
     Objective To compare and evaluate the clinical outcomes of minimal invasive andtraditional surgical methods for the treatment of Sanders type II calcaneal fractures.
     Methods Between February2011and February2012, totally30patients were enrolledinto our study and were divided into traditional and minimal invasive group randomized.When soft tissue swelling subsided, the patients of minimal invasive group were performeda limited ORIF via a sinus tarsi incision, while the patients of traditional group were performed ORIF via a classical lateral extensile L-shape approach. Operation time anddrainage were recorded. X-rays were taken in the regular follow-up, B hler’s and Gissaneangle were measured. Overall functional evaluation was carried out according to VisualAnalogue Scale (VAS), the ankle and hind-foot score of American Orthopedic Foot andAnkle Society (AOFAS) and SF-36at the last follow-up, complications were also beenrecorded.
     Results There was no significant difference in delayed time and operation time. Thedrainage was less in minimal invasive group (t=9.792,P<0.001). There were2cases ofsuperficial skin necrosis in traditional group, while there were no such early complicationsin minimal invasive group. X-ray demonstrated bone union in3months post-operatively inboth groups and no implant failure occurred. The increased B hler’s and Gissane’s anglehad no statistical difference between two groups, and there was no significant difference inAOFAS score and VAS score, either. But SF-36score in minimal invasive group washigher than that in traditional group (t=2.049,P=0.047). Four cases of minimal invasivegroup suffered from varying degrees of subtalar joint stiffness in minimal invasive group,while all cases in traditional group had a subtalar joint stiffness,6of which had an obviousmovement limitation. There was another case of traditional group suffered from apost-traumatic arthritis with persistent pain on the10thmonth post-operatively, which wasrelieved by oral administration of NSAIDs.
     Conclusion There was no significant difference between the two groups in treatingSanders type II calcaneal fractures. Minimal invasive technique has the advantages oflower soft tissue complication rate and better function of subtalar joint, which is proved tobe a safe and reliable treatment for Sanders type II calcaneal fractures.
引文
1. Maskill JD, Bohay DR, Anderson JG. Calcaneus fractures: a review article. Foot AnkleClin,2005,10:463-89, vi.
    2. McBride DJ, Rammamurthy C, Laing P. The hindfoot: calcaneal and talar fractures anddislocations-Part I: Fractures of the calcaneus. Current Orthopedics,2005,19:94-100.
    3. Buckley R, Tough S, McCormack R, et al. Operative compared with nonoperativetreatment of displaced intra-articular calcaneal fractures: a prospective, randomized,controlled multicenter trial. J Bone Joint Surg Am,2002,84-A:1733-1744.
    4. Folk JW, Starr AJ, Early JS. Early wound complications of operative treatment ofcalcaneus fractures: analysis of190fractures. J Orthop Trauma,1999,13:369-372.
    5. Mostafa MF, El-Adl G, Hassanin EY, et al. Surgical treatment of displacedintra-articular calcaneal fracture using a single small lateral approach. StrategiesTrauma Limb Reconstr,2010,5:87-95.
    6. DeWall M, Henderson CE, McKinley TO, et al. Percutaneous reduction and fixation ofdisplaced intra-articular calcaneus fractures. J Orthop Trauma,2010,24:466-472.
    7. Rammelt S, Amlang M, Barthel S, et al. Percutaneous treatment of less severeintraarticular calcaneal fractures. Clin Orthop Relat Res,2010,468:983-490.
    8. Woon CY, Chong KW, Yeo W, et al. Subtalar arthroscopy and flurosocopy inpercutaneous fixation of intra-articular calcaneal fractures: the best of both worlds. JTrauma,2011,71:917-925.
    9. Tomesen T, Biert J, Fr lke JP. Treatment of displaced intra-articular calcaneal fractureswith closed reduction and percutaneous screw fixation. J Bone Joint Surg Am,2011,93:920-928.
    10. Kissel CG, Husain ZS, Cottom JM, Scott RT, Vest J. Early clinical and radiographicoutcomes after treatment of displaced intra-articular calcaneal fractures usingdelta-frame external fixator construct. J Foot Ankle Surg.2011;50(2):135-140.
    11. Essex-Lopresti P. The mechanism, reduction technique, and results in fractures of theos calcis. Br J Surg,1952,39:395-419.
    12.Schepers T. The sinus tarsi approach in displaced intra-articular calcaneal fractures: asystematic review. Int Orthop,2011,35:697-703.
    13. Walde J, Sauer B, Degreif J, et al. Closed reduction and percutaneus Kirschner wirefixation for the treatment of dislocated calcaneal fractures: surgical technique,complications, clinical and radiological results after2–10years. Arch Orthop TraumaSurg,2008,128:585–591.
    14. Pezzoni M, Salvi AE, Tassi M, et al. A minimally invasive reduction and synthesismethod for calcaneal fractures: the “Brixian Bridge” technique. J Foot Ankle Surg,2009,48:85-88.
    15. Femino JE, Vaseenon T, Levin DA, et al. Modification of the sinus tarsi approach foropen reduction and plate fixation of intra-articular calcaneus fractures: the limits ofproximal extension based upon the vascular anatomy of the lateral calcaneal artery.Iowa Orthop J,2010,30:161-167.
    16. Meeker J, Sangeorzan B. Minimally invasive screw fixation technique of calcanealfractures. Tech Orthop,2012,27:94-101.
    17. Illert T, Rammelt S, Drewes T, et al. Stability of locking and non-locking plates in anosteoporotic calcaneal fracture model. Foot Ankle Int,2011,32:307-313.
    18. Stoffel K, Booth G, Rohrl SM, et al. A comparison of conventional versus lockingplates in intraarticular calcaneus fractures: a biomechanical study in human cadavers.Clin Biomech (Bristol, Avon),2007,22:100-105.
    1. Maskill JD, Bohay DR, Anderson JG. Calcaneus fractures: a review article. Foot AnkleClin,2005,10:463-89, vi.
    2. McBride DJ, Rammamurthy C, Laing P. The hindfoot: calcaneal and talar fractures anddislocations-Part I: Fractures of the calcaneum. Cur Orthop,2005,19:94-100.
    3. Buckley R, Tough S, McCormack R, et al. Operative compared with nonoperativetreatment of displaced intra-articular calcaneal fractures: a prospective, randomized,controlled multicenter trial. J Bone Joint Surg Am,2002,84:1733-1744.
    4. Folk JW, Starr AJ, Early JS. Early wound complications of operative treatment ofcalcaneus fractures: analysis of190fractures. J Orthop Trauma,1999,13:369-372.
    5. Ishikawa K,Isshiki N,Hoshino K,et a1.Distally based lateral calcaneal flap.Ann PlastSurg,1990,24:10-6.
    6. Borrelli J Jr,Lashgari C.Vascularity of the lateral calcaneal flap:a cadaveric inject-ionstudy.J Orthop Trauma,1999,13:73-77.
    7. Ishikawa K,Kyutoku S,Takeuchi E.Free lateral calcaneal flap.Ann Plast Surg,1993,30:167-170.
    8. Brodén B. Roentgen examination of the subtaloid joint in fractures of the calcaneus.Acta Radiol,1949,31:85-91.
    9. Isherwood I. A Radiological Approach To The Subtalar Joint. J Bone Joint Surg,1961,43-B:566-574.
    10.Anthonsen W. An oblique projection for roentgen examination of the talo-calcaneanjoint, particularly regarding intra-articular fracture of the calcaneus. Acta Radiol,1943,24:606-310.
    11. Guyer BH, Levinsohn EM, Fredrickson BE, et al. Computed tomography of calcanealfractures: anatomy, pathology, dosimetry, and clinical relevance. AJR Am J Roentgenol,1985,145:911-919.
    12. Crosby LA, Fitzgibbons T. Computerized tomography scanning of acute intra-articularfractures of the calcaneus. A new classification system. J Bone Joint Surg Am,1990,72:852-859.
    1. Schepers T. The sinus tarsi approach in displaced intra-articular calcaneal fractures: asystematic review. Int Orthop,2011,35:697-703.
    2.张国柱,蒋协远,王满宜,等.外置解剖型跟骨锁定钢板治疗跟骨骨折的初步报告.中华创伤骨科杂志,2010,12:741-745.
    3. Goldzak M, Mittlmeier T, Simon P. Locked nailing for the treatment of displacedarticular fractures of the calcaneus: description of a new procedure with calcanail().Eur J Orthop Surg Traumatol,2012,22:345-349.
    4. Schon LC, Wisbeck JM. Minimally Invasive Plate Fixation of Calcaneus Fractures.Tech Orthop,2012,27:118–125.
    5. Schepers T, Patka P. Treatment of displaced intra-articular calcaneal fractures byligamentotaxis: current concepts' review. Arch Orthop Trauma Surg,2009,129:1677-1683.
    6. Besch L, Waldschmidt JS, Daniels-Wredenhagen M, et al. The treatment ofintra-articular calcaneus fractures with severe soft tissue damage with a hinged externalfixator or internal stabilization: long-term results. J Foot Ankle Surg,2010,49:8-15.
    7. Kissel CG, Husain ZS, Cottom JM, et al. Early clinical and radiographic outcomes aftertreatment of displaced intra-articular calcaneal fractures using delta-frame externalfixator construct. J Foot Ankle Surg,2011,50:135-140.
    8. Meeker J, Sangeorzan B. Minimally invasive screw fixation technique of calcanealfractures. Tech Orthop,2012,27:94-101.
    9. Woon CY, Chong KW, Yeo W, et al. Subtalar arthroscopy and flurosocopy inpercutaneous fixation of intra-articular calcaneal fractures: the best of both worlds. JTrauma,2011,71:917-925.
    10. Illert T, Rammelt S, Drewes T, et al. Stability of locking and non-locking plates in anosteoporotic calcaneal fracture model. Foot Ankle Int,2011,32:307-313.
    11. Stoffel K, Booth G, Rohrl SM, et al. A comparison of conventional versus lockingplates in intraarticular calcaneus fractures: a biomechanical study in human cadavers.Clin Biomech (Bristol, Avon),2007,22:100-105.
    12. Wang CL, Chang GL, Tseng WC, et al. Strength of internalfixation for calcaneal fractures. Clin Biomech (Bristol, Avon),1998,13:230-233.
    13. Smerek JP, Kadakia A, Belkoff SM, et al. Percutaneous screw configuration versusperimeter plating of calcaneus fractures: a cadaver study. Foot Ankle Int,2008,29:931-935.
    14. Nelson JD, McIff TE, et al. Biomechanical stability of intramedullary techniquefor fixation of joint depressed calcaneusfracture. Foot Ankle Int,2010,31:229-235.
    15. Jay Elliot B, Goswami T. Finite element analysis of stress and wear characterization intotal ankle replacements. J Mech Behav Biomed Mater,2014,34C:134-145.
    16. Srinivas GR, Deb A, Kumar MN. A Study on Polyethylene Stresses in Mobile-Bearingand Fixed-Bearing Total Knee Arthroplasty (TKA) using Explicit Finite ElementAnalysis. J Long Term Eff Med Implants,2013,23:275-283.
    1. Rammelt S, Amlang M, Barthel S, et al. Minimally-invasive treatment of calcanealfractures. Injury,2004,35Suppl2: SB55-63.
    2.蒋协远,王大伟.骨科临床疗效评价标准.北京:人民卫生出版社,2005:123-124,231-232,280-284.
    3. Maskill JD, Bohay DR, Anderson JG. Calcaneus fractures: a review article. Foot AnkleClin,2005,10:463-89, vi.
    4. McBride DJ, Rammamurthy C, Laing P. The hindfoot: calcaneal and talar fractures anddislocations-Part I: Fractures of the calcaneum. Cur Orthop,2005,19:94-100.
    5. Buckley R, Tough S, McCormack R, et al. Operative compared with nonoperativetreatment of displaced intra-articular calcaneal fractures: a prospective, randomized,controlled multicenter trial. J Bone Joint Surg Am,2002,84:1733-1744.
    6. Folk JW, Starr AJ, Early JS. Early wound complications of operative treatment ofcalcaneus fractures: analysis of190fractures. J Orthop Trauma,1999,13:369-372.
    7. Schepers T. The sinus tarsi approach in displaced intra-articular calcaneal fractures: asystematic review. Int Orthop,2011,35:697-703.
    8. DeWall M, Henderson CE, McKinley TO, et al. Percutaneous reduction and fixationof displaced intra-articular calcaneus fractures. J Orthop Trauma,2010,24:466-472.
    9. Rammelt S, Amlang M, Barthel S, et al. Percutaneous treatment of less severeintraarticular calcaneal fractures. Clin Orthop Relat Res,2010(468):983-490.
    10. Pezzoni M, Salvi AE, Tassi M, Bruneo S. A minimally invasive reduction andsynthesis method for calcaneal fractures: the “Brixian Bridge” technique. J Foot AnkleSurg,2009,48:85-88.
    11. Kissel CG, Husain ZS, Cottom JM, et al. Early clinical and radiographic outcomesafter treatment of displaced intra-articular calcaneal fractures using delta-frameexternal fixator construct. J Foot Ankle Surg,2011,50:135-140.
    12. Stulik J, Stehlik J, Rysavy M, et al. Minimally-invasive treatment of intra-articularfractures of the calcaneum. J Bone Joint Surg Br,2006,88:1634-1641.
    13. Khorbi A, Chebil M, Ben Maitigue M, et al. Screw fixation without bone graft ofcalcaneal joint fractures:35cases. Rev Chir Orthop Reparatrice Appar Mot,2006,92:45-51.
    14. Woon CY, Chong KW, Yeo W, et al. Subtalar arthroscopy and flurosocopy inpercutaneous fixation of intra-articular calcaneal fractures: the best of both worlds. JTrauma,2011,71:917-925.
    15. Park IH, Song KW, Shin SI, et al. Displaced intra-articular calcaneal fracture treatedsurgically with limited posterior incision. Foot Ankle Int,2000,21:195-205.
    16.孔建中,郑立程,水小龙,等.经跗骨窦间隙入路微创内固定治疗跟骨关节内骨折的解剖研究与临床应用.中华创伤杂志,2009,25:822-825.
    17. Mostafa MF, El-Adl G, Hassanin EY, Abdellatif MS. Surgical treatment of displacedintra-articular calcaneal fracture using a single small lateral approach. StrategiesTrauma Limb Reconstr,2010,5:87-95.
    18. Femino JE, Vaseenon T, Levin DA, et al. Modification of the sinus tarsi approach foropen reduction and plate fixation of intra-articular calcaneus fractures: the limits ofproximal extension based upon the vascular anatomy of the lateral calcaneal artery.Iowa Orthop J,2010,30:161-167.
    19. Gupta A, Ghalambor N, Nihal A, et al. The modified Palmer lateral approach forcalcaneal fractures: wound healing and postoperative computed tomographicevaluation of fracture reduction. Foot Ankle Int,2003,24:744-53.
    20. Brunner A, Müller J, Regazzoni P, et al. Open Reductio n and Internal Fixation ofOTA Type C2–C4Fractures of the Calcaneus with a Triple-p late Technique. J FootAnkle Surg,2012,15:[Epub ahead of print]
    21. Thordarson DB, Hedman TP, Yetkinler DN, et al. Superior compressive strength of acalcaneal fracture construct augmented with remodelable cancellous bone cement. JBone Joint Surg Am,1999,81:239-246.
    22. Kendoff D, Citak M, Gardner M, et al. Three-dimensional fluoroscopy for evaluationof articular reduction and screw placement in calcaneal fractures. Foot Ankle Int,2007,28:1165-1171.
    23. Atesok K, Finkelstein J, Khoury A, et al. The use of intraoperative three-dimensionalimaging (ISO-C-3D) in fixation of intraarticular fractures. Injury,2007,38:1163-1169.
    24. Beerekamp MS, Ubbink DT, Maas M, et al. Fracture Surgery of the extremities withthe intra-operative use of3D-RX: a randomized multicenter trial (EF3X-trial). BMCMusculoskelet Disord,2011,12:15
    1.邹剑,章暐,张长青,等.跟骨骨折切开复位内固定术后伤口并发症的临床分析.中华创伤骨科杂志,2006,8(7):647-649.
    2. Maskill JD, Bohay DR, Anderson JG. Calcaneus fractures: a review article. FootAnkle Clin,2005,10(3):463-489.
    3. Folk JW, Starr AJ, Early JS. Early wound complications of operative treatment ofcalcaneus fractures: analysis of190fractures. J Orthop Trauma,1999,13(5):369-372.
    4. Schepers T. The sinus tarsi approach in displaced intra-articular calcaneal fractures: asystematic review. Int Orthop,2011,35(5):697-703.
    5. DeWall M, Henderson CE, McKinley TO, et al. Percutaneous reduction and fixationof displaced intra-articular calcaneus fractures. J Orthop Trauma,2010,24(8):466-472.
    6. Rammelt S, Amlang M, Barthel S, et al. Percutaneous treatment of less severeintraarticular calcaneal fractures. Clin Orthop Relat Res,2010,468(4):983-490.
    7. Carr JB. Surgical treatment of intra-articular calcaneal fractures: a review of smallincision approaches. J Orthop Trauma,2005,19(2):109–117
    8. Holmes G. Treatment of displaced calcaneal fractures using a small sinus tarsiapproach. Foot Ankle Surg,2005,44(4):35–41
    9. Woon CY, Chong KW, Yeo W, et al. Subtalar arthroscopy and flurosocopy inpercutaneous fixation of intra-articular calcaneal fractures: the best of both worlds. JTrauma,2011,71(4):917-925.
    10. Schepers T, Patka P. Treatment of displaced intra-articular calcaneal fractures byligamentotaxis: current concepts' review. Arch Orthop Trauma Surg,2009,129(12):1677-1683.
    11.蒋协远,王大伟.骨科临床疗效评价标准.北京:人民卫生出版社,2005:123-124,231-232,280-284.
    12.孔建中,郑立程,水小龙,等.经跗骨窦间隙入路微创内固定治疗跟骨关节内骨折的解剖研究与临床应用.中华创伤杂志,2009,25(9):822-825.
    13. Mostafa MF, El-Adl G, Hassanin EY, Abdellatif MS. Surgical treatment of displacedintra-articular calcaneal fracture using a single small lateral approach. StrategiesTrauma Limb Reconstr,2010,5(2):87-95.
    14. Femino JE, Vaseenon T, Levin DA, et al. Modification of the sinus tarsi approach foropen reduction and plate fixation of intra-articular calcaneus fractures: the limits ofproximal extension based upon the vascular anatomy of the lateral calcaneal artery.Iowa Orthop J,2010,30:161-167.
    15. Ebraheim NA, Elgafy H, Sabry F, et al. Sinus tarsi approach with trans-articularfixation for displaced intra-articular fractures of the calcaneus. Foot AnkleInt,2000,21(2):105-113
    16. Besch L, Waldschmidt JS, Daniels-Wredenhagen M, et al. The treatment ofintra-articular calcaneus fractures with severe soft tissue damage with a hingedexternal fixator or internal stabilization: long-term results. J Foot Ankle Surg,2010,49(1):8-15.
    17. Kissel CG, Husain ZS, Cottom JM, et al. Early clinical and radiographic outcomesafter treatment of displaced intra-articular calcaneal fractures using delta-frameexternal fixator construct. J Foot Ankle Surg,2011,50(2):135-140.
    18. Malizos KN, Bargiotas K, Papatheodorou L, et al. The below-the-ankle circular frame:A new technique for the treatment of displaced calcaneal fractures. J Foot Ankle Surg,2006,45(5):295-299.
    1. Rammelt S, Amlang M, Barthel S, et al. Minimally-invasive treatment of calcanealfractures. Injury,2004,35Suppl2: SB55-63.
    2. Maskill JD, Bohay DR, Anderson JG. Calcaneus fractures: a review article. FootAnkle Clin,2005,10:463-89, vi.
    3. McBride DJ, Rammamurthy C, Laing P. The hindfoot: calcaneal and talar fracturesand dislocations-Part I: Fractures of the calcaneum. Current Orthop,2005,19:94-100.
    4. Buckley R, Tough S, McCormack R, et al. Operative compared with nonoperativetreatment of displaced intra-articular calcaneal fractures: a prospective, randomized,controlled multicenter trial. J Bone Joint Surg Am,2002,84:1733-1744.
    5. Folk JW, Starr AJ, Early JS. Early wound complications of operative treatment ofcalcaneus fractures: analysis of190fractures. J Orthop Trauma,1999,13:369-372.
    6. Schepers T. The sinus tarsi approach in displaced intra-articular calcaneal fractures: asystematic review. Int Orthop,2011,35:697-703.
    7. Mehta S, Mirza AJ, Dunbar RP, et al. A staged treatment plan for the management ofType II and Type A open calcaneus fractures. J Orthop Trauma,2010,24:142-147.
    8. Essex-Lopresti P. The mechanism, reduction technique, and results in fractures of theos calcis. Br J Surg,1952,39:395-419.
    9. Pezzoni M, Salvi AE, Tassi M, Bruneo S. A minimally invasive reduction andsynthesis method for calcaneal fractures: the “Brixian Bridge” technique. J Foot AnkleSurg,2009,48:85-88.
    10. Goldzak M, Mittlmeier T, Simon P. Locked nailing for the treatment of displacedarticular fractures of the calcaneus: description of a new procedure with calcanail().Eur J Orthop Surg Traumatol,2012,22:345-349.
    11. DeWall M, Henderson CE, McKinley TO, et al. Percutaneous reduction and fixationof displaced intra-articular calcaneus fractures. J Orthop Trauma,2010,24:466-472.
    12. Walde J, Sauer B, Degreif J, et al. Closed reduction and percutaneus Kirschner wirefixation for the treatment of dislocated calcaneal fractures: surgical technique,complications, clinical and radiological results after2-10years. Arch Orthop TraumaSurg,2008,128:585-591.
    13. Holmes GB. Treatment of displaced calcaneal fractures using a small sinus tarsiapproach. Techniques in foot&Ankle Surgery,2005,4:35-41.
    14. Park IH, Song KW, Shin SI, et al. Displaced intra-articular calcaneal fracture treatedsurgically with limited posterior incision. Foot Ankle Int,2000,21:195-205.
    15.孔建中,郑立程,水小龙,等.经跗骨窦间隙入路微创内固定治疗跟骨关节内骨折的解剖研究与临床应用.中华创伤杂志,2009,25:822-825.
    16. Mostafa MF, El-Adl G, Hassanin EY, et al. Surgical treatment of displacedintra-articular calcaneal fracture using a single small lateral approach. StrategiesTrauma Limb Reconstr,2010,5:87-95.
    17. Femino JE, Vaseenon T, Levin DA, et al. Modification of the sinus tarsi approach foropen reduction and plate fixation of intra-articular calcaneus fractures: the limits ofproximal extension based upon the vascular anatomy of the lateral calcaneal artery.Iowa Orthop J,2010,30:161-167.
    18. Gupta A, Ghalambor N, Nihal A, et al. The modified Palmer lateral approach forcalcaneal fractures: wound healing and postoperative computed tomographicevaluation of fracture reduction. Foot Ankle Int,2003,24:744-753.
    19.张国柱,蒋协远,王满宜,等.外置解剖型跟骨锁定钢板治疗跟骨骨折的初步报告.中华创伤骨科杂志,2010,12:.
    20. Rammelt S, Amlang M, Barthel S, et al. Percutaneous treatment of less severeintraarticular calcaneal fractures. Clin Orthop Relat Res,2010(468):983-490.
    21. Woon CY, Chong KW, Yeo W, et al. Subtalar arthroscopy and flurosocopy inpercutaneous fixation of intra-articular calcaneal fractures: the best of both worlds. JTrauma,2011,71:917-925.
    22. Schepers T, Patka P. Treatment of displaced intra-articular calcaneal fractures byligamentotaxis: current concepts' review. Arch Orthop Trauma Surg,2009,129:1677-1683.
    23. Besch L, Waldschmidt JS, Daniels-Wredenhagen M, et al. The treatment ofintra-articular calcaneus fractures with severe soft tissue damage with a hingedexternal fixator or internal stabilization: long-term results. J Foot Ankle Surg,2010,49:8-15.
    24. Kissel CG, Husain ZS, Cottom JM, et al. Early clinical and radiographic outcomesafter treatment of displaced intra-articular calcaneal fractures using delta-frameexternal fixator construct. J Foot Ankle Surg,2011,50:135-140.
    25. Malizos KN, Bargiotas K, Papatheodorou L, et al. The below-the-ankle circular frame:A new technique for the treatment of displaced calcaneal fractures. J Foot Ankle Surg,2006,45:295-299.
    26. Ali AM, Elsaied MA, Elmoghazy N. Management of calcaneal fractures using theIlizarov external fixator. Acta Orthop Belg,2009,75:51-56.
    27. Bano A, Pasku D, Karantanas A, et al. Intra-articular calcaneal fracture: closedreduction and balloon-assisted augmentation with calcium phosphate cement: a casereport. Cases J,2009,2:9290.
    28. Jacquot F, Atchabahian A. Balloon reduction and cement fixation in intra-articularcalcaneal fractures: a percutaneous approach to intra-articular calcaneal fractures. IntOrthop,2011,35:1007-1014.
    29. Thordarson DB, Hedman TP, Yetkinler DN, et al. Superior compressive strength of acalcaneal fracture construct augmented with remodelable cancellous bone cement. JBone Joint Surg Am,1999,81:239-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700