高精度手术导航的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的进步和科技的发展,外科手术越来越注重微创化和精细化。手术导航系统将病人术前影像数据和术中病人解剖结构准确对应,在术中为医生实时进行导航,可以提高手术精度,减小手术创伤,减少术后恢复时间,取得了传统手术不能达到的效果。根据国内对手术导航系统的需求和研究需要,本文研制了新一代的红外手术导航仪临床样机系统。
     本文研究了手术导航仪需要的常见关键技术,包括摄像机的标定方法,立体视觉的三维重建,医学图像的三维重建等。此外,本文还针对提高导航仪的运行速度和定位精度做了如下研究:
     1.提出了手术器械的预测分割算法。手术器械的识别通常采用模版匹配的算法,此算法速度较慢。因此,提出了预测分割算法,将短时间内手术器械的标志点的运动轨迹视为二次曲线,利用拟合得到的二次曲线求得标志点在当前帧的预测坐标,然后利用最近邻算法进行分类。此算法有效提高了识别速度,与模版匹配算法结合使用,能有较高准确度。
     2.提出了手术器械高精度重建算法。传统手术器械利用标志点进行识别,然后利用标志点的位置求得手术器械的姿态,利用工作点与标志点的关系求得工作点位置。本文在此方法的基础上引入了手术器械三维重建环节:在进行手术器械识别后,利用手术器械自身结构信息作为标志点投影方程的约束重建同一个手术器械的所有标志点。此方法不仅能得到更高精度的重建结果而且能消除抖动误差。
     3.提出了手术器械的预测加权滤波算法。预测加权滤波算法假设标志点、工作点运动轨迹为二次曲线。利用以往帧的坐标拟合二次曲线计算得到当前帧标志点坐标的预测值。对当前帧的预测值和实测值进行加权平均得到最终结果。预测加权滤波算法相比常见的滤波算法有比较好的滤波效果又不影响手术器械的实时跟踪。
     在上述关键基础的基础上,本文研制了红外手术导航仪临床样机系统。该样机硬件系统包括双目摄像机、手术器械、病灶物体和计算机等几个部分,软件系统包括图像采集处理,手术器械重建,医学图像的三维重建,以及手术导航等模块。该系统在上海市第九人民医院进行了两例临床手术,其在临床中的应用验证了该系统基本满足临床手术要求,其性能已经达到了国际先进水平。
With the rapid development of medical science, surgery put on more and more attention on minimally invasive and refinement. Surgical Navigation System(SNS) matches the patient preoperative image data and intraoperative patient anatomy structure accurately, and plays real-time navigation, which will attribute to higher operation accuracy, smaller operation trauma and less recovery time. According to the needs of SNS, this paper design a new generation of infrared surgery navigation clinical prototype system.
     This paper studies key technologies of SNS, including binocular camera calibration, stereo calibration, 3-D reconstruction of medical images. In addition, this article does some researches to increase the running speed and the positioning accuracy which are as follows:
     1. Propose the prediction segmentation algorithm. The surgery instruments’recognition typically uses matching algorithm, which is slowly. Therefore, the prediction segmentation algorithm is proposed, which regarded the trajectory of marks as quadratic curve. It uses the quadratic curve fitted by previous frame to figure out the current prediction coordinate, and then the nearest neighbor algorithm is used to classify the current marks. The algorithm can effectively improve the recognition speed, and can gain high accuracy with template matching algorithm used in combination.
     2. Propose the high precision reconstruction algorithm of surgery instruments. Traditionally, we recognize the surgery instruments by the marks on themselves, whose coordinates are used to calculate the posture and work point of the instruments. This paper introduces the process of 3-D reconstruction of surgery instruments based on the traditional method. It doesn’t reconstruct the marks separately, but use the structure information as constraints of the projection functions to reconstruct the marks of one surgery instruments. The method can not only reduce the jitter greatly but also improve the accuracy effectively.
     3. Propose the prediction weighted filtering algorithm. It supposes the trajectory of marks and work point are quadratic curve. The coordinates in previous frame are used to fitting quadratic curve, with which predicted coordinates of current frame can be figured out. The final result is the weighted average of predicted and measured values. This algorithm, compared with common filtering algorithm, has a nice filtering effect while not affecting the real-time tracking.
     Based on the key technologies above, this paper develops the clinical prototype system of surgery navigation. The hardware includes binocular camera, instruments, focus objects and computer. The software is constituted by digital image acquisition, reconstruction of surgery instruments, reconstruction of medical image, as well as surgery navigation. The prototype system conducted two cases of clinical operation in the Shanghai Ninth People’s Hospital, which indicated that its performance had reached the international advanced level.
引文
[1] Chen Xiaojun, Wu Yiqun, Wang Chengtao, Application of a surgical navigation system for zygoma implant surgery, the 4th European Conference of the International Federation for Medical and Biological Engineering, 2009, Vol.22, No.8, pp. 940–943.
    [2] Daniel Mirota, Hanzi Wang, Russell H. Taylor, Masaru Ishii and Gregory D. Hager, Toward Video-Based Navigation for Endoscopic Endonasal Skull Base Surgery, the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2009, No.1, LNCS 5761, pp. 91–99.
    [3] J. Krücker, S. Xu, A. Viswanathan, E. Shen.N. Glossop, B. Wood, Clinical evaluation of electromagnetic tracking for biopsy and radiofrequency ablation guidance, Computer Assisted Radiology and Surgery: the 20th International Congress and Exhibition (CAR’2006), 2006, pp.169–187.
    [4]骆文博,王广志,丁海曙.计算机辅助手术系统.国外医学生物医学工程分册, 2001, Vol.24, No.6, pp. 241-247.
    [5] Russell H. Taylor, Janez Funda, Leo Joskowicz et al, An overview of computer-integrated surgery at the IBM Thomas J. Watson Research Center, IBM Journal of Research and Development, 1996, Vol.40, No.2, pp.163-183.
    [6] Roberts DW, Strohbehn JW et al, A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope, J Neurosurg, 1986, Vol.65, No.4, pp. 545-549.
    [7]马文娟,红外手术导航仪关键技术研究,上海交通大学博士论文,2011.
    [8] M.R.Ferre, P.D.Jakab, J.S.Tieman, Position tracking and imaging system for use in Medical application, United States Patent 5829444, 1998.
    [9]孙九爱,计算机辅助外科手术中被动式多眼定位器的研究,上海交通大学博士学位论文,2001.
    [10] R.Taylor, Surgical Navigation Systems: A short overview, online course,2005, (available online at http://www.cisst.org/~cista/445/445-schedule- 2005.html).
    [11] Russell H. Taylor, Dan. Stoianovici, Medical Robotics in Computer-Integrated Surgery, IEEE Trans. On Robotics and Automation, 2003, Vol.19, No.5, pp.765-781.
    [12] Peters H, Raczkowsky J, Woern H, Approach to an Architecture for a Generic Computer Integrated Surgery System, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, 3751-3756.
    [13] L. Adhami andè. Coste-Maniere, A versatile system for computer integrated mini-invasiverobotic surgery, Medical Image Computing and Computer Assisted Intervention (MICCAI) 2002, Vol.2488, No.2002, pp.272-281.
    [14] Zhou GH, Luo SQ, Image-guided Surgical Navigation System, International Medical Device, 1997, Vol.3, No.3, pp.27.
    [15] T. M. Peters, Image-guided surgery: From X-rays to Virtual Reality, Computer Methods in Biomechanics and Biomedical Engineering, 2000, Vol.4, No.1, pp.27-57.
    [16] Robert L. Galloway, The process and development of image-guided procedures, Annual Review of Biomedical Engineering, 2001, Vol.3, No.1, pp.83–108.
    [17]张诗雷,张志愿,沈国芳,计算机及三维导航技术辅助外科手术的应用进展,中国口腔颌面外科杂志,2004,Vol.2, No.3, pp.187-190.
    [18]郝颖明,朱枫,外科手术计算机辅助导航技术,生物医学工程学杂志,2004,Vol.21, No.2, pp.306-310.
    [19] R.Taylor, 3D localizers, online course, 2005, (available online at http://www.cisst.org/ ~cista/445/445-schedule-2005.html).
    [20] Ziv Yaniv, Kevin Cleary, Image-Guided Procedures: A Review, CAIMR TR-2006-3, Image Science and Information Systems Center, Georgetown University, 2006.
    [21] Terry M Peters, Image-guidance for surgical procedures, Physics in Medicine and Biology, 2006, Vol.51, No.14, pp.505-540.
    [22]张文强,戴克戎,王成焘,外科手术导航系统的研究现状及进展,医用生物力学,2004,Vol.19, No.1, pp.51-55.
    [23] J. M. Sackier, Y. Wang, Robotically Assisted Laparoscopic Surgery: from Concept to Development, Computer-Integrated Surgery, 1996, Vol.8, No.1, pp.63–66.
    [24] I. W. Hunter, L. A. Jones et al, Ophthalmic microsurgical robot and associated virtual environment, Computers in Biology and Medicine, 1995, Vol.25, No.2, pp.173–182.
    [25] P. S. Schenker and S. T. Charles, Development of a telemanipulator for dexterity enhanced microsurgery, 2nd Int. Symp. Medical Robotics and Computer Assisted Surgery, Baltimore, MD, 1995, pp.81–88.
    [26] M. Mitsuishi, S. I. Warisawa et al, Remote ultrasound diagnostic system, IEEE Conference on Robotics and Automation, Seoul, Korea, 2001, pp.1567–1574.
    [27] Y. Takahashi, H. Goto, T. Saito, Health care system using face robot and tele-operation via Internet, 7th International Conference on Control, Automation, Robotics and Vision ( ICARCV’2002), 2002.2, pp.1025– 1030.
    [28] B. Davies, A Review of Robotics in Surgery, Journal of engineering in medicine, 2000, Vol.214, No.8, pp.129-140.
    [29] Y.S.Kwoh, E.Jonckheere, and S.Hayati, A robot with improved absolute positioning accuracy for CT guided stereotactic surgery. IEEE Transaction on Biomedical Engineering, 1988, pp.153-161.
    [30] Paul H.A., Mittlestadt B. et al. A surgical robot for total hip replacement surgery, IEEE International Conference on Robotics and Automation, 1992, Vol.1, 606-611.
    [31] Preising, B., Hsia, T.C., Mittelstadt, B., A literature review: robots in medicine, IEEE Engineering in Medicine and Biology Magazine, 1991, Vol.10, No.2, pp.13-22.
    [32] G. S. Guthart and J. K. Salisbury, The intuitive telesurgery system: Overview and application, IEEE International Conference on Robotics and Automation (ICRA), 2000, pp.618–621.
    [33] P. Ballester, Y. Jain, K. R. Haylett, Compuarison of Task Performance of Robotic Camera Holders EndoAssist and Aesop, Internataional Congress Series, 2001, Vol.1230, pp.1100-1103.
    [34] Medical Vision Group at the MIT AI Lab, Cambridge, Massachusetts, USA. (available online at http://www.ai.mit.edu/projects/medical-vision/).
    [35] Image Guidance Laboratories, (available online at http://www-igl.stanford.edu/home.php? pg= overview).
    [36] Center for Medical Robotics and Computer Assisted Surgery, Pittsburgh, Pennsylvania, USA. (available online at http://www.mrcas.ri.cmu.edu/).
    [37] Surgical Planning Laboratory of Bgham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA, (available online at http: // splweb. bwh.harvard.edu:8000/).
    [38]闫焱,红外手术导航仪系统理论与临床实验,上海交通大学硕士论文,2010.
    [39] Engineering Research Center for Computer Integrated Surgical Systems and Technology, (available online at http://cisstweb.cs.jhu.edu/).
    [40] Polaris Family of Optical Tracking Systems, (available online at http://www.ndigital.com /medical/Polarisfamily.php).
    [41] Medtronic's Navigation Systems, (available online at http://www. Medtronicnavigation.com/ procedures/navigation/systems.jsp).
    [42] VISLAN - Surgical Navigation System, (available online at http://www.roke.co.uk/download/ video/vislan.avi).
    [43] Stryker Navigation System, (available online at http://www.europe.stryker.com/index /st_pag_medic-home/st_pag_detailed-product-info/st_pag_navigation-redirect/st_pa_surgical-navigation.htm).
    [44] D.D. Menthon and L.S. Davis, New Exact and Approximate Solutions of the Three-point Perspective Problem, IEEE International Conference on Robotics and Automation,Cincinnati, Ohio, May, 1990, pp.40-45.
    [45] US Markets for Surgical Navigaion Systems 2011, (available online at http://www. marketresearch.com/map/prod/6661705.html).
    [46] European Markets for Surgical Navigation Systems 2010, (available online at http://www. marketresearch.com/Millennium-Research-Group-v648/European-Surgical-Navigation-Systems-6661628/)
    [47] Computer Assisted Surgical (CAS) Systems: A Global Strategic Business Report, (available online at http://www.prweb.com/releases/2011/1/prweb8046526.htm).
    [48] J. Yang and J. Qian, Research on Computer Aided Surgical Navigation Based on Binocular Stereovision, IEEE Int’l Conf. on Mechatronics and Automation, 2006, pp.1532-1536.
    [49]贾云得,机器视觉,科学出版社,北京,2000-04
    [50] David Forsyth and Jean Ponce, Computer Vision: A Modern Approach, Prentice Hall, United States Ed edition, 2002.
    [51]马颂德,张正友,计算机视觉,科学出版社,北京,1998.
    [52] Ramesh Jain, Rangachar Kasturi, Brian G. Schunck. Machine Vision, McGraw-Hill, 2003.
    [53] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge, 2004.
    [54] L.G. Shapiro and G.C. Stockman, Computer Vision, Prentice Hall Inc, 2001.
    [55] Emanuele Trucco, Alessandro Verri, Introductory Techniques for 3-D Computer Vision, Prentice Hall, 1998.
    [56] Zhu Zhigang,Video Computing and 3D Computer Vision,online course,2005 Spring, Lecture 5 (available at http://www-cs.engr.ccny.cuny.edu/~zhu/VisionCourse-2004.html).
    [57]王建华,数字式红外手术导航仪关键技术研究,上海交通大学博士论文,2007.
    [58] J. Weng. P. Cohen, and M. Herniou, Camera Calibration with Distortion Models and Accuracy Evaluation, IEEE Trans. Pattern Analysis and Machine Intelligence, 1992, Vol.14, No.10, pp. 965-980.
    [59] H. Teramoto, G. Xu. Camera calibration by a single image of balls: from conics to the absolute conics. Asia Conf. Computer Vision, 2002, pp.499-506.
    [60] Z. Zhang. A flexible new technique for camera calibration. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000, Vol.22,No.11, pp.1330-1334.
    [61] Ramesh Jain, Rangachar Kasturi, Brian G. Schunck. Machine Vision, McGraw-Hill, 2003.
    [62] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge, 2004.
    [63] L.G. Shapiro and G.C. Stockman, Computer Vision, Prentice Hall Inc, 2001.
    [64] Emanuele Trucco, Alessandro Verri, Introductory Techniques for 3-D Computer Vision, Prentice Hall, 1998.
    [65] S.T. Barnard and M.A. Fischler, Computational Stereo, ACM Computing Surveys, 1982, Vol.14, pp.553-572.
    [66] U.R. Dhond and J.K. Aggarwal, Structure from Stereo: A Review, IEEE Transaction Systems, Man, and Cybernetics, 1989, Vol.19, pp.1489-1510.
    [67] A. Koschan, What is New in Computational Stereo Since 1989: A Survey of Current Stereo Papers, Technical Report 93-22, Technical Univ. of Berlin, 1993.
    [68] Myron Z. Brown, Darius Burschka and Gregory D. Hager, Advances in Computational Stereo, IEEE Transaction on Pattern Analysis and Machine Intelligence, 2003, Vol.25,No.8, pp.993-1008.
    [69] D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of Dense Two- Frame Stereo Correspondence Algorithms, International Journal of Computer Vision, 2002, Vol.47, No.1/2/3, pp.7-42.
    [70] R. Elias, Projective Geometry for Three-Dimensional Computer Vision, the Seventh World Multiconference on Systemics, Cybernetics and Informatics, SCI'03, 2003, Vol.5, pp.99-104.
    [71] Beardsley P A, Zisserman A, Murray D W, Sequential updating of projective and affine structure from motion, International Journal of Computer Vision, 1997, Vol.23, No.3, pp.235-259.
    [72] Lenildo C. Silva, Antonio Petraglia, Mariane R. Petraglia, Stereo Vision System for Remote Monitoring and 3-D Reconstruction, IEEE International Symposium on Industrial Electronics, Rio de Janeiro, Brazil, 2003.
    [73] W. S. Kim, A. I. Ansar, R.D. Steele, Performance Analysis and Validation of a Stereo Vision System, IEEE International Conference on Systems, Man and Cybernetics, 2005.
    [74] Zheng Yinqiang, Liu Yuncai, On Determining the Projected Sphere Center and Its Application in Optical Tracking Systems, 2008 International Conference on BioMedical Engineering and Informatics, 2008, Vol.2. pp. 656-656
    [75]袁亚湘,孙文瑜,最优化理论与方法,科学出版社,北京,1997-1。
    [76]李智攀,股骨头坏死治疗手术中的导航技术研究与软件开发,上海交通大学博士学位论文,2008。
    [77]林艳萍,正颌外科手术导航关键技术研究及应用系统的实现,上海交通大学博士学位论文,2005
    [78] Lu Xuesong, Zhang Su, Zha Yunfei, Chen Yazhu, Three-Dimensional Nonrigid Registrationand Fusion for Image-guided Surgery Navigation System, 2010 International Conference of Medical Image Analysis and Clinical Application(MIACA), 2010, pp.135-138
    [79] Ting Chen, Dimitris Metaxas, and Leon Axel, 3D Cardiac Anatomy Reconstruction Using High Resolution CT Data, International Conference on Medical Image Computing and Computer Assisted Intervention (MICCIA), 2004, pp. 411–418
    [80]何晖光,田捷,赵明昌,杨骅,基于分割的三维医学图像表面重建算法,软件学报,2002,Vol.13, No.2, pp.219-226.
    [81] C.Montani,.Scateni,R.Scopigno.A odified look-up table for implicit disambiguation of marching cubes.The Visual Computer,1994, Vol.10, No.6, pp.353-355.
    [82]朱经纬,蒙培生,机遇MC算法的螺旋CT扫描数据的三维重建.华中科技大学学报,2002,Vol.30, No.3, pp.74-76.
    [83]田捷,三维重建技术介绍,(available online at www.3dmed.net/tian/courses/med/lecture_ 5_pnt.pdf).
    [84] Glossop N, Hu R., Effect of registration method on clinical accuracy of image guided pedicle screw surgery, 11th International Computer assisted Radiology and Surgery, 1997.pp.25-28.
    [85] J. M. Fitzpatrick, and C. R. Maurer Jr., Predicting error in rigid-body-point-based registration, IEEE Transaction on Medical Imaging, 1998, Vol.17, No.5, pp. 694-602.
    [86] Maintz JB, Viergever MA, A survey of medical image registration, Medical Image Analysis, 1998, Vol.2, No.1, pp.1-36.
    [87] Treves S, Mitchell K, Habboush I, Three dimensional image alignment, registration and fusion, Q J Nucl Med, 1998, Vol.42, No.2, pp.83-92.
    [88] Timo M?kel?, Patrick Clarysse, et al, A review of cardiac image registration methods, IEEE Transaction on Medical Imaging, 2002, Vol.21, No.9, pp.1011-1021.
    [89] J West,J M Fitzpatrik et al, Retrospective intermodality registration techniques for images of the head: surface-based versus volume-based, IEEE Transaction on Medical Imaging, 1999, Vol.18, No.2, pp.144-150.
    [90] Wells WM, Viola P et al, Multi-modal volume registration by maximization of mutual information, Medical Image Analysis, 1996, Vol.1, No.1, pp.35-51.
    [91] West J, Fitzpatrick JM, et al, Comparison and evaluation of retrospective intermodality brain image registration techniques, Journal of Computer Assisted Tomography, 1997, Vol.21, No.4, pp.554-566.
    [92] D. W. Eggert, A. Lorusso, and R. B. Fisher, Estimating 3-D rigid body transformations: A comparison of four major algorithms, Machine Vision and Applications, 1997, Vol.9, pp.272-290.
    [93]秦斌杰,“计算机辅助手术中三维多模医学图像配准及实时体视化的研究”,上海交通大学博士学位论文,2002.
    [94]张文斌,王宸昊,沈国芳等,用于颅颌面手术导航的定位跟踪机构:中国, 201120100087.1, 2011
    [95]周猛,李修往,魏民,一种有源红外空间跟踪系统中光源的设计和制作,北京生物医学工程,2000,Vol.19, No.4, pp.231-234.
    [96]林家明,红外发光二极管(LED)工作原理与特性,光学技术,1994,Vol.4, pp.12~14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700