小反刍兽疫病毒血凝素蛋白与宿主受体相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小反刍兽疫(Peste des petitus ruminants,PPR)的流行加剧了欠发达国家的贫困,严重影响了动物健康与食品安全,联合国粮农组织(Food andAgriculture Organization of the UnitedNations, FAO)于2012年提出开启全球范围的多国家多地区全方位合作,从而控制和消灭PPR。然而,小反刍兽疫病毒(Peste des petitus ruminants virus,PPRV)的基础研究还很薄弱,近年来PPRV跨地区跨国界传播以及感染野生动物,给全球消灭计划提出了严峻挑战。
     基于对同属麻疹病毒(Measles virus, MV)的研究证实,与受体的相互作用,不仅是病毒入侵宿主的第一步,也是导致宿主机体组织病理变化分布、宿主呈现临床症状表现的重要原因。下面几个问题值得关注:PPRV除了同MV一样利用SLAM作为受体开启病毒的入侵,是否也同样利用宿主呼吸道等上皮细胞基底层的Nectin4分子作为受体从而介导子代病毒的排出?PPRV疫苗株不具备向外“排毒”的特点,是否因为其不能与Nectin4结合?PPRV利用病毒囊膜上的血凝素蛋白(Hemaggluntinin, H)特异性识别宿主受体,H能否单独决定PPRV的宿主嗜性?运用计算机模拟对PPRV野毒株H蛋白(Hw)、疫苗株H蛋白(Hv)分别与羊源SLAM/Nectin4的相互作用模式、关键区域、关键氨基酸等做了预测,并设计试验进行了验证,结果如下:1. Hw和Hv的重组真核表达质粒均能与绵羊Nectin4的重组真核表达质粒共定位于CHO、293T细胞的细胞质中;Co-Ip确认Hw和Hv蛋白均能与绵羊Nectin4蛋白相互作用;荧光定量PCR显示Nectin4主要在绵羊的呼吸道、消化道等上皮组织中表达,结合本课题组以往人工感染PPRV的病毒载量、组织嗜性,以及绵羊SLAM在各组织中的分布表达来看,PPRV在唇、口腔黏膜、会厌、扁桃体等呼吸道组织和网胃、瓣胃、瘤胃等消化道组织中的分布与Nectin4的表达量成正相关,而PPRV在各种淋巴结、脾脏等免疫相关组织中的分布与SLAM的表达量成正相关;病毒感染实验表明羊源Nectin4可以提高PPRV Neriga75/1株在Vero细胞中的繁殖效率。综上所述,可以得出结论Nectin4是PPRV野毒株和疫苗株利用的受体。2.羊源Nectin4分子胞外区IgV结构域参与了同PPRV Hw、Hv蛋白的相互作用;3.计算机模拟计算得出PPRV Hw和Hv具备与人源SLAM相互作用的分子基础,无论是Hw还是Hv,发生Ser550Trp、Arg191Tyr、Arg191Phe、Thr545Trp、Ser548Trp、Ser534Trp这六种突变后,与人源SLAM相互作用的能力会加强,存在跨种间传播的风险。
     本研究成功鉴定了PPRV的受体Nectin4,并通过对PPRV野毒株和疫苗株分别与受体SLAM、Nectin4相互作用的模式、机理进行探究,为PPRV疫苗生产和诊断监测均提出了有益的思路和理论参考。
The epidemics of peste des petits ruminants (PPR) increase the poverty of undeveloped countriesand threaten animal health and food security heavily, thus was announced to be controlled anderadicated with global efforts by the Food and Agriculture Organization of the United Nations (FAO) in2012. However, the fundamental research on peste des petits ruminants virus (PPRV) is still backwardand the expansion of its distribution, particularly among wild animals greatly challenged the PPReradication project.
     The interactions between another morbilivirus-measles virus (MV) and its receptors play animportant role in virus infection. We are keen to figure out whether PPRV also use Nectin4to mediatethe shedding of offspring virions? If so, is it because PPRV vaccine strain cannot interact with Nectin4that it doesn’t ‘shed’ offsprings? Dose the hemaggluntinin (H) protein solely determine host specificity?We predicted the interactions between PPRV H wildtype (Hw)/vaccine (Hv) and sheep SLAM/Nectin4, analyzed their interaction mechanisms, determined the crucial domains and amino acids usingmolecular modeling, and finally acquired the following results by experiments:1. Plasmids containing Hw/Hv and sheep Nectin4locate in the cytoplasm of CHO,293T cells; Co-Ipshows both Hw and Hv have interactions with sheep Nectin4; sheep Nectin4mRNAs were expressedmainly in the epithelial tissues of digestive and respiratory tracts which is consistent with the tissuetropism of PPRV in sheep along with the mRNAs expressions of SLAM; transfection of sheep Nectin4can obviously increase the reproduction of PPRV cultured in Vero cell line. All the results aboveconfirm that Nectin4is the receptor for both PPRV wildtype strain and vaccine strain.2. The IgV domain of sheep Nectin4involves in the interaction with PPRV Hw.3. Both PPRV Hw and Hv possess the molecular basis to bind human SLAM, while the mutations ofSer550Trp,Arg191Tyr,Arg191Phe,Thr545Trp,Ser548Trp,Ser534Trp of Hw/Hv would increase theinteraction energies between Hw/Hv and human SLAM.
     To sum up, we have successfully identified PPRV's receptor-Nectin4, and analyzed the interactionmodels and mechanisms between PPRH Hw/Hv and receptor SLAM/Nectin4respectively, whichprovide theoretical significance and valuable reference for future development of PPRV diagnosis andvaccines.
引文
1.胡淳玲.麻疹病毒血凝素蛋白与受体的相互作用及麻疹病毒侵染机制研究[胡淳玲博士学位论文]:武汉大学,2004.
    2.骆学农,等.小反刍兽疫的研究进展.中国兽医科学,2007,36337:994-999.
    3.蒙学莲.小反刍兽疫病毒血凝素蛋白及其受体的研究[蒙学莲博士学位论文]:中国农业科学院,2012.
    4.王秋霞.小反刍兽疫病毒样颗粒的装配与释放研究[王秋霞博士学位论文]:中国农业科学院,2013.
    5. Abraham G, et al. Antibody seroprevalences against peste des petits ruminants (PPR) virus incamels, cattle, goats and sheep in Ethiopia. Prev Vet Med,2005,70(1-2):51-57.
    6. Abubakar M, et al. Prevalence and mortality rate of peste des petitis ruminant (PPR): possibleassociation with abortion in goat. Trop Anim Health Prod,2008,40(5):317-321.
    7. Amjad H, et al. Peste des petits ruminants in goats in Pakistan. Vet Rec,1996,139(5):118-119.
    8. Amos B, et al. The universal protein resource (UniProt). Nucleic Acids Res,2008,36(Databaseissue): D190-D195.
    9. Anderson J, et al. The detection of antibodies against peste des petits ruminants virus in cattle,sheep and goats and the possible implications to rinderpest control programmes. Epidemiol Infect,1994,112(1):225-231.
    10. Anderson J, et al. Rinderpest eradicated; what next? Vet Rec,2011,169(1):10-11.
    11. Bailey D, et al. Full genome sequence of peste des petits ruminants virus, a member of theMorbillivirus genus. Virus Res,2005,110(1-2):119-124.
    12. Bailey D, et al. Reverse genetics for peste-des-petits-ruminants virus (PPRV): promoter andprotein specificities. Virus Res,2007,126(1-2):250-255.
    13. Balamurugan V, et al. Isolation and identification of virulent peste des petits ruminants virusesfrom PPR outbreaks in India. Trop Anim Health Prod,2010,42(6):1043-1046.
    14. Balamurugan V, et al. Sequence and phylogenetic analyses of the structural genes of virulentisolates and vaccine strains of peste des petits ruminants virus from India. Transbound Emerg Dis,2010,57(5):352-364.
    15. Bao J, et al. Detection and genetic characterization of peste des petits ruminants virus in free-livingbharals (Pseudois nayaur) in Tibet, China. Res Vet Sci,2011,90(2):238-240.
    16. Bao J, et al. Development of one-step real-time RT-PCR assay for detection and quantitation ofpeste des petits ruminants virus. J Virol Methods,2008,148(1-2):232-236.
    17. Baron MD, et al. Peste des petits ruminants: a suitable candidate for eradication? Vet Rec,2011,169(1):16-21.
    18. Berhe G, et al. Development of a dual recombinant vaccine to protect small ruminants againstpeste-des-petits-ruminants virus and capripoxvirus infections. J Virol,2003,77(2):1571-1577.
    19. Berman H M, et al. The Protein Data Bank. Nucleic Acids Res,2000,28(1):235-242.
    20. Bodjo S C, et al. Mapping and structural analysis of B-cell epitopes on the morbillivirusnucleoprotein amino terminus. J Gen Virol,2007,88(Pt4):1231-1242.
    21. Bossart K N, et al. Paramyxovirus entry. Adv Exp Med Biol,2013,790:95-127.
    22. Bourdin P, et al. Use of a tissue culture vaccine in the prevention of small ruminant plague inDahomey. Rev Elev Med Vet Pays Trop,1970,23(3):295-300.
    23. Bovier P A. Recent advances with a virosomal hepatitis A vaccine. Expert Opin Biol Ther,2008,8(8):1177-1185.
    24. Boxer E L, et al. The rinderpest virus non-structural C protein blocks the induction of type1interferon. Virology,2009,385(1):134-142.
    25. Buczkowski H, et al. A novel approach to generating morbillivirus vaccines: negatively markingthe rinderpest vaccine. Vaccine,2012,30(11):1927-1935.
    26. Christiansen D, et al. Octamerization enables soluble CD46receptor to neutralize measles virus invitro and in vivo. J Virol,2000,74(10):4672-4678.
    27. Ciancanelli M J, et al. Mutation of YMYL in the Nipah virus matrix protein abrogates budding andalters subcellular localization. J Virol,2006,80(24):12070-12078.
    28. Clifford H D, et al. SLAM and DC-SIGN measles receptor polymorphisms and their impact onantibody and cytokine responses to measles vaccine. Vaccine,2011,29(33):5407-5413.
    29. Colf L A, et al. Structure of the measles virus hemagglutinin. Nat Struct Mol Biol,2007,14(12):1227-1228.
    30. Connolly S A, et al. Bimolecular complementation of paramyxovirus fusion andhemagglutinin-neuraminidase proteins enhances fusion: implications for the mechanism of fusiontriggering. J Virol,2009,83(21):10857-10868.
    31. Couacy-Hymann E, et al. Evaluation of the virulence of some strains of peste-des-petits-ruminantsvirus (PPRV) in experimentally infected West African dwarf goats. Vet J,2007,173(1):178-183.
    32. Couacy-Hymann E, et al. The early detection of peste-des-petits-ruminants (PPR) virus antigensand nucleic acid from experimentally infected goats using RT-PCR and immunocapture ELISAtechniques. Res Vet Sci,2009,87(2):332-335.
    33. Couacy-Hymann E, et al. Rapid and sensitive detection of peste des petits ruminants virus by apolymerase chain reaction assay. J Virol Methods,2002,100(1-2):17-25.
    34. Das S C, et al. Recovery and characterization of a chimeric rinderpest virus with the glycoproteinsof peste-des-petits-ruminants virus: homologous F and H proteins are required for virus viability. JVirol,2000,74(19):9039-9047.
    35. Dhar P, et al. Recent epidemiology of peste des petits ruminants virus (PPRV). Vet Microbiol,2002b,88(2):153-159.
    36. Diallo A. Morbillivirus group: genome organisation and proteins. Vet Microbiol,1990,23(1-4):155-163.
    37. Diallo A, et al. Cloning of the nucleocapsid protein gene of peste-des-petits-ruminants virus:relationship to other morbilliviruses. J Gen Virol,1994,75(Pt1):233-237.
    38. Diallo A, et al. Comparison of proteins induced in cells infected with rinderpest and peste despetits ruminants viruses. J Gen Virol,1987,68(Pt7):2033-2038.
    39. Diallo A, et al. Recent developments in the diagnosis of rinderpest and peste des petits ruminants.Vet Microbiol,1995,44(2-4):307-317.
    40. Diallo A, et al. Goat immune response to capripox vaccine expressing the hemagglutinin protein ofpeste des petits ruminants. Ann N Y Acad Sci,2002,969:88-91.
    41. Diallo A. Control of peste des petits ruminants and poverty alleviation? J Vet Med B Infect Dis VetPublic Health,2006,53Suppl1:11-13.
    42. Diallo A, et al. The threat of peste des petits ruminants: progress in vaccine development fordisease control. Vaccine,2007,25(30):5591-5597.
    43. Domingo E, et al. Viral quasispecies evolution. Microbiol Mol Biol Rev,2012,76(2):159-216.
    44. Dorig R E, et al. The human CD46molecule is a receptor for measles virus (Edmonston strain).Cell,1993,75(2):295-305.
    45. Durojaiye O A, et al. The ultrastructure of peste des petits ruminants virus. Zentralbl VeterinarmedB,1985,32(6):460-465.
    46. Elzein E M, et al. Severe PPR infection in gazelles kept under semi-free range conditions. J VetMed B Infect Dis Vet Public Health,2004,51(2):68-71.
    47. Ferreira C S, et al. Measles virus infection of alveolar macrophages and dendritic cells precedesspread to lymphatic organs in transgenic mice expressing human signaling lymphocytic activationmolecule (SLAM, CD150). J Virol,2010,84(6):3033-3042.
    48. Flanagan E B, et al. Moving the glycoprotein gene of vesicular stomatitis virus topromoter-proximal positions accelerates and enhances the protective immune response. J Virol,2000,74(17):7895-7902.
    49. Forsyth M A, et al. Evaluation of polymerase chain reaction for the detection and characterisationof rinderpest and peste des petits ruminants viruses for epidemiological studies. Virus Res,1995,39(2-3):151-163.
    50. Furley C W, et al. An outbreak of peste des petits ruminants in a zoological collection. Vet Rec,1987,121(19):443-447.
    51. Furuse Y, et al. Origin of measles virus: divergence from rinderpest virus between the11th and12th centuries. Virol J,2010,7:52.
    52. Garzon J I, et al. FRODOCK: a new approach for fast rotational protein-protein docking.Bioinformatics,2009,25(19):2544-2551.
    53. Gaunitz S, et al. Avian influenza H5hemagglutinin binds with high avidity to sialic acid ondifferent O-linked core structures on mucin-type fusion proteins. Glycoconj J,2014,31(2):145-159.
    54. Gibbs E P, et al. Classification of peste des petits ruminants virus as the fourth member of thegenus Morbillivirus. Intervirology,1979,11(5):268-274.
    55. Govindarajan R, et al. Isolation of pestes des petits ruminants virus from an outbreak in Indianbuffalo (Bubalus bubalis). Vet Rec,1997,141(22):573-574.
    56. Gulyaz V, et al. Pathogenicity of a local peste des petits ruminants virus isolate in sheep in Turkey.Trop Anim Health Prod,2005,37(7):541-547.
    57. Haffar A, et al. The matrix protein gene sequence analysis reveals close relationship between pestedes petits ruminants virus (PPRV) and dolphin morbillivirus. Virus Res,1999,64(1):69-75.
    58. Hamdy F M, et al. Response of white-tailed deer to infection with peste des petits ruminants virus.J Wildl Dis,1976,12(4):516-522.
    59. Haring M A, et al. A promoter trap for Chlamydomonas reinhardtii: development of a gene cloningmethod using5' RACE-based probes. Plant J,1997,11(6):1341-1348.
    60. Hashiguchi T, et al. Structure of the measles virus hemagglutinin bound to its cellular receptorSLAM. Nat Struct Mol Biol,2011,18(2):135-141.
    61. Hashiguchi T, et al. Crystal structure of measles virus hemagglutinin provides insight into effectivevaccines. Proc Natl Acad Sci U S A,2007,104(49):19535-19540.
    62. Hashiguchi T, et al. Measles virus hemagglutinin: structural insights into cell entry and measlesvaccine. Front Microbiol,2011,2:247.
    63. Hashimoto K, et al. SLAM (CD150)-independent measles virus entry as revealed by recombinantvirus expressing green fluorescent protein. J Virol,2002,76(13):6743-6749.
    64. Herbert R, et al. Recombinant adenovirus expressing the haemagglutinin of peste des petitsruminants virus (PPRV) protects goats against challenge with pathogenic virus; a DIVA vaccinefor PPR. Vet Res,2014,45(1):24.
    65. Hsu E C, et al. Use of site-specific mutagenesis and monoclonal antibodies to map regions ofCD46that interact with measles virus H protein. Virology,1999,258(2):314-326.
    66. Hu Q, et al. Rescue of recombinant peste des petits ruminants virus: creation of a GFP-expressingvirus and application in rapid virus neutralization test. Vet Res,2012,43:48.
    67. Iorio R M, et al. Paramyxoviruses: different receptors-different mechanisms of fusion. TrendsMicrobiol,2008,16(4):135-137.
    68. Ismail T M, et al. Cloning and expression of the nucleoprotein of peste des petits ruminants virusin baculovirus for use in serological diagnosis. Virology,1995,208(2):776-778.
    69. Jones D, et al. Protein fold recognition. J Comput Aided Mol Des,1993,7(4):439-456.
    70. Jones L, et al. Protection of goats against peste des petits ruminants with a vaccinia virus doublerecombinant expressing the F and H genes of rinderpest virus. Vaccine,1993,11(9):961-964.
    71. Khamehchian S, et al. Development of2types of competitive enzyme-linked immunosorbent assayfor detecting antibodies to the rinderpest virus using a monoclonal antibody for a specific region ofthe hemagglutinin protein. Can J Microbiol,2007,53(6):720-726.
    72. Khan H A, et al. The detection of antibody against peste des petits ruminants virus in sheep, goats,cattle and buffaloes. Trop Anim Health Prod,2008,40(7):521-527.
    73. Kolakofsky D, et al. Paramyxovirus RNA synthesis and the requirement for hexamer genomelength: the rule of six revisited. J Virol,1998,72(2):891-899.
    74. Kozak M. Regulation of protein synthesis in virus-infected animal cells. Adv Virus Res,1986,31:229-292.
    75. Kul O, et al. Natural peste des petits ruminants virus infection: novel pathologic findingsresembling other morbillivirus infections. Vet Pathol,2007,44(4):479-486.
    76. Kwiatek O, et al. Quantitative one-step real-time RT-PCR for the fast detection of the fourgenotypes of PPRV. J Virol Methods,2010,165(2):168-177.
    77. Lamb R A. Paramyxovirus fusion: a hypothesis for changes. Virology,1993,197(1):1-11.
    78. Lei, et al. A Bibliometric Analysis of Peste Des Petits Ruminants. JAVA,2012,23(11):4389-4393.
    79. Lemon K, et al. Early target cells of measles virus after aerosol infection of non-human primates.PLoS Pathog,2011,7(1): e1001263.
    80. Li L, et al. Rapid detection of peste des petits ruminants virus by a reverse transcriptionloop-mediated isothermal amplification assay. J Virol Methods,2010,170(1-2):37-41.
    81. Libeau G, et al. Rapid differential diagnosis of rinderpest and peste des petits ruminants using animmunocapture ELISA. Vet Rec,1994,134(12):300-304.
    82. Libeau G, et al. Development of a competitive ELISA for detecting antibodies to the peste despetits ruminants virus using a recombinant nucleoprotein. Res Vet Sci,1995,58(1):50-55.
    83. Libeau G, et al. A competitive ELISA using anti-N monoclonal antibodies for specific detection ofrinderpest antibodies in cattle and small ruminants. Vet Microbiol,1992,31(2-3):147-160.
    84. Livak K J, et al. Analysis of relative gene expression data using real-time quantitative PCR and the2(-Delta Delta C(T)) Method. Methods,2001,25(4):402-408.
    85. Longhi S. Nucleocapsid structure and function. Curr Top Microbiol Immunol,2009,329:103-128.
    86. Lu G, et al.[The receptors and entry of measles virus: a review]. Sheng Wu Gong Cheng Xue Bao,2013,29(1):1-9.
    87. Lyskov S, et al. The RosettaDock server for local protein-protein docking. Nucleic Acids Res,2008,36(Web Server issue): W233-W238.
    88. Mahapatra M, et al. Matrix protein and glycoproteins F and H of Peste-des-petits-ruminants virusfunction better as a homologous complex. J Gen Virol,2006,87(Pt7):2021-2029.
    89. Mariner J C, et al. The use of thermostable Vero cell-adapted rinderpest vaccine as a heterologousvaccine against peste des petits ruminants. Res Vet Sci,1993,54(2):212-216.
    90. Mavaddat N, et al. Signaling lymphocytic activation molecule (CDw150) is homophilic butself-associates with very low affinity. J Biol Chem,2000,275(36):28100-28109.
    91. Mcilhatton M A, et al. Nucleotide sequence analysis of the large (L) genes of phocine distempervirus and canine distemper virus (corrected sequence). J Gen Virol,1997,78(Pt3):571-576.
    92. Meng X, et al. Tissue distribution and expression of signaling lymphocyte activation moleculereceptor to peste des petits ruminant virus in goats detected by real-time PCR. J Mol Histol,2011,42(5):467-472.
    93. Meslet-Cladiere L, et al. A new method to identify flanking sequence tags in chlamydomonasusing3'-RACE. Plant Methods,2012,8(1):21.
    94. Meyer G, et al. The nucleotide sequence of the fusion protein gene of the peste des petits ruminantsvirus: the long untranslated region in the5'-end of the F-protein gene of morbilliviruses seems tobe specific to each virus. Virus Res,1995,37(1):23-35.
    95. Moll M, et al. Importance of the cytoplasmic tails of the measles virus glycoproteins for fusogenicactivity and the generation of recombinant measles viruses. J Virol,2002,76(14):7174-7186.
    96. Moreira I S, et al. Protein-protein docking dealing with the unknown. J Comput Chem,2010,31(2):317-342.
    97. Munir M, et al. Genetic characterization of peste des petits ruminants virus, Sierra Leone. EmergInfect Dis,2012,18(1):193-195.
    98. Munir M, et al. Comparative efficacy of standard AGID and precipitinogen inhibition test withmonoclonal antibodies based competitive ELISA for the serology of Peste des Petits Ruminants insheep and goats. Trop Anim Health Prod,2009,41(3):413-420.
    99. Naniche D, et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measlesvirus. J Virol,1993,67(10):6025-6032.
    100. Navaratnarajah C K, et al. Dynamic interaction of the measles virus hemagglutinin with itsreceptor signaling lymphocytic activation molecule (SLAM, CD150). J Biol Chem,2008,283(17):11763-11771.
    101. Noyce R S, et al. Tumor cell marker PVRL4(nectin4) is an epithelial cell receptor for measlesvirus. PLoS Pathog,2011a,7(8): e1002240.
    102. Noyce R S, et al. Tumor cell marker PVRL4(nectin4) is an epithelial cell receptor for measlesvirus. PLoS Pathog,2011b,7(8): e1002240.
    103. Obi T U, et al. Peste des petits ruminants (PPR) in goats in Nigeria: clinical, microbiological andpathological features. Zentralbl Veterinarmed B,1983a,30(10):751-761.
    104. Obi T U, et al. Peste des petits ruminants (PPR) in goats in Nigeria: clinical, microbiological andpathological features. Zentralbl Veterinarmed B,1983b,30(10):751-761.
    105. Ohishi K, et al. Host-virus specificity of morbilliviruses predicted by structural modeling of themarine mammal SLAM, a receptor. Comp Immunol Microbiol Infect Dis,2010,33(3):227-241.
    106. Ohno S, et al. Measles virus infection of SLAM (CD150) knockin mice reproduces tropism andimmunosuppression in human infection. J Virol,2007,81(4):1650-1659.
    107. Ono N, et al. V domain of human SLAM (CDw150) is essential for its function as a measles virusreceptor. J Virol,2001,75(4):1594-1600.
    108. Osguthorpe D J. Ab initio protein folding. Curr Opin Struct Biol,2000,10(2):146-152.
    109. Otsuki N, et al. Canine distemper virus with the intact C protein has the potential to replicate inhuman epithelial cells by using human nectin4as a receptor. Virology,2013,435(2):485-492.
    110. Park D J.3' RACE LaNe: a simple and rapid fully nested PCR method to determine3'-terminalcDNA sequence. Biotechniques,2004,36(4):586-588,590.
    111. Pawar R M, et al. Effect of siRNA mediated suppression of signaling lymphocyte activationmolecule on replication of peste des petits ruminants virus in vitro. Virus Res,2008,136(1-2):118-123.
    112. Plowright W, et al. Studies with rinderpest virus in tissue culture. II. Pathogenicity for cattle of
    113. culture-passaged virus. J Comp Pathol,1959,69(2):173-184.
    114. Pratakpiriya W, et al. Nectin4is an epithelial cell receptor for canine distemper virus and involvedin neurovirulence. J Virol,2012,86(18):10207-10210.
    115. Reymond N, et al. Nectin4/PRR4, a new afadin-associated member of the nectin family thattrans-interacts with nectin1/PRR1through V domain interaction. J Biol Chem,2001,276(46):43205-43215.
    116. Rima B K, et al. New concepts in measles virus replication: getting in and out in vivo andmodulating the host cell environment. Virus Res,2011,162(1-2):47-62.
    117. Riyesh T, et al. Evaluation of efficacy of stabilizers on the thermostability of live attenuatedthermo-adapted Peste des petits ruminants vaccines. Virol Sin,2011,26(5):324-337.
    118. Russell C J, et al. Membrane fusion machines of paramyxoviruses: capture of intermediates offusion. EMBO J,2001,20(15):4024-4034.
    119. Saliki J T, et al. Differential immunohistochemical staining of peste des petits ruminants andrinderpest antigens in formalin-fixed, paraffin-embedded tissues using monoclonal and polyclonalantibodies. J Vet Diagn Invest,1994,6(1):96-98.
    120. Santiago C, et al. Structure of the measles virus hemagglutinin bound to the CD46receptor. NatStruct Mol Biol,2010,17(1):124-129.
    121. Saravanan P, et al. Comparative efficacy of peste des petits ruminants (PPR) vaccines. Biologicals,2010,38(4):479-485.
    122. Sen A, et al. Vaccines against peste des petits ruminants virus. Expert Rev Vaccines,2010,9(7):785-796.
    123. Shaila M S, et al. Peste des petits ruminants of sheep in India. Vet Rec,1989,125(24):602.
    124. Shen Q, et al. Cloning of full genome sequence of hepatitis E virus of Shanghai swine isolate usingRACE method. Virol J,2007,4:98.
    125. Shiell B J, et al. Sites of phosphorylation of P and V proteins from Hendra and Nipah viruses:newly emerged members of Paramyxoviridae. Virus Res,2003,92(1):55-65.
    126. Silva A C, et al. Strategies for improved stability of Peste des Petits Ruminants Vaccine. Vaccine,2011,29(31):4983-4991.
    127. Singh R P, et al. Development of a monoclonal antibody based competitive-ELISA for detectionand titration of antibodies to peste des petits ruminants (PPR) virus. Vet Microbiol,2004,98(1):3-15.
    128. Sinnathamby G, et al. Recombinant hemagglutinin protein of rinderpest virus expressed in insectcells induces humoral and cell mediated immune responses in cattle. Vaccine,2001,19(28-29):3870-3876.
    129. Sinnathamby G, et al. Immune responses in goats to recombinant hemagglutinin-neuraminidaseglycoprotein of Peste des petits ruminants virus: identification of a T cell determinant. Vaccine,2001,19(32):4816-4823.
    130. Sinnathamby G, et al. Recombinant hemagglutinin protein of rinderpest virus expressed in insectcells induces cytotoxic T-cell responses in cattle. Viral Immunol,2001,14(4):349-358.
    131. Sinnathamby G, et al. Mapping of T-helper epitopes of Rinderpest virus hemagglutinin protein.Viral Immunol,2001,14(1):83-92.
    132. Smith E C, et al. Viral entry mechanisms: the increasing diversity of paramyxovirus entry. FEBS J,2009,276(24):7217-7227.
    133. Steinhauer D A, et al. High nucleotide substitution error frequencies in clonal pools of vesicularstomatitis virus. J Virol,1989,63(5):2063-2071.
    134. Tahara M, et al. Measles virus infects both polarized epithelial and immune cells by usingdistinctive receptor-binding sites on its hemagglutinin. J Virol,2008,82(9):4630-4637.
    135. Takeda M. Measles virus breaks through epithelial cell barriers to achieve transmission. J ClinInvest,2008,118(7):2386-2389.
    136. Tatsuo H, et al. The morbillivirus receptor SLAM (CD150). Microbiol Immunol,2002,46(3):135-142.
    137. Tatsuo H, et al. SLAM (CDw150) is a cellular receptor for measles virus. Nature,2000,406(6798):893-897.
    138. Tatsuo H, et al. Morbilliviruses use signaling lymphocyte activation molecules (CD150) as cellularreceptors. J Virol,2001,75(13):5842-5850.
    139. Toplu N. Characteristic and non-characteristic pathological findings in peste des petits ruminants(PPR) of sheep in the Ege district of Turkey. J Comp Pathol,2004,131(2-3):135-141.
    140. Villarreal L P, et al. Rethinking quasispecies theory: From fittest type to cooperative consortia.World J Biol Chem,2013,4(4):79-90.
    141. Villarreal L. Viruses and host evolution: virus-mediated self identity. Adv Exp Med Biol,2012,738:185-217.
    142. Welch B D, et al. Structure of the parainfluenza virus5(PIV5) hemagglutinin-neuraminidase (HN)ectodomain. PLoS Pathog,2013,9(8): e1003534.
    143. Witte L, et al. DC-SIGN and CD150have distinct roles in transmission of measles virus fromdendritic cells to T-lymphocytes. PLoS Pathog,2008,4(4): e1000049.
    144. Woo P C, et al. Feline morbillivirus, a previously undescribed paramyxovirus associated withtubulointerstitial nephritis in domestic cats. Proc Natl Acad Sci U S A,2012,109(14):5435-5440.
    145. Worrall E E, et al. Xerovac: an ultra rapid method for the dehydration and preservation of liveattenuated Rinderpest and Peste des Petits ruminants vaccines. Vaccine,2000a,19(7-8):834-839.
    146. Xiang Z. Advances in homology protein structure modeling. Curr Protein Pept Sci,2006,7(3):217-227.
    147. Yadav V, et al. Expression of Peste des petits ruminants virus nucleocapsid protein in prokaryoticsystem and its potential use as a diagnostic antigen or immunogen. J Virol Methods,2009,162(1-2):56-63.
    148. Yamamoto H, et al. CD46_The ‘multitasker’ of complement proteins. The International Journal ofBiochemistry&Cell Biology,2013,(45):2808-2820.
    149. Yanagi Y, et al. Measles virus receptor SLAM (CD150). Virology,2002,299(2):155-161.
    150. Zhang X, et al. Structure of measles virus hemagglutinin bound to its epithelial receptor nectin-4.Nat Struct Mol Biol,2013,20(1):67-72.
    151. Zhang Y. Progress and challenges in protein structure prediction. Curr Opin Struct Biol,2008,18(3):342-348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700