垃圾填埋场覆土层植物根围甲烷氧化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾填埋场覆土层中的甲烷氧化菌可氧化温室气体甲烷,其氧化活性受地被植物等多种因素影响。采用滚管计数法、气相色谱法以及分子生物学方法PCR-DGGE,研究了阿苏卫、桃树岗、老虎冲和赵家沟四个垃圾填埋场封场覆土层中甲烷氧化菌的数量、种类多样性以及甲烷氧化活性。
     研究发现在富集培养过程中甲烷氧化菌的生长繁殖经历了4个时期:调整期,指数期,稳定期以及衰亡期,在培养的第7天左右甲烷氧化菌的密度达到峰值,进入稳定期。垃圾填埋场土壤中甲烷氧化菌的数量范围在107~108 cfu·g-1干土,甲烷氧化速率在10-7~10-8 mol·h-1·g-1之间。各填埋区土样氧化甲烷速率的平均值从高到低的顺序为:阿苏卫垃圾填埋场>桃树岗垃圾填埋场第3期>老虎冲垃圾填埋场>桃树岗垃圾填埋场第2期>桃树岗垃圾填埋场第1期>赵家沟垃圾填埋场。垃圾填埋场的封场时间与甲烷氧化菌数目呈显著负相关,与甲烷氧化速率呈极显著负相关;填埋场植被覆盖率与甲烷氧化菌数量存在极显著负相关,与氧化速率呈显著负相关;覆土层土壤含水率与甲烷氧化速率等具有一定的负相关;本试验结果显示覆土的pH、有机质与铵态氮等指标与甲烷氧化菌数目、甲烷氧化速率均无显著相关性,夏季较春季更有利于甲烷氧化菌的繁殖及氧化甲烷,但季节性差异并不大,年度差异对甲烷氧化菌的影响也较小。甲烷氧化菌数量和甲烷氧化速率呈显著正相关,但二者在数值上并不构成明显的正比例关系,说明甲烷氧化菌的数量并非影响土壤甲烷氧化活性的唯一决定因素。
     同一个填埋场各土样之间无论是Ⅰ型还是Ⅱ型甲烷氧化菌,都具有较高的相似性,相似度基本都在60%以上。填埋场覆土层植物根围土样中甲烷氧化菌条带的数量和亮度明显多于无植物区域的空白对照土样,并且植物的根围覆土中甲烷氧化菌群落的多样性总体上大于无植物生长区域土壤。不同植物之间根围土壤中甲烷氧化菌的多样性指数差异不明显。Ⅰ型、Ⅱ型甲烷氧化菌的多样性指数与丰度均存在正相关性,甲烷氧化菌种类的丰度影响了其多样性,但甲烷氧化菌种类的丰度并不能决定其多样性,二者的相关性并不显著。甲烷氧化菌的多样性与其甲烷氧化速率具有一定的正相关性,但二者并不成线性的正比例关系,这说明了多样性指数并非影响甲烷氧化速率的唯一因素,甲烷的氧化也与环境条件等其它因素相关。
     植物可促进甲烷氧化菌的数量、多样性及甲烷氧化活性的提高,打碗花、小飞蓬、刺儿菜和鸡眼草等植物对甲烷氧化菌的促进作用更加明显,建议将其作为填埋场封场后的先锋植物种植。
Greenhouse gas, methane, can be oxidized by methane-oxidizing bacteria (methanotrophs) in landfill cover soils. The oxidation activities of these bacteria were affected by several factors, including plant cover. In this study, the population of methanotrophs in landfill cover soil and methane oxidation activities were investigated by using the hungate roll tube method and gas chromatography, and the evolution of methanotrophs community in landfill cover soils were investigated by DGGE of 16S rDNA fragment polymerase chain reaction products.
     Methanotroph growth and reproduction, in the enrichment culture process, can be divided into 4 phases:adjustment, exponential, stationary, and decline phase. The first 7 days in culture about the density of methane oxidizing bacteria reached a peak into the stationary phase. The amount of methanotroph in the landfills soil ranges from 107 to 10s cfu·g-1 dry soil, the oxidation rate on methane fluctuates between 10-7~10-8 mol-h-1·g-1. The high-to-low order of the average oxidation rate in the soil samples from the different landfills is, Asuwei landfill> Taoshugang landfill 3> Laohuchong landfill> Taoshugang landfill 2> Taoshugang landfill 1> Zhaojiagou landfill.
     The results showed that the shorter closure time for the landfill, the higher methanotroph population and methane oxidation activities; The vegetation coverage were highly significant negative correlations with methanotroph population and significant negative correlations with methane oxidation activities; there was negative correlation between moisture content and methane oxidation activities; The results also showed that there were no significant correlation between pH, organic matter, NH4+ of landfill cover soils and methane oxidation activities. It was better for methanotrophs to reproduce and oxidizing methane in summer than Spring, but the seasonal and year variations were not in relievo. The methane oxidation activities were positively correlated with the population of methanotrophs, but that was not the only factor to influence the activities.
     Not the typeⅠmethanotrophs nor the typeⅡmethanotrophs in the cover soils of the same landfill showed high similarity(generally over 60%).The methanotrophs community composition in rhizosphere soil of landfill was higher than bulk soil. The various of Shannon index of methanotrophs in rhizosphere soil of different plants were not obviously, there was a positively correlation between the abundance and Shannon index of both typeⅠand typeⅡmethanotrophs, the abundance of methanotrophs affected the methanotrophs community composition, but not existing significant correlation between them. The methanotrophs community composition was positively correlated with the methane oxidation activities, but was not directly proportional each other, so methanotrophs community composition was not the only factor to influence the methane oxidation activities.
     Plants could promote the Population, diversity and methane oxidation activity of methanotrophs. The functional plants for methane purification, such as Calystegia hederacea Wall, Conyza Canadensis, Cirsium setosum (Willd.) MB, and Kummerowia striata (Thunb.) Schindl., were suitable as pioneer plant species for revegetation in closed landfills.
引文
[1]鲍士旦.士壤农化分析[M].北京:中国农业出版社.2000.
    [2]陈中云,闵航,吴伟祥,等.土壤中甲烷氧化菌种群数量及其与甲烷氧化活性的关系[J].浙江大学学报(农业与生命科学版),2001,27(5):546-550.
    [3]丁维新,蔡祖聪.土壤甲烷氧化菌及水分状况对其活性的影响[J].中国生态农业学报,2003,(11):94-97.
    [4]费平安,工琦.填埋场覆盖层甲烷氧化机理及影响因素分析[J].可再生能源,2008,26(1):97-101.
    [5]李坤、郭修武、孙英妮等,葡萄连作对土壤细菌利真菌种群的影响[J].应用生态学报,2009,20(12):3109-3114
    [6]梁战备,史奕,王琛瑞,等.长白山阔叶红松林不同深度森林上壤氧化甲烷研究[J].中国科学院研究生院学报,2004,21(1):71-77.
    [7]欧阳培.垃圾围城:突围的原则,途径及其政策措施[J].再生资源研究,2003,2:23-27
    [8]余婷,何品晶,吕凡,等.生活垃圾填埋操作方式对覆土中Ⅰ型甲烷氧化菌的影响研究[J].环境科学,2008,29(10):2987-2992.
    [9]张应华,刘志全,李广贺等.基于不确定性分析的健康环境风险评价[J].环境科学,2007,28(7):1409-1415.
    [10]Adamsen A P S, King GM. Methane consumption in temperate and subarctic forest soils:rates, vertical zonation, and responses to water and nitrogen [J]. Applied and Environmental Microbiology,1993,59(2):485-490.
    [11]Alex De.V. et.al. Methane Oxidation in Simulated Landfill Cover Soil Environments [J]. Environ-mental Science and Technology,1999,33(11):1854-1859.
    [12]Auman A J, Stolyer S. Molecular characterization of methanotrophic isolates from paddy soil[J]. Applied and Environmental Microbiology.1997,63:349-357.
    [13]Barlaz M A, Green R B, Chanton J P, et.al. Evaluation of a biologically active cover for mitigation of landfill gas emissions [J].Environmental Science and Technology,2004,38:4891-4899.
    [14]Bedard C, Knowles R. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO consumption by methanotrophs and nitrifiers [J]. Microbiology Reviews,1989,53:68-84.
    [15]Bender M. Kinetics of methane oxidation in oxic soils[J].Chemosphere,1993,26(1-4):687-696.
    [16]Bodelier P L, Laanbroek H J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments[J]. FEMS Microbiology Ecology,2004,47(3):265-277.
    [17]Bodelier P L, Roslev E P. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots[J].Nature.2000,403:421-424.
    [18]Borjesson G, sundh I, Svensson B. Microbial oxidation of CH4 at different temperatures in landfill cover soils[J]. FEMS Microbiology Ecology,2004,48(3):305-312.
    [19]Bosse U, Frenzel P. Activity and distribution of CH4-oxidizing bacteria in flooding rice microcos-rnas and in rice plants (Oryza sativa) [J]. Applied and Environmental Microbiology.1997,63(4): 1199-1207.
    [20]Bourne D G, Mcdonald L R.Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils [J]. Applied and Environmental Microbiology.2001, 67(9):3802-3809.
    [21]Charlotte S, et.al. Comparative Oxidation and Net Emissions of Methane and Selected NonMeth-ane Organic Compounds in Landfill Cover Soils[J], Environmental Science and Technology,2003, 37(22):5150-5158.
    [22]Charlotte S, et.al. Capacity for Biodegradation of HCFCs and HCFCs in a Methane Oxidative Counter-Gradient Laboratory System Simulating Landfill Soil Covers[J]. Environmental Science and Technology,2003,37(22):5143-5149.
    [23]Chen Zhongyun, Wu Weixiang, Min Hang.Isolation and characterization of two strains of Strep tomyces hygroscope icus capable of using methane as substrate[J]. Journal of Zhejiang University (Agriculture and Life Seienees),2000,26(4):384-388.
    [24]Cheng Y S, Halsey J L. Detection of methanotrophs in groundwater by PCR[J]. Applied and Envir-onmental Microbiology,1999,65(2):648-651.
    [25]Cicerone R J, Oremland R S.Biogeochemical aspects of atmospheric methane [J].Global Biogeoch-emical Cycles,1988,2 (4):299-327.
    [26]Conrad R. Soil microorganisms oxidizing atmospheric tracegases (CH4, CO, H2, NO) [J]. Micro-biological reviews,1996,60(4):609-640.
    [27]David Kightley, David B. Nedwell.el. al. Capacily for Methane Oxidation in Landfill Cover Soils Measured in Laboratory-Scale Soil Microcosms [J]. Applied and Environmental Microbiology, 1995,61(2):592-601.
    [28]De Angelis M A.Studies of microbial methane oxidation in deep-sea hydrothermal plumes [J]. Limnology and oceanography.1993,33:34-56.
    [29]De Angelis M A, Baross J A. Enhanced microbial methane oxidation in water from a deep-sea hydrothermal vent field at simulated in situ hydrostatic pressures [J]. Limnology and oceanography. 1991,36(3):570-577.
    [30]De Visscher A, Thomas D, Boeckx P, et.al. Methane oxidation in simulated landfill cover soil environments [J]. Environmental Science and Technology,1999,33:1854-1859.
    [31]Dedysh S N,Derakshani M. Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRN A fluorescence in situ hybridization,including the use of a newly developed oligonucleotide probe for Methylocella palustris [J]. Applied and Environmental Microbiology, 2001,67(10):4850-4857.
    [32]Dedysh S N. Enrichment, isolation and some properties of methane utilizing bacteria [J]. Soil Biology & Biochemistry,1996,98:101-108.
    [33]Eller G, Frenzel P. Changes in activity and community structure of methane-oxidizing bacteria over the growth period of rice[J]. Applied and Environmental Microbiology,2001,67:2395-2403.
    [34]Frans-Jaco W A. Spatial distribution and inhibition by armmonium of methane oxidation in intertidal freshwater marshes[J]. Applied and Environmental Microbiology,1997,63:4734-4740.
    [35]Gilbert B, Abmus B, Hartmann A, et al. In situ localization of two methanotrophic strains in the rhizosphere of rice plants[J]. FEMS Microbiology Ecology,1998,25:117-128.
    [36]Gilbert B, Frenzel P. Rice roots and CH4 oxidation:the activity of bacteria, their distribution and the microenvironment[J]. Soil Biology & Biochemistry,1998,30(14):1903-1916.
    [37]Gilbert B. Frenzel H. Methanotrophic bacteria in the rhizosphere of rice microcosms an d their effect on porewater methane concentration and methane emision[J]. Biology and Fertility of Soils, 1995,20:93-100.
    [38]Gunnar Boerjesson et.al Microbial oxidation of CH4 at high partial pressures in an organic landfill cover soil under diferent moisture regimes[J]. FEMS Microbiology Ecology,1998,26 (3):207-217.
    [39]Hanson R S, Hanson T E.Methanol trophic bacteria[J].Microbial Review,1996,60:439-471.
    [40]Harriss R C, Daniel I Sebacher, Frankp, et, al. Methane flux in the great dismal swamp [J]. Nature,1982,297:673-674.
    [41]Henckel T, Jackel U. Melocular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane[J]. Applied and Environmental Microbiology,2000,66:1801-1808.
    [42]Henson J M, M V Yates, J W Cochran. Metabolism of chlorinated methanes ethanes, and ethylenes by a mixed bacterial culture growing on methane[J] Journal of Industrial Microbiology,1989, 4(1):29-35.
    [43]Hilger H A, A G Wollum, Barlaz M A, Landfill methane oxidation response to vegetation, fertilization, and liming[J]. Journal of Environmental Quality,2000,29(1):324-332.
    [44]Hilgera H A, Cranforda D F, Barlaz M A. Methane oxidation and microbial exopolymer production in landfill cover soil[J]. Soil Biology Biochemistry,2000,32(4):457-463.
    [45]Houghton J T, Ding Y, Griggs D J. Climate Change 2001:The Scientific Basis Contribution of Working Group I to the Third Assesment Report of Intergovernmental Panel of Climate Change[M].Cambridge:Cambridge University Press.2001.
    [46]Hutsch B W. Methane oxidation in non-flooded soils as affected by crop production-invited paper [J]. European Journal of Agronomy,2001,14(4):237-260.
    [47]Kevin W. Mandernack et.al. The biogeochemical controls of N2O production and emission in landfill cover soils:the role of methanotrophs in the nitrogen cycle[J]. Environmental Microbio-logy,2000,2(3):298-309.
    [48]Lelieveld J,P.j. Crutzen, F.J. Dentener. Changing concentration, lifetime and climate forcing of atmospheric methane[J].Tellus,1998,50(2):128-150.
    [49]Lu R K. Methods for soil agrochemistry analysis [M]. Beijing:China Agricultural Science and Technology Press,2000.
    [50]Mark G, Wise, J Vaun McArthur, Lawrence J. Shimkets. Methanotroph diversity in landfill soil: Isolation of novel Type Ⅰ and Type Ⅱ methanotrophs whose presence was suggested by culture-independent 16S ribosomal DN A analysis [J]. Applied and Environmental Microbiology,1999, 65(2):4887-4897.
    [51]Mosier A, Schimel D. Methane and nitrous oxide fluxes in native,fertilized and cultivated grasslands[J].Nature(London),1991,350:330-332.
    [52]Oremland R S, C W Culbertson. Importance of methane oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor[J]. Nature (London),1992,356:421-423.
    [53]Peter F. Plant-Associated Methane Oxidation in Rice Fields and Wetland[J]. Advances in Microbial Ecology,2000,16:85-114
    [54]Reay D S, Radajewski S, Murrell J C, et al. Effects of land-use on the activity and diversity of methane oxidizing bacteria in forest soils[J]. Soil Biology Biochemistry,2001,33(12):1613-1623.
    [55]Scheutz C, Kjeldsen P. Environmental factors influencing atenuation of methane and hydrochloro fluorocarbons in landfill cover soils[J]. Journal of Environmental Quality,2004,33(1):72-79.
    [56]Schnell S, King G M. Responses of methanotrophic activity in soils and cultures to water stress[J]. Applied and Environment Microbiology,1996,62:3203-3209.
    [57]Schuetz C, Bogner J, Chanton J, et.al. Comparative oxidation and net emissions of met hane and selected nonmet hane organic compounds in landfill cover soils [J]. Environmental Science and Technology,2003,37:5150-5158.
    [58]Seghers D, Siciliano S D, Top E M, Verstraete W. Combined effect of fertilizer and herbicide applications on the abundance, community structure and performance of the soilmethanotrophic community[J]. Soil Biology and Soil Chemistry,2005,37:187-193.
    [59]Sohngen N L, Uber bakterien.welche methan ab kohien-stoffnahrung and energiequele gebrauchen [J].Paramtenkd Infectionskr Abt,1906,15:513-517.
    [60]Stralis-pavese N, Bodrossy L, Reichenauer T G, et al.16S rRNA based T-RFLP analysis of methane oxidizing bacteria:Assessment, critical evaluation of methodology performance and application for landfill site cover soils[J]. Applied and Environment Microbiology,2006,31(3): 251-266.
    [61]Stralis-pavese N, Sessitsch A, Weilharter A, et al. Optimization of diagnostic microarray for application in analyzing landfill methanotroph communities under different plant covers [J]. Environmental Microbiology,2004,6:347-363.
    [62]Van Bodegom P. Methane emisions from rice paddies;experiments and modeling[J]. Science New-Guinea,1988,16(2):87-96.
    [63]Vandernat F J W A, Middelburg J J. Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris[J]. Biogeochemistry,1998,43:79-104.
    [64]Visscher AD, Cleemput O V. Simulation model for gas diffusion and methane oxidation in landfill cover soils[J]. Waste Manage,2003,23(7):581-591.
    [65]Visscher AD, Schippers M, Cleemput O V. Short-term kinetic response of enhanced methane oxidation in landfill cover soils to environmental factors[J]. Biology and Fertility of Soils,2001, 33(2):231-237.
    [66]Wang Z P, Ineson P. Methane oxidation in a temperate coniferous forest soil:Effects of inorganic N[J]. Soil Biology Biochemistry,2003,35(3):427-433.
    [67]Whalen S C, W S Reeburgh, K A Sandbeck. Rapid methane oxidation in a landfill top cover soil[J]. Applied and Environment Microbiology,1990,56(11):3405-3411.
    [68]Whittenbury R, Phillips K C. Enrichment,isolation and some properties of methane utilizing bacteria[J]. Journal of General Microbiology,1970,61:205-218.
    [69]Wise M G, McArthur J V. Methylosarcina fibrata gen. nov. sp. nov. and Methylosarcina quisquiliarum sp. nov. novel type I methanotrophs. International Journal of Systematic and Evolutionary Microbiology.2001,51(2),611-621.
    [70]Ye N F, LuF, Shao L M, et al. Bacterial community dynamics and product distribution during pH-adjusted fermentation of vegetable wastes[J]. Journal of Applied Microbiology,2007,103(4): 1055-1065.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700