平面连杆机构的过约束及自调结构的分析与设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
平面连杆机构是工程实际中应用非常广泛的机构类型;同时,平面连杆机构又可视为其它基本机构的理论结构原形,是机构学理论与方法的研究中最基本、最主要的研究对象。因而,平面连杆机构始终受到学术界和工程界的高度重视。但是,平面连杆机构中广泛存在的过约束,造成机构对制造、安装误差特别是运动副元素的形位误差十分敏感;同时,由于不可避免的内部和外部不确定因素的影响,常常会造成机构运动的“障碍”及系统中某些构件的变形和运动副中的附加动载荷,引起机械的振动、冲击、噪声等而导致机械的效率和工作性能的降低。因此,寻求新的、性能良好的、具有自调与自适应性的新型连杆机构,并在新的应用中不断完善与创新,使其能够高效率、高稳定的可靠工作并具有较低的生产成本,以满足现代科学技术发展和市场竞争的需要,乃是当前所共同关注的问题。这些问题的解决有着重要的理论意义和工程应用价值。
     因此,本文以平面连杆机构为研究对象,以高效、高稳定性及低成本为主要目标,对机械中的约束与过约束、自调机理与自调结构、运动副误差对平面连杆机构约束不确定性的影响程度以及无过约束机构的设计理论与方法进行了深入、系统的研究。论文的主要研究成果及创新点有以下几部分:
     (1) 基于广义约束的概念,从有利于设计和控制约束的原则,对机构及机械系统中的常见约束进行了分类,首次提出了“基本约束”、“静定约束”及“超静定约束”的概念和分类定义;并首次将虚约束、重复约束、消极约束、多余约束、过约束等概念,从本质上统一起来进行定义,将其都统一称为“过约束”。明确指出:过约束是人们为满足除基本自由度需要以外的其它特殊功能和结构上的需要,而人为加在机构中的、理论上不影响机构基本自由度的过多的约束。从而,为采取消除过约束对不同误差敏感的措施指明了方向,更具有工程设计的实用性。
     (2) 根据过约束产生的依据不同,将封闭运动链中过约束分为“理论平面过约束”和“空间-平面过约束”两大类。首次提出了存在理论平面过约束的机构的过约束分析方法,得到了这类机构中存在的过约束的类型和数量;同时,提出其过约束消除措施和方法,得到了这类机构的无过约束自调结构。
     (3) 详细分析了无过约束机构能够实现自调的机理及机构能够实现自调的条件,首次提出了无过约束机构自调性分析的一种精确方法,得到机构自调时圆柱副中的自调位移规律和机构能够实现自调的运动副允许误差角以及三种常用平面四杆机构的自调结构的最适宜的运动副配置方式。本文对机构自调特性分析的结果表明,在不同的运动副配置位置及运动副存在不同的误差情况下,误差对机构
    
    重庆大学博士学位论文
    自调性能的影响程度(也即机构对误差的敏感度)是不同的。其中,曲柄销轴线
    的误差对机构自调性能影响较大。
     (4)首次提出了运动副误差对平面连杆机构约束不确定性影响度的评判指标
    和单因素定量分析方法,得到了机构中不同运动副的不同平面内的误差对机构性
    能的影响程度。本文的分析计算结果表明,平面连杆机构中的非平面约束所造成
    的连杆强制变形中既有扭转变形又有弯曲变形。在机构的某几个位置上有的主要
    是扭转变形,有的主要是弯曲变形,而一般情况下是两种变形的复合,且这种强
    制变形是周期性的,因而必然会引起系统的弹性振动及运动副反力的周期性变化;
    同时,通过算例进一步得出:机构中轴和销的轴线误差尤其是曲柄销(轴)轴线
    的误差对机构性能的影响是较大的,是引起机构及机械系统振动、噪声等有害影
    响的主要根源。此外,从整转副与摆转副的误差影响度分析结果可见,整转副误
    差所引起的封闭障碍及变形显然要大些。
     (5)创造性的应用和发展了Assur机构结构组成原理,提出了按零过约束自
    调基本组进行无过约束机构设计的结构学原理与方法。并在总结自调机构中运动
    副配置方式的合理选用原则的基础上,对平面11级基本杆组和部分常用的平面111
    级基本杆组的零过约束自调基本组进行了详细的分析研究,首次得到了其对应的
    零过约束自调基本组。从而,为方便、快捷地设计无过约束自调机构提供了理论
    依据。
     (6)对新型脉动无级变速器主传动机构进行过约束分析的基础上,对该系统
    进行了消除或减小过约束及其影响的自调结构的创新设计。对样机的传动效率及
    速度波动的测试结果表明本文的设计方法是正确的、有效的。
     本文所做的工作,丰富了机构结构设计理论,推进了平面约束不确定影响的
    分析及消除其不利影响的自调机构的结构分析、设计理论与方法的研究,以及自
    调机构系统的工程应用,具有普遍的指导意义和重要的应用价值。
Planar linkage mechanisms are used very widely in engineering and can also be regarded as the theoretical structure model of all other basic mechanisms, thus they have been gained attention by domestic and overseas researchers and engineers all the time. Nevertheless, the widely existed overconstraints in the mechanisms will make the quality of the mechanisms very sensitive to the inevitable manufacturing, assembly errors (especially, the errors resulted from the shape and position between kinematic pair elements and their axes). At the same time, because the internal and external uncertain factors such as non-plane characteristic of dynamic parameters of links (such as mass distribution, inertia forces, etc.), bending and twist of links, and the changes of environment and operating condition are inevitable, they will form the disturbance to planar constraints and make them possess the characteristic of "uncertain". The uncertainty of planar constraints causes overconstraints, which have no influences in the
    ory on smooth work of a machine with planar linkages, to form obstruction in fact and bring about a series of pernicious influences on the performance of the machines, especially on their dynamic behavior and the quality.
    In order to make the mechanisms possess high efficiency, high stability, and low cost, a thorough study for constraints and overconstraints in the linkage mechanisms, self-adjusting mechanism and self-adjusting structures of the mechanisms, the degree of the influences of errors in different kinematic pairs on performance of the mechanisms, and the theory and method of designing for the mechanisms without overconsstaint was carried out in this dissertation.
    On the basis of the generalized constraints and on principle of designing and controlling the constraints advantageously, the conceptions such as basic constraint, statically constraint, and over-statically constraint were put forward for the first time. With this understanding, the common constraints in mechanisms and mechanical systems were classified. The uniform definition of the overconstraints was presented. According to the differences of mechanism of forming overconstraints, the overconstraints in closed chain mechanisms were divided into theoretical-plane overconstraint and special-plane overconstraint. A method, which is used to analyze for overconstraints of mechanisms with theoretical-plane overconstraint and to eliminate the overconstraints in the mechanisms, was proposed for the first time. The
    
    
    
    characteristics and number of overconstraints in these mechanisms, and the self-adjusting mechanisms without overconstraint were gained.
    The mechanisms and conditions for the mechanisms to adjust itself were analyzed in detail. An accurate method of analyzing for the properties of the mechanisms without overconstraints was given for the first time, we obtained the equations of self-adjusting displacement in the cylindrical pair, the allowable kinematic-pair-axis errors which enable the mechanisms realize function of self-adjustment, and the most rational arrangements of kinematic pairs for the three common four-bar mechanisms. The results of analysis show that the influences of the errors of crank-pin on the self-adjusting properties of the mechanisms are bigger than that of the other pairs.
    A method of describing and analyzing for the degree of influences (DOI) of the kinematic-pair-axis errors on the performance of a mechanism was presented for the first time, and results of DOI of the different errors from the different kinematic pairs were obtained. The results of analysis show that: 1) DOI of the pin-axis errors, especially the crank-pin-axis errors, is bigger than other axis errors; 2) From the calculating results of DOI of the errors of the different kinematic pairs, DOI of rotate-completely pairs is bigger than that of oscillate pairs; 3) The forced coupler-deformations resulted from the constraints out of motion plane consist of twisting and bending deformation, and the deformations are variat
引文
[1] 杨廷力.机构学理论研究进展.机械工程学报,1995,31(2):1~24
    [2] 邹慧君,蓝朝辉,王石刚等.机构学的研究现状、发展趋势和应用前景.机械工程学报,1999,35(5):1~4
    [3] 黄茂林,秦伟.机械原理.北京:机械工业出版社,2002
    [4] 林军.基于高效的双输出函数脉冲发生机构的运动—动力学综合[博士学位论文].重庆:重庆大学,2002
    [5] 孙桓,傅则绍.机械原理(第四版).北京:高等教育出版社,1989
    [6] 楼鸿棣,邹慧君主编.高等机械原理.北京:高等教育出版社,1990
    [7] 白师贤等编著.高等机构学.上海:上海科学技术出版社,1988
    [8] 黄锡恺,郑文纬主编.机械原理(第六版).北京:高等教育出版社,1989
    [9] (美)C.H.苏,C.W.克柱德克利夫著,上海交通大学译.运动学及机构设计.北京:机械工业出版社,1983
    [10] (美)Burr A H著,汪一麟等译.机械分析与机械设计.北京:机械工业出版社,1988
    [11] (美)Paul B著,汪一麟等译.机构运动学与动力学.上海:上海科学技术出版社,1989
    [12] 吕庸厚.组合机构设计.上海:上海科学技术出版社,1996
    [13] 杨廷力.机械系统基本理论.北京:机械工业出版社,1996
    [14] 邹慧君等.加强现代机构学的研究,推动机械产品创新设计的发展.机械设计与研究,2001,17(1):10~12
    [15] 国家自然科学基金委员会.自然科学学科发展战略调研报告(机械学).北京:科学出版社,1994
    [16] 李学荣.新机器机构的创造发明——机构综合.重庆:重庆出版社,1988
    [17] 张启先,张玉茹.我国机械学研究的新进展与展望.机械工程学报,1996,Vol.32,No.4:1~4
    [18] 路甬祥.工程设计的发展趋势和未来.机械工程学报,1997,33(1):1~8
    [19] Frecker M I, Ananthasuresh G K, Nishiwaki S, et al. Topological synthesis of compliant mechanisms using multi-criteria optimization. ASME J. of Mechanical Design, 1997:238~245
    [20] 干东英,王立鼎.微型机械的现状与发展,机械工程学报,1994,30(2):1~8
    [21] Luck K, Model K H. Burmester theory for four-bar-band mechanisms. ASME J. of Mechanical Design, 1995(117): 129~133
    [22] 李哲.动定机构及其应用.机械工程学报,1995,31(31):57~60
    
    
    [23] 黄真,高峰.从并联机器人研究看知识创新注技术创新.机械工程学报,2000,36(2):18~20
    [24] 黄靖远,龚剑霞.机械设计学.北京:机械工业出版社,1991
    [25] M. J. French. Conceptual Design for Engineers. (3rd edition). Spinger-Verlag, 1999
    [26] H. S. Yan. Creative Design of Mechanical Devices. Springer-Verlag, 1998
    [27] [德]G.帕尔,W.拜茨.工程设计学.北京:机械工业出版社,1992
    [28] 黎明,雷源忠.机械工程学科“十五”优先领域构想.机械工程学报,2001,37(6):1~4
    [29] 可控机构的设计理论及其应用研究[博土学位论文].上海交通大学,1999年12月
    [30] 张策,黄永强等著.弹性连杆机构的分析与设计(第二版).北京:机械工业出版社,1997
    [31] Dubowsky S. et al. Dynamic Analysis of Mechanical Systems With Clearance. Part 1: Formation of Dynamic Model [J]. ASME J. Engng. Ind., 1971, 93B: 305~309
    [32] Dubowsky S. et al. Dynamic Analysis of Mechanical Systems With Clearance. Part 2: Dynamic Response [J]. A SME J. Engng. Ind., 1971, 93B: 310~316
    [33] 俞武勇,季林红等.含间隙机构运动副的动力学模型.机械科学与技术,2001,20(5):665~669
    [34] 靳春梅,邱阳等.含间隙机构动态特性分析.机械科学与技术,2001,20(1):55~57
    [35] 石则昌,刘深厚编著.机械动力学.北京:高等教育出版社,1995
    [36] 刘文.具有运动副间隙的机构动力学研究.机械工程学报,1988,24(2):48~56
    [37] 李哲.考虑运动副间隙和构件弹性的平面连杆机构动力学研究[博士学位论文].北京:北京工业大学,1991
    [38] 张兆东.考虑构件弹性和运动副间隙的连杆机构动力分析与综合[博士学位论文].北京:清华大学,1992
    [39] 宋黎,杨坚.考虑间隙移动副碰撞影响的一种动力学分析方法.机械设计与研究,2001,17(2):36~37
    [40] 秦伟,黄茂林.间隙和接触尺度对运动副自由度影响的研究.机械设计,2002,19(12):35~36
    [41] Hazelrigg G A. On the Role and Use of Mathematical Models in Engineering Design.Transactions of the ASME, 1999, 121(9): 336~341
    [42] Hazelrigg G A. A Framework for Decision-Based Engineering Design. Transactions of the ASME, 1998, 120(12): 653~658
    [43] 张鄂.现代设计方法.西安:西安交通大学出版社,1999
    [44] 陈立周编著.稳健设计.北京:机械工业出版社,2000
    [45] Phadke M S. Quality Engineering Using Robust Design. Prentic-Hall International Inc. 1989
    
    
    [46] Sung H. Park. Robust Design and Analysis for Quality Engineering. Chapman & Hall, London, 1996
    [47] King J J. The Robust Method-A New Way to Engineer. Electronic Design, 1995, March 20:119~120
    [48] Bras B., Mistree F., A Compromise Decision Support for Axiomatic and Robust Design.Tran. of the ASME, Journal of Mech. Design, 1995, 117:10~19
    [49] Chen Wei et al. A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors. Transactions of the ASME, 1996, 118(12): 478~485
    [50] Du, X. And Chen, W. Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design, 1999 ASME Design Technical Conference, Paper No. DAC-8565, Las Vegas, Nevada, 1999, 9
    [51] 陈立周.工程稳健设计.机械设计.1998,7:4~5
    [52] 李泳鲜 孟庆国 姬振豫.机械稳健设计的研究概况与趋势.工程设计.1999,1:1~4
    [53] Du, X,Renaud, J.E., and Batill, S.M., An Investigation of Multidisciplinary Design Subject to Uncertainties, 7th AIAA/USAF/NASA/ISSMO Multidisciplinary Analysis &Optimization Symposium, St. Louise, Missouri, 1998:309-319
    [54] Chen W. And Yuan C., "A Probabilisitic-Based Design Model for Achieving Flexibility in Design", Transaction of the ASME Journal, Journal of Mechanical Design, 1999, 121(1): 77~83
    [55] Lombardi M. And Haftka, R.T., "Anti-optimization Technique for Structural Design under Load Uncertrainties," Computer Methods in Applied Mechanics and Engineering,1998,157(1):19~31
    [56] Isukapalli S S and Georgopoulos, P G Stochastic Response Surface Methods(SRSMs) for uncertainty propagation. Application to environmental and biological systems. Risk Analysis, 1998,18:351-363
    [57] Mawis Dimitri N, Bandte Oliver, Delaurentis Daniel A. Robust Design Simulation: A Probabilistic Approach to Multidisciplinary Design. CNAL OF AIRCRAFT.1999,36(1):298~307
    [58] Sues, R. H., Rhodes, G. S. and Oakley, D. R., Multidisciplinary Stochastic Optimization.Proceeding of the 10th Conference on Engineering Mechanics, May, 1995, Boulder, CO, pp.934-937
    [59] Kowal, M. and Mahadevan S., Uncertainty-Based Multidisciplinary Design Optimization.7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louise, 1998
    
    
    [60] Delaurentis D. and Marvris D., Uncertainty Modeling and Management in Multidisciplinary Analysis and Synthesis. The 38th AIAA Aerospace Sciences Meeting, Reno, NV., 2000
    [61] Du, X. and Chen, W., An Efficient Approach to Probabilistic Uncertainty Analysis in Simulation-Based Multidisciplinary Design. The 38th AIAA Aerospace Sciences Meeting and Exhibit, Washington D.C., 2000
    [62] Du, X. and Chen, W., Propagation and Management of Uncertainties in Simulation-Based Collaborative System Design. The 3rd World Congress of Structural and Multidisciplinary Optimization, Buffalo, New York, 1999
    [63] 蔡新,吴中如等.工程结构不确定性设计的哲学思考.河海大学学报(哲学社会科学版),2000,2(1):12~15,80
    [64] 安培文,黄茂林.平面机构过约束的研究进展.机械设计与制造工程,2002,5:1~2,6
    [65] 1985
    [66] 1994, 4:9~27
    [67] 李宗良,林永立编译.现代机构百科(上、下册).北京:世界图书出版公司,1990
    [68] 曲继方,安子军,曲志刚.机构创新原理.北京:科学出版社,2001
    [69] 金琼,杭鲁滨,杨廷力.含R、P副空间5杆回路的过约束分析.机械科学与技术,2001,Vol.20,No.2:169~171
    [70] Bennett GT. A New Mechanism. Engineering, 1903, 76:777~778
    [71] Bricard R. Lecons de Cinematique. Bd. Ⅱ. Paris, 1927, 7~12
    [72] Goldberg M. New Five-Bar and Six-Bar Linkages in Three Dimensions. Trans. ASME,1943, 65: 649~61
    [73] Myard F E. Contribution a la geometric des systemes articules. Bull. Soc. Math. France,1931, 59: 183~210
    [74] Waldron K J. Hybrid Overconstrained Linkages. Journal of Mechanisms, 1968, 3: 73~78
    [75] Hunt K H. Prismatic Pairs in Spatial Linkages. Joumal of Mechanisms, 1967, 2:213~230
    [76] Yang T L. Kinematic Stmctual analysis and Synthesis of Overconstrained Spatial Single-Opened Chains. Proc. Of the 19-th Biennial Mech. Conf., ASME paper 86-DET-189, 1986
    [77] Dives T H. Mechanical Network-Ⅲ. Wrenches on Circuit Screws. M. M. T. 1983, 18(2):107~112
    [78] 黄真,孔令富等.并联机器人机构学理论及控制.北京:机械工业出版社,1997
    [79] 杨廷力.空间机构的结构分析与综合——Ⅰ空间单闭链的结构分析与综合.机械设计,1987(2):1~15
    [80] 罗玉峰.空间单闭链独立约束方程数的确定.机械科学与技术,1991,10(3):1~6
    
    
    [81] Lee C C. et al. Movable Spatial 6R Mechanisms with Three Adjacent Parallel Axes. ASME J. Mech. Des. 1993, 115:522~529
    [82] Pamidi P R. et al. Necessary and Sufficient Existence Criteria of Overconstrained Five-Link Spatial Mechanisms with Helical, Cylinder, Revolute and Prism Pairs. ASME Jnl. of Eng. for Ind. 1973, 95:737~743
    [83] 金琼,杭鲁滨,杨廷力.基于单开链运动相容性的过约束机构分析新方法.机械科学与技术,2001,Vol.20,No.3:404~406
    [84] Mavroidis C, Roth B. Analysis and synthesis of Overconstrained Mechanisms. Transactions of the ASME, 1995, 117(3): 69~74
    [85] Mavroidis C, Roth B. New and Revised Overconstrained Mechanisms. Transactions of the ASME, 1995, 117(3): 75~82
    [86] Bagci C. Determining General and Overclosing Constraints in Mechanisms Mobility Using Structural Finite Element Joint Freedoms. Transactions of the ASME, 1992,114(9): 376~383
    [87] Bagci C. Degrees of Freedom of Motion in Mechanisms. Transactions of the ASME, 1971, 93(2): 140~148
    [88] (美)Haug E J著,刘兴祥译.机械系统的计算机辅助运动学和动力学.北京:高等教育出版社,1996
    [89] 秦伟.基于约束的自调机械结构理论与工程设计研究[博士学位论文].重庆:重庆大学,1999
    [90] 董军,黄清世.具有虚约束的平行四边形机构的受力分析.江汉石油学院学报,1991,13(3):64-71
    [91] 曾励.连杆行星齿轮过约束机构的研究[博士学位论文].重庆:重庆大学,1997
    [92] 朱才朝.三环减速器振动控制的研究[博士学位论文].重庆:重庆大学,1998
    [93] Howell L L and Midha A. A Loop-Closure Theory for the Analysis and Synthesis of Complaint Mechanisms. Transactions of the ASME, 1996, 118(3): 121~125
    [94] Huang C. and Roth B., Dimensional Synthesis of Closed-Loop Linkages to Match Force and Position Specifications. Transactions of the ASME, 1993, 115(6): 194~198
    [95] (民主德国)Volmer J等著,石则昌 陆锡年等译.连杆机构.北京:机械工业出版社,1989
    [96] (民主德国)Volmer J主编,孙可宗等译.机构学教程.北京:高等教育出版社,1990
    [97] 张启先.空间机构的分析与综合(上册).北京:机械工业出版社,1984
    [98] (美)Shigley J E等著,聂新译.机械原理与机构学.重庆:科学技术文献出版社重庆分社,1987
    [99] Johnson R C著,陆国贤,丁怡等译.机械设计综合—创造性设计与最优化.北京:机械工业出版社,1987
    
    
    [100]飞呜浩等.多自由度可调整机构研究.日本机械学会论文集(C编),54卷482号(昭63~10)
    [101]秦伟,黄茂林.汽轮机缸体数控随形磨削机的最优结构设计.重型机械,2001,2:37~38
    [102]秦伟,黄茂林等.多自由度随形打磨机器人机械臂的动态仿真.机械传动(增刊),1996,20(2):150~152
    [103]秦伟,黄茂林.平面连杆机构过约束分析方法的初步研究.机械设计与研究,1998(增刊):29~31
    [104]安培文,黄茂林,平面闭链机构中过约束分析的研究与应用.机械设计,2002,7:18~22
    [105]安培文, 黄茂林.平面机构过约束分析方法的综合应用.重庆大学学报,2002,25(5):21~23
    [106]秦伟,黄茂林等.制造误差对过约束机构性能影响的研究.中国机械工程,2002,13(15):1327~1331
    [107]李太福等.误差对平面滑块机构运动特性的影响研究.机床与液压,2002,3:122~124
    [108]秦伟,黄茂林.平面自调结构组在自适应机构中的应用研究.机械设计与研究,2000(增刊):44~45
    [109](俄)奥佐尔著,唐炜柏,黄茂林,王鸿恩译.机械原理教程.重庆大学出版社,1992
    [110](俄)K.B.弗罗洛夫著,张作毅,第永安,金孚文待译,机械原理.北京:高等教育出版社,1997
    [111]祝毓琥,刘行远.空间连杆机构的分析与综合.北京:高等教育出版社,1986
    [112]谭浩强,田淑清.FORTRAN语言FORTRAN77结构化程序设计[M].北京:清华大学出版社,1990.
    [113]安培文,黄茂林.无过约束自调机构允差分析的一种精确方法.重庆大学学报,2003,26(1):1~3
    [114]安培文,黄茂林.平面连杆机构的自调及其允差的分析研究.中国机械工程,2002,13(23):2040~2044
    [115]同济大学数学教研室主编.高等数学上册(第四版).北京:高等教育出版社,1996
    [116]郭大钧.大学数学手册.济南:山东科学技术出版社,1985
    [117]清华大学数学教研组编.高等数学下册.北京:人民教育出版社,1964
    [118]黄真.空间机构学.北京:机械工业出版社,1991
    [119]王庭树.机器人运动学及动力学.西安:西安电子科技大学出版社,1990
    [120](日)牧野洋,(中)谢存禧等.空间机构及机器人机构学.北京:机械工业出版社,1987
    [121]马香峰主编.机器人机构学.北京:机械工业出版社,1991
    [122]杨基厚编著.机构运动学与动力学.北京:机械工业出版社,1987
    [123]曹惟庆.机构组成原理.北京:高等教育出版社,1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700