工业机器人标定技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机器人标定是离线编程技术实用化的关键技术之一,所谓标定就是应用先进的测量手段和基于模型的参数识别方法辨识出机器人模型的准确参数,从而提高机器人绝对精度的过程。
     本文首先结合某打磨机器人的实际几何结构,建立了该机器人的误差模型,利用单点法来辨识几何参数误差值;提出了误差分类补偿的方法,建立了机器人的理想和实际运动学模型,获得了运动学正解和逆解。
     针对机器人关节角误差补偿,本文利用遗传神经网络来获得机器人的关节误差,为克服遗传算法易陷入局部最优的缺点,引入具有动态参数编码特性的Solis&Wets算法对遗传算法进行有益的补充,通过对机器人的关节误差进行补偿可以部分提高机器人的位姿精度。
     进一步地,研究了机器人的几何参数标定法,利用位姿匹配原理,采用非线性优化算法和线性方程迭代法分别标定了打磨机器人的几何参数误差并把二者的标定结果进行了比较。在此基础上,考虑到机器人的部分几何参数在工作空间中产生的位姿误差几乎相同而无法区分,推导了非冗余几何参数集,并与完整集的标定结果进行了比较分析。
     考虑到几何参数标定法的一些缺陷,提出了基于神经网络的机器人位姿误差标定算法,利用前馈神经网络分别与打磨机器人的理想运动学模型及实际运动学模型相结合,并分别采用四种方案对机器人的位姿进行了精确的标定,并对标定结果进行了比较分析。考虑到机器人的使用由逆运动学控制,利用前馈神经网络对机器人进行了逆运动学标定。仿真结果表明该方法的标定效果优于单纯的几何参数法。
     为验证误差模型和单点测量的误差参数辩识方法的实际效果,在打磨机器人工作空间内选取多个位姿进行了实际标定,用六维激光跟踪仪为测量工具,利用单点法来辩识几何误差参数,经补偿后的单轴位置误差不超过5μm,部分指标达到了用户的要求。
     推导了机器人的动力学模型,并对计算力矩加PD反馈控制方法进行了Lyapunov稳定性分析;针对计算力矩的不确定性,利用线形神经网络法进行
Robot calibration is one of the key techniques of robot off-line programming. Calibration is defined as using advanced measurement equipments and model -based parameter identification approaches to identify the accurate robot parameters and increase the absolute accuracy.
    Combining its real geometrical structure, a polishing robot's error model is established and a single point method is used to identify the geometrical parameter errors. Introducing a new error compensation thought in which different kinds errors can be compensated with different ways. Establishing the ideal and actual kinematics model, and kinematics equation and inverse kinematics one are obtained.
    In order to compensate the joint errors, this paper uses genetic neural network to get the joint errors. To overcome the premature of the genetic algorithm, the paper introduces Solis&Wets algorithm that has dynamic parameter encoding character to complement the genetic algorithm. The robot joint errors are achieved through genetic neural network, and robot pose accuracy is increased through compensating the joints.
    Further, this paper studies the geometry parameters calibration method. Based on pose matching principle, the paper uses nonlinear optimization procedure and iterative linear equation to calibrate the geometrical parameters and compare their calibration results. Considering that in some case some of the robot parameters that theoretically are necessary could possibly be indistinguishable to others, because they produce almost the same manipulator pose error in the considered working subspace. A new non-redundant error parameter set is obtained and its calibration results are compared and analysised with the complete set.
    Considering the shortcomings of the geometrical parameter calibration method this paper introduces a new calibration method based on neural network.
引文
1.刘振宇。制约机器人向先进制造系统集成若干问题的研究[D]。沈阳:中国科学院研究生院博士学位论文,2002。
    2.王瑞芳。研磨抛光机器人加工系统的研究与实现[D]。沈阳:中国科学院研究生院硕士学位论文,2004。
    3. Roth Z, Benjamin W, Mooring, Bahram R. An overview of robot calibration [J]. IEEE Journal of Robotics and Automation, 1987, 3: 377-385.
    4. Hayati, S.A. Robot arm geometrical link parameter estimation[C]. Proceedings of the 22nd IEEE conference on decision and control, 1983: 1477-1483.
    5. Judd R.P, Knasindki A.B. A technique to calibrate industrial robots with experimental verification [J]. IEEE Transaction on robotics and automation, 1990, 6 (1): 20-30.
    6. Henry W. Stone, Arthur C. Sanderson. Statistical performance evaluation of the S-model arm signature identification technique [J]. IEEE Transactions on robotics and automation, 1988, 4: 939-946.
    7. Driels M.R, Pathre U.S. Robot manipuilator kinematic compensation using a generalized Jacobian formulation [J]. Journal of robotic system, 1987, 4(2): 259-280.
    8. Hanqi Zhuang, Zvi S. Roth. A complete and parametrically continuous kinematic model for robot manipulators [J]. IEEE transaction on robotics and automation, 1992, 8(4): 451-463.
    9. Klaus Schroer, Stephen L. Albright, Michael Grethlein. Complete, minimal and model-continuous kinematic models for robot calibration [J]. Robotics & Computer integrated manufacturing, 1997, 13(1):. 73-85.
    10. Sheth P.N, Uicker J.J. IMP (Integrated Mechanisms Program), a computer aided design analysis system for mechanisms and linkages [J]. ASME journal of engineering for industry, 1992,94: 454-464.
    11. K. Kazerounian, G. Z. Qian. Kinematic calibration of an industrial manipulator [J]. ASME journal of mechanisms, transmission and automation in design, 1989, 111: 482-487.12. Chen I M, Yang G L, Tan C T. Local POE model for robot kinematic calibration [J]. Mechanism and machine theory, 2001, 36: 1215-1239.
    13.Guilin Yang, I-Ming Chen, Wee Kiat Lim, Song Huat Yeo. Self-calibration of three-legged modular reconfigurable parallel robots based on leg-end distance errors [J]. Robotica, 2001, 19:187-198.
    14.Ambarish Goswami, Atthur Quaid, Michael Peshkin. Identifying robot parameters using partial pose information[C]. IEEE international conference on Systems, Man and Cybernetics, Chicago, IL, 1992, 18-21.
    15.O. Sato, K. Shimojima, G. Olea, R. Furutani, K. Takamsau. Full parameter calibration of parallel mechanism[C]. Proceedings of 4th euspen international conference, Glasgow, Scotland (UK), 2004, 1-2.
    
    16. Morris R. Driels, Uday S. Pathre. Vision-based automatic theodolite for robot calibration[C]. IEEE transaction on robotic and automation, 1991, 7(3):351-360.
    
    17. J. Fraczek, Z. Busko. Calibration of multi robot system without and under load using electronic theodolites[C]. Proceedings of the 1999 IEEE international conference on robotics and automatuon, Detroit, Michigan, 1999, 71-75.
    
    18. Driels. M. R, L. W. Swayze, 1. S.Potter. Full-pose calibration of a robot manipulator using a coordinate measuring machine [J]. International Journal of Advanced Manufacturing Technology, 1993, 8:34-41.
    
    19.Elatta A Y, Li P G, Fan L Zh, Yu D Y, Luo F. An overview of robot calibration [J]. Information Technology Journal 2004, 3 (1): 74-78.
    20. Tang G.R, B.W. Mooring. Plane-motion approach to manipulator calibration [J]. International journal of advanced manufacturing technology. 1992, 7: 21-28.
    21.Omodei A, Legnani G, Adamini R. Tiboni M. Three methodologies for the calibration of industrial manipulators: experimental results on a SCARA robot [J]. Journal of Robotic System, 2000, 17 (6): 291-307.
    22. William K.Veitschegger, Chi Haur Wu. Robot calibration and compensation [J].IEEE journal of robotics and automation, 1988, 4(6): 643-656.
    23.M.Grotjahn, M.Daemi, B.Heimann. Friction and rigid body identification of robot dynamics [J]. International journal of solids and structures, 2001, 38:1889-1902.24. Agostino Martineli, Nicola tomatis, Adriana tapus, Roland Siegwart. Simultnaeous localization and odometry calibration for mobile robot[C]. Proceedings of the 2003 IEEE/RSJ international conference on intelligent robots and systems, Las Vegas, Nevada, 2003, 1499-1504.
    25. Renders J.M, E.Rossignal, M. Becquet, R. Hanus. Kinematic calibration and geometrical parameter identification for robots [J], IEEE transactions on robotics and automation, 1991,7:721-731.
    26. M.Abderrahim, A.R.Whittaker. Kinematic model. Identification of industrial manipulator [J]. Robotics and computer integrated manufacturing, 2000,16: 1-8.
    27. Robert John Horning. A comparison of identification techniques for robot calibration [D]. Master dissertation, Case Western Reserve University, 1998.
    28. Marco A, Steven D. An analytical method to eliminate the redundant parameters in robot calibration[C]. Proceedings of IEEE international conference on Robotics and Automation, Cambridge, USA, 2000, 4: 3609-3615.
    29.Khalil M, M.Gautier. Identifiable parameters and optimum configurations for robots calibration [J]. Robotica, 1991,9:63-70.
    30. David Daney. Optimal measurement configurations for gough platform calibration[C]. Proceedings of the 2002 IEEE international conference on robotics and automation, Washington DC, 2002, 147-152.
    31.Hanqi Zhuang, Jie Wu. Optimal planning of robot calibration experiments by genetic algorithms[C]. Proceedings of the 1996 IEEE international conference on robotics and automation, Minneapolis, Minnesota, 1996, 981-986.
    32.Hanqi Zhuang, kuanchih Wang. Optimal selection of measurement configurations for robot calibration using simulated annealing [J]. IEEE transactions on robotics and automation, 1994,393-398.
    33. Jan Swevers, Chris Ganseman, Dilek Bilgin Tukel, Joris De Schutter. Optimal robot excitation and identification [J]. IEEE transactions on robotics and automation, 1997,13(5): 730-740.
    34. Zhong X L, Lewis J, Francis L.N. Inverse robot calibration using artificial neural networks [J]. Engineering application of Artificial intelligence. 1996, 9??(1):83—93.
    35.宋月娥。弧焊机器人系统协调运动精度及离线编程标定技术研究[D]。哈尔滨:哈尔滨工业大学博士学位论文,2002。
    36. Chunhe Gong, Jingxin Yuan, Jun Ni. Non-geometric error identification and compensation for robotic system by inverse calibration [J]. International journal of machine tools and manufacture, 2000,40:2119-2137.
    37. G. Duelen, K. Schroer. Robot calibration-method and results [J]. Journal of robotics and computer integrated manufacturing, 1991,8(4): 223-231.
    38. Z.Yang, J. P. Sadler. Finite element modeling of spatial robot manipulators flexible mechanism, dynamics, and robot trajectories [J]. American society of mechanical engineering, design engineering division DE, ASME, 1990, 24: 489-496.
    39. Z. Yang, J. P. Sadler. Finite element analysis of revolute manipulators with link and joint compliance by joint-beam elements. Robotics, Spatial Mechanisms, and Mechanical Systems [J]. American Society of Mechanical Engineers, Design Engineering Division DE, ASME, 1992, 45: 619-625.
    40. J. P. Sadler, Z. Yang, B. A. Askren. Finite element methods for the design of mechanisms and robotic manipulators [J]. International Journal of Computer Application in Technology, 1994, 7(6): 305-315.
    41. D. Bennett, J. M. Hollerbach. Autonomous calibration of single-loop closed kinematic chains formed by manipulators with passive endpoint constraints [J]. IEEE transaction on robotics and automation, 1991,7: 597-606.
    42. C. W. Wampler, J. M. Hollerbach, T. Arai. An implicit loop method for kinematic calibration and its application to closed-chain mechanisms [J]. IEEE transaction on robotics and automation, 1995,11 : 710-724.
    43. Xiao lin Zhong, John M. Lewis, Francis L.N. Nagy. Autonomous robot calibration using a trigger probe [J]. Robotics and Autonomous systems, 1996,18: 395-410.
    44. Hanqi Zhuang, Lixin Liu. Self-calibration of a class of parallel manipulators [C]. Proceedings of the 1996 IEEE international conference on robotics and automation, Minneapolis, Minnesota, 1996, 994-999.
    45. Hanqi Zhuang. Self-calibration of parallel mechanisms with a case study on??Stewart platforms [J]. IEEE transaction on robotics and automation, 1997, 13(3): 387-397.
    46. Nicholas Roy, Sebastian Thrun. Online self-calibration for mobile robots [J].http:// www. google.com.
    47.Hanqi Zhuang, Kuanchuih Wang, Zvi S.Roth. Simultaneous calibration of a robot and a hand-mounted camera [J]. IEEE transactions on robotics and automation, 1995, 11(5): 649-660.
    48.Nobuaki Takanashi. 6 DOF manipulators absolute positioning accuracy improvement using a neural network [C]. IEEE international workshop on intelligent robots and systems, IROS'90, 635-640.
    
    49. W. L. Xu, K. H. Wurst, T. Watanabe. Calibrating a Modular Robotic Joint Using Neural Network Approach [J]. IEEE transaction on robotics and automation, 1994:2720-2725.
    
    50. Monica T, Giovaani L, Pierluigi M, Diego T. A closed-loop neuro-parametric methodology for the calibration of a 5 DOF measuring robot [C]. Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation, Kobe, Japan. 2003: 1482-1487.
    
    51.Zhong X.L, Lewis J.M. Neuro-accuracy compensator for industrial robots [J]. IEEE transactions on robotics and automation, 1994: 2797-2802.
    52. G. Galafiore, M. Indri, B. Bona. Robot dynamic calibration: optimal excitation trajectories and experimental parameter estimation [J]. Journal of robotic systems, 2001, 18(2): 55-68.
    53.M.Prufer, C.Schmidt, F.Wahl. Identification of robot dynamics with differential and integral models: a comparison [J]. IEEE transactions on robotics and automation, 1994, 10: 340-345.
    54. E. J. Solteiro, J. A. Tenreiro, P. B. Moura. Fractional order dynamics in a GA planner [J]. Singal processing, 2003, 83: 2377-2386.
    55.Chia Ju Wu, Huang ching Huo. Fuzzy parameter identification of direct drive robots [J]. Journal of Franklin Institute, 1996, 333(B), 289-310.
    56.O. Castillo, P. Melin. Intelligent adaptive model-based control of robotic dynamic systems with a hybrid fuzzy-neural approach [J]. Applied soft computing, 2003, 3: 363-378.57.Ying Bai, Hanqi Zhuang, Zvi S.Roth. Experiment study of PUMA robot calibration using a laser tracking system [C]. IEEE international workshop on soft computing in industrial applications, Binghamton University, Binghamton, New York, 2003, 139-144.
    
    58.Wyatt S. Newman, Craig E. Birkhimer, Robert J.Horning. Calibration of a Motoman P8 robot based on laser tracking [C]. Proceedings of 2000 IEEE international conference on robotica and automation. San Francisio, CA, 2000, 3597-3602.
    
    59. Gianni Campion, Paolo Fiorini, Sandra Martelli. Robot calibration using mobile camera [C]. Roceedings of the 2002 IEEE international conference on robotics and automation, Washington DC, 2002, 141-146.
    
    60. Jose Mauricio, S.T.Motta, Guilherme C.de Carvalho. Robot calibration using a 3D vision-based measurement system with a single camera [J]. Robotics and computer integrated manufacturing, 2001, 17:487-497.
    
    61.G.Sen Gupta, C.H.Messom, S.Demidenko. Vision assisted measurement for optimization of robot motion and position control functions [C]. IMTC-2004 Instrumentation and measurement technology conference, Como, Italy, 2004, 297-302.
    62. Hans Gred Maas. Dynamic photogrammtric calibration of industrial robots [C]. SPIE's 42nd annual meeting, San Diego, 1997, 1-7.
    63.Gursel Aher, Bijan Shirinzadeh. Laser interferometry based robot position error modeling for kinematic calibration [C]. Proceedings of the 2003 IEEE/RSJ international conference on intelligent robots and systems, as Vegas, Nevada, 2003, 3588-3593.
    64. S.R.Postlethwaite, D.GFord, D. Morton. Dynamic calibration of CNC machine tools [J]. International journal of machine tools and manuf acturing, 1997, 37(3): 287-294.
    65.T.Alban, H.Janocha. Dynamic calibration of industrial robots with inertial measurement systems [J]. http:// www.googel.com.
    66. G. Galafiore, M. Indri. Experiment design for robot dynamic calibration [C]. Proceedings of the 1998 IEEE international conference on robotics and automation, Leuven, Belgium, 1998, 3303-3309.67. Ping-An Bao, Ping jinag, Hui Tang Chen. A learning scheme for the parameter identification of robot dynamics [C]. Proceedings of the IEEE international conference on industrial technology, 1996,651-655.
    68. Takeshi Ohtsuki, Toskiko Iguchi, Yasuyuki Mutata. On the identification of robot parameters by the classic calibration algorithms and error absorbing trees [J]. http://www.google.com.
    69. J.Swevers, C.Ganseman, X. Chenut, J.C. Samin. Experimental identification of robot dynamics for control [C]. Proceedings of the 2000 IEEE international conference on robotics and automation, San Francisco, CA, 241-246.
    70. Jan Swevers, Chris Ganseman, Dilek Bilgin Tukel, Joris De Schutter. Optimal robot excitation and identification [J]. IEEE transactions on robotics and automation, 1997,13(5): 730-740.
    71. P.D. Tataryu, N. Sepehri, D. Strong. Experimental comparison of some compensation techniques for the control of manipulators with stick-slip friction [J]. Control engineering practice, 1996, 4(9): 1209-1219.
    72. E. Panteley, R. Ortega, M. Gafvert. An adaptive friction compensator for global tracking in robot manipulators [J]. Systems and control letters, 1998, 33: 307-313.
    73. Gu Fang, M. W. G. Dissanayake. Neural networks for modeling robot forward dynamics [J]. http://www.google.com.
    74. Kishan K.kumbla, Mohammad jamshuidi. Neural network based identification of robot dynamics used for neuro-fuzzy controller [C]. Proceedings of the 1997 IEEE international conference on robotics and automation, 1997, 1118-1123.
    75. Wen Yu, Jose Antonio Heredia. PD control of robot with RBF networks compensation [J]. http:://www.google.com.
    76. A. Eskandarian, N. E. Bedewi, B. M. Kramer. Dynamics modeling of robotic manipulators using an artificial neural network [J]. Journal of robotic system, 1994, 11(1): 41-56.
    77.崔鲲,孙论强,吴林。V01弧焊机器人结构参数标定和变换矩阵的建立[J]。焊接,1996(9):2~6。
    78.宋月娥,吴林,张连新,戴明。弧焊机器人离线编程系统标定模块的开发[J],机器人,2001,23(7):689—670。79.蔡鹤皋,张超群,吴伟国。机器人实际几何参数识别与仿真[J]。中国机械工程,1998,9(10):11-14。
    80.朴用杰,邱涛,陈善本。弧焊机器人TCF参数的标定[J]。机器人,2001,23(2):109—112。
    81.宋月娥,吴林,田劲松,戴明。用于机器人离线编程的工件标定算法研究[J]。哈尔滨工业大学学报,2002,34(6):735—738。
    82.李金泉,陈善本,吴林。用于手眼立体视觉的弧焊机器人平面工件定位系统[J],焊接学报,2003,24(4):9—14。
    83.刘振宇,陈英林,曲道奎,徐方。机器人标定技术研究[J]。机器人,2002,24(5):447—450。
    84.张建忠。机器人连杆参数的视觉标定[J]。制造业自动化,2004,26(11):32—34。
    85. Guvenc L., Srinivasan K. An Overview of Robot-assisted Die and Mold Polishing with Emphasis on Process Modeling[J]. Int. Journal of Manufacturing System, 1997,16(1): 48-58.
    86. Jamisola, R. Ang., M. H., Jr., The Operational Space Formulation Implementation to Aircraft Canopy Polishing Using a Mobile Manipulaor[C]. Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington. DC, 2002:400-405.
    87. Seok Jo Go, Min Cheol Lee, Byung Su Kim. User-friendly Automatic Polishing Robot System and Its Remove Operation Based on Network[C], ISIE 2001, Pusan, Korea, 2001:1435~1440.
    88. Min Cheol Lee, Seok Jo Go, Young Jung et al. Development of a User-friendly Polishing Robot System [C]. Proceedings of 1999 IEEE/RSJ International Conference on Intelligent Robot and System, 1999:1914~1919.
    89. R. J. Kuo. A Robotic Die Polishing System through Fuzzy Neural Networks [J]. Computers in Industry, 1997, 32(3): 273-280.
    90.袁楚明,张雷,陈幼平等.机器人辅助模具自由抛光机器发展趋势[J].中国机械工程,2000,11(2):1428~1430。
    91.赵继,詹建明,祝佩兴等.机器人超声弹性研磨自由曲面的过程识别与优化[J].机械工程学报,2000,36(1):71~82。
    92.王保中,康立山,何巍。基于实数编码遗传算法的多层神经网络BP算法[J],??武汉大学学报(自然科学版),1998,44(3):289~291。
    93.王小平,曹立明。遗传算法—理论、应用与软件实现[M]。西安:西安交通大学出版社,2002。
    94. Vittirio Maniezzo. Genetic Evolution of the Topology and Weight Distribution of Neural Networks [J]. IEEE Transactions on Neural Networks. 1994,5:39-53.
    95. Francisco J. Solis, Roger J-B. Wets. Minimization by Random Search Techniques [J]. Mathematics o f Operations Research. 1981, 6:19-30.
    96. John R.Koza, James P. Rice. Genetic generation of both the weights and architecture for a neural network [J]. International Journal of Intelligent Systems, UCNN-91-Seattle, 1991: 397-404.
    97. David B. Fogel. An Introduction to Simulated Evolutionary Optimization [J]. IEEE Transactions on Neural Networks. 1994,5:3-14.
    98. Nicol N. Schraudolph, Richard K. Belew. Dynamic Parameter Encoding for Genetic Algorithms [J]. Maching Learning, 1992, 9: 9-21.
    99. Peter J.Angeline, Gregory M. Saunders, Jordan B. Pollack. An Evolutionary Algorithm that Constructs Recurrent Neural Networks [J]. IEEE Transactions on Neural Networks. 1994, 5: 54-65.
    100.石晓荣,赵明廉。一种基于神经网络和遗传算法的拟人智能控制方法[J]。系统仿真学报。2004,Vol16,8:1835—1839。
    101.田旭光,宋彤,刘宇新。结合遗传算法优化BP神经网络的结构和参数[J].计算机应用与软件,2004,Vol 21,6:69—71。
    102.Mcdonnell J R.Waagen D.Evolving Recurrent Perception for Time—Series Modeling[J].IEEE Transactions on Neural Networks.1994,5:24—38.
    103.赵正佳,黄洪钟,陈新。优化设计求解的遗传神经网络新算法研究[J]。西南交通大学学报,2000,35(1):65—68。
    104.许东,吴铮著。基于MATLAB6.X的系统设计与分析—神经网络(第二版)[M]。西安:西安电子科技大学出版社,2002。
    105. A.Y. Elatta, Li Pei Gen; Fan Liang Zhi, Yu Daoyuan, Luo Fei. An overview of robot calibration techniques [J]. Information Technology Journal 3 (1): 74-78, 2004.
    106. I-Ming Chen, Guilin Yang. Kinematic calibration of modular reconfigurable robots using product of exponentials formula [J]. Journal of robotic systems,??14 (11): 807-821, 1997.
    107. T. Alban, H. Janocha. Dynamic calibration of industrial robots with inertial measurement systems [J]. www.google.com
    108. Ambarish Goswami, Arthur Quaid, Michael Peshkin. Complete parameter identification of a robot from partial pose information [C]. 1993 IEEE International Conference on Robotic and Automation.
    109. J.Hefele. Real-time photogrammetric algorithms for robot calibration [C]. The international Archives of the photogrammetry, remote sensing and spatial information sciences, Vol 34, Part ⅩⅩⅩ.
    110. Robert John Horning. A comparison of identification techniques for robot calibration [D]. Case Western Reserve University, Degree of Master of Science, August, 1998.
    111.盛骤,谢式千,潘承毅编著。《概率论与数理统计》(第二版)[M],北京:高等教育出版社,1993。
    112. M. Tiboni, A. Omodei, G. Legnani, D. Tosi, P. L. Magnani. Calibration of a 5 DOF measuring robot by neural network [C]. Convegne Nazionale AIAS-Alghero (SS), 12-15, September, 2001, 1467-1476.
    113. Cesare Fantuzzi, Cristian Secchi, Antonio Visioli. On the fault detection and isolation of industrial robot manipulators [J]. www.google.com.
    114. Tien-Fu Lu, Grier C.I.lin An on-line relative position and orientation error calibration methodology for work-cell robot operations [J]. Robotics & Computer-integrated manufacturing, 13 (2), 89-99, 1997.
    115. Jarno Mielikainen, Ilkka Kosskinen, Heikki Handroos, Pekka Toivanen, Heikki Kailviainen. Positioning of flexible boom structure using neural networks [J]. W. Skarbek (Ed): CAIP 2001, 435-442, 2001.
    116. Nobuaki Takanashi. 6 DOF manipulators absolute positioning accuracy improvement using a neural network [C]. IEEE international workshop on intelligent robots and systems, IROS'90, 635-640.
    117. W.L.Xu, K.H.Wurst, T.Watanabe, S.Q.Yang. Calibration a Modular Robotic Joint Using Neural Network Approach [J]. http://www.google.com.
    118. Tiboni Monica, Lehnani Giovaani, MagnaniPierluigi, Tosi Diego. A closed-loop neuro-parametric methodology for the calibration of a 5 DOF??measuring robot [C]. Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation July 16-26, 2003, Kobe, Japan.
    119. Joshi. S. A, Surianarayan. A. Calibration of a 6 DOF cable robot using two inclinometers [J]. http://www.google.com
    120. H. Hwang, D. Y. Chol. CMAC toward intelligent robot: motion and calibration [C]. IEEE international workshop on intelligent robots and systems. IROS'90, 517-526.
    121. Christopher S. Langley, Gabriele M.T. Neural network based pose estimation for fixtureless assembly [C]. Proceedings of 2001 IEEE international symposium on computational intelligence in robotics and automation, 2001, Banff, Alberta, Canada, 248-253.
    122.蔡自兴。机器人学[M],清华大学出版社,2002,北京。
    123.王斌锐。异构双腿行走机器人研究与开发[D]。沈阳:东北大学博士学位论文,2005。
    124. D. T. Pham, S. J. Oh. Adaptive control of a robot using neural networks [J], Robotica, 1994,12: 553-561.
    125. T. Ozaki, T. Suzuki, T. Furuhashi. Trajectory control of robotic manipulators using neural networks [J], IEEE transactions on industrial electronics, 1991,38 (3): 195-203.
    126. S. Khemaissia, A. S. Morris. Neural-adaptive control of robot manipulators [J], Robotica, 1993,11:456-473.
    127. Q.Li, A.N.Poo, M. Ang. An enhanced computed-torque control scheme for robot manipulators with a neuro-compensator [J], IEEE transactions on robot and automation, 1995,56-60.
    128. D.T.Pham, Sahin Yildirim. Control of trajectory of a planar robot using recurrent hybrid networks [J]. International journal of machine tools and manufactures, 1999, 39:415-429.
    129. S. K. Tso, Y. H. Fung, N. L. Lin. Analysis and real-time implementation of a radial basis function neural network compensator for high performance robot [J]. Mechatronics, 2000, 10: 265-287.
    130.薛定宇,陈阳泉。基于MATLAB/Simulink的系统仿真技术与应用[M]。??北京:清华大学出版社,2002。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700