永磁交流伺服系统实验台设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着电力电子技术、DSP微处理器技术、传感器技术、稀土永磁材料与电机控制理论的发展,交流伺服系统逐步取代直流伺服系统,正在发展成为伺服技术的主流。由于永磁同步电机具有调速范围广、定位精度和稳速精度高、动态响应快、运行稳定性好等优点,永磁交流伺服系统目前正在被越来越广泛地应用在数控机床、机器人、雕刻机、航空航天等多轴运动控制系统中。在具体产品制造出来之前,若有一个实验台,对伺服电机特性、多轴控制系统、控制理论与控制策略选择等进行实验和研究,可以验证电机选择是否恰当,控制系统的搭建是否正确,控制策略的选择是否合理,具有加快产品进程,节约成本等重要意义。
     东北大学机械电子工程研究所智能机器人实验室正在研制一种打磨机器人,在机器人加工出来之前,需要一个实验台对该机器人所选交流伺服电机、机器人控制系统,以及所选控制策略进行实验和研究,为此本文设计了一台具有多功能性和通用性的实验台,建立了永磁交流伺服系统实验台的控制系统,利用Visual Basic语言设计人机交互界面,实现了人机交互式操作,便于控制参数的设定以及系统运行状态的观测。该实验台可以给电机加不同负载,对电机特性进行实验研究;可以采用现代控制理论,编写先进控制算法程序,进行四轴联动运动控制实验研究。
     由于PMSM的控制比直流电机要复杂得多,且市场上出售的电机驱动器不具有开放性,给交流伺服系统的特性研究带来很大困难,为了更好地使用和研究交流伺服电机,深刻理解伺服驱动器的原理,本文介绍了交流伺服系统的组成和控制方式,在坐标变换的基础上,建立了交流永磁同步电机的数学模型,介绍了电机的PWM调制技术,对基于转子磁场定向的矢量控制和基于定子磁场的直接转矩控制两种永磁同步电机控制方法进行了研究,重点对电流跟踪型PWM逆变器(iPWM)矢量控制方法和空间电压矢量控制方法(SVPWM)进行了理论分析,通过在Matlab/Simulink中分别建立其仿真模型,验证了控制方法的正确性,为系统控制和调试提供依据。
In recent years,with the development of power electronic technology, DSP microprocessor technology, sensor technology, rare earth permanent magnet materials and motor control theory, AC servo system gradually replaces DC servo system and it has become the servo technology mainstream.As permanent magnet synchronous motor has the advantages of wide range of speed, high positioning accuracy and static speed precision, fast dynamic response, good running stability permanent magnet AC servo system is widely used in CNC machine tools, robots,engraving machines, aeronautics & astronautics, and other multi-axis motion control systems.Before the specific products are manufactured, designing an experiment platform is necessary to study the servo motor characteristics, the multi-axis control system, the control theory and Control Strategy, and so on. It can help us to verify whether it is appropriate to choose motors, control system structures are correct and the control strategy is reasonable.It is very significant for speeding up the product development process, cost savings and so on.
     Intelligent robot lab of mechanical electronics engineering Institute Northeastern University is developing a polished robot. Before processing the robot, we need a test-bed to experiment and research the robot selected AC servo motors,the robot control system, and the selected control strategy.In this paper a multi-function and versatility experiment platform is designed and its control system is established. To achieve a human-computer interactive operation expediently, the human-computer interface is designed with Visual Basic language, which makes it easy to modify the control parameters and display the running state of system.On the experiment platform, we can experiment and research the characteristics of motor when the motor is given different load.We can also use modern control theory and program advanced control algorithms to study 4-axis motion control.
     As PMSM control is much more complex than the DC control,and the motor drive of market sell is not open, so it has some difficulties to study the properties of the servo system. In order to make better use of AC servo motors and deeply understand the principle of servo drives,in the paper, the constitutions and control ways of AC servo system are introduced.Basing on coordinate transform,the mathematic model of permanent magnet synchronous motor is established. The two control ways,vector control based on rotor magnetic field orientated and direct torque control based on stator magnetic field orientated, are studied and analysed Current-tracked PWM (iPWM)vector control and space voltage vector pulse width modulation (SVPWM) vector control are analysed theoretically in detail. Their simulation modeles based on matlab/simulink are completed, which validates the feasibility of control theory and provides the theory basis for threalization and debugging of real system.
引文
1王健.现代交流伺服系统技术和市场发展综述[J],Servo Control,2007,01:16-21.
    2李永东,张猛.高性能交流永磁同步电机伺服系统现状[J],Servo Control,2008,03:34-37.
    3王家军,齐冬莲.运动控制系统的发展与展望[J],电气时代,2004,10:54-56.
    4郭庆鼎,王成元.交流伺服系统[M],北京:机械工业出版社,1994.
    5郭庆鼎,孙宜标,王丽梅.现代永磁电动机交流伺服系统[M],北京:中国电力出版社,2006.
    6李志民,张遇杰.同步电机调速系统[M],机械工业出版社,1995.
    7秦忆.现代交流伺服系统[M],武汉:华中理工大学出版社,1995.
    8唐任远.现代永磁电机理论与设计[M],北京:机械工业出版社,1997.
    9海老原大树(日)主编,王益全等译.电机技术实用手册[M],北京:科学出版社,2006.
    10 Saad Muftah Zeid. A analysis of permanent magnet synchronous motor drive[D], Memorial University of Newfoundland,1998.
    11 Rahman M.A.,OSHEIBA A M.Performance of large line-start permanent magnet synchronous motors [J],IEEE Transactions on Energy Conversion.1990,5:211-217.
    12 Murai Y, Ohashi K. New PWM method for fully digitized inverters [J],IEEE Trans.on IA,1987, 23(5):887-839.
    13王晓明,王玲.电机的DSP控制[M],北京:北京航空航天大学出版社,2004.
    14李永东.交流电机数字控制系[M],北京:机械工业出版社,2002.
    15王兆安,陈桥梁.集成化是电力电子技术的发展趋势[J],交流技术与电力牵引,2006,(1):2-6.
    16王宝国.复杂可编程逻辑器件(CPLD)在DPS交流电机控制系统中的应用[J],电气传动,2001,5(1):40-43.
    17 Bimal K.Bose(美)著,王聪等译.现代电力电子学与交流传动Modern power electronics and AC drives[M],北京:机械工业出版社,2005.
    18周志敏,周纪海,纪爱华.IGBT和IPM及其应用电路[M],北京:人民邮电出版社,2006.
    19陈先锋,舒志兵,赵英凯.基于多伺服控制模式的运动控制系统研究与应用[J],伺服控制,2006,03:26-28.
    20 Zhong L. et al.Analysis of direct torque control in permanentmagnet synchronous motor drives[J], IEEE Transactions on Power Electronics,1997,12(3):28-36.
    21 VAN der Broeckl H W. Analysis and realization of apulsewidth modulator based on voltage space vectors[J],IEEE Trans on IA,1988,24(1):142-150.
    22 Zhao Y, Lipo T A.Space Vector PWM Control of Dual Three Phase Induction Machine Using Vector Space Decomposition [J],IEEE Trans.on Ind. Appl,1995,31(5):1100-1109.
    23 Wasim K. Adaptive control of ac motor drives with inverter nonlinearities[J],Int. J.Control,1999, 72(9).
    24王宏.永磁交流伺服系统及其控制技术的研究[D],哈尔滨工业大学博士学位论文,2004.
    25林伟杰.永磁同步电机伺服系统控制策略的研究[D],浙江大学博士学位论文,2005.
    26李继堂.矢量控制永磁同步电机伺服系统的研究[D],大连理工大学硕士学位论文,2007.
    27彭瑞.永磁同步电机交流伺服系统的研究[D],南京航空航天大学硕士学位论文,2007.
    28龚云飞.交流永磁同步电机伺服系统的仿真及实现[D],哈尔滨工业大学硕士学位论文,2006.
    29王志成.全数字交流永磁同步伺服驱动器的研究与开发[D],中国科学院研究生院硕士学位论文,2006.
    30尚喆.永磁同步电机磁场定向控制的研究[D],浙江大学博士学位论文,2007.
    31陶永华.新型PID控制及其应用[J],工业仪表与自动化装置,1997,4:60-64.
    32 Saleh K.I.,Badr M.A.,Elwer A.S.,etc.Analysis of Controlled PermanentMagnet Synchronous Motor Using Artificial Neural Network.[J],ICEMS,2001,2:791-795.
    33 F.J.Lin, S.L.Chiu. Adaptive Fuzzy Sliding-mode Control for PM SynchronousServo Motor Drive [J],IEE on Control Theory Appl,1998,145(1).
    34 Kyeong-Hwa Kim, In-Cheol Baik, Myung-Joong Youn. Simple and Robust Digital Current Control Scheme of Permanent Magnet Synchronous Motor Using Time Delay Control Approach[J], Elec.Letters,1999,35(12):1027-1028.
    35许振伟,蒋静坪,骆再飞.基于神经网络的永磁同步电机模糊自适应控制[J],电力系统及其自动化学报,2003(6).
    36顾光旭,邓智泉.基于矢量控制的PMSM的位置伺服系统电流滞环控制仿真分析[J],电气传动,2006,36(6):19-22.
    37沈涛,李桥梁.基于SVPWM的永磁同步电机控制系统的仿真研究[J],电气开关,2008,1:19-21.
    38杨贵杰.空间矢量脉宽调制方法的研究[J],中国电机工程学报,,2001,21(5):79-83.
    39薛定宇,陈阳泉.基于MA TLAB/S IMUL IN K的系统仿真技术与应用[M],北京:清华大学出版社,2002.
    40田亚菲,何继爱.黄智武.电压空间矢量脉宽调制(SVPWM)算法仿真实现及分析[J],电力系统及自动化学报,2004,4:68-71.
    41龚云飞,富历新.基于Matlab的永磁同步电机矢量控制系统仿真研究[J],微电机,2007,02:34-36.
    42孙业树,周新云,李正明.空间矢量PWM的SIMULINK仿真[J],农机化研究,2003,4(2):105-106.
    43王巍,侯利民,李洪珠.基于Matlab/Sinulink表面式永磁同步电机控制系统仿真研究[J],长春工业大学学报(自然科学版),2007.9.
    44杨平,马瑞娜,张云安.基于MATLAB永磁同步电机控制系统建模仿其方法[J].沈阳工业大学学报,2005,(4):195-199.
    45程善美,姜向龙,孙文焕等.SIMULINK环境下空间矢量PWM的仿真[J],电气自动化,2002,(3):39-41.
    46张豫,陈静薇,梁振鸿.基于DSP的永磁同步电机全数字化矢量控制[J],微电机,2002,35(3):23-26.
    47熊健.电压空间矢量调制与常规SPWM的比较研究[J],电力电子技术,1999,第二期:25-28.
    48 Lin C-H,Chou W-D, Lin F-J.Adaptive hybrid control using a recurrent neural net work for a linear synchronous motor servo-drive system[J],IEEE Proceedings,2001:156-168.
    49周华安,邹现军.直流电机伺服控制实验台的研制.实验室研究与探索[J],2004,12:146.147.
    50 Senjyu T.,Kuwae Y.,Urasaki N.,etc.Accurate Parameter Measurement for High Speed Permanent Magnet Synchronous Motors[J],PESC.2001,2:772-777.
    51 Kyo Beum Lee,Joong-Ho Song,Ick Choy,etc.Torque Ripple Reduction in DTC of Induction Motor Driven by 3-level Inverter with Low Switching Frequency[J],PESC.2000,1:448-453.
    52 Yamamoto K.,Shinohara K.,Makishima H.Comparison between Flux Weakening and PWM Inverter with Voltage Boosterfor Permanent Magnet Synchronous Motor Drive[J], PCC-Osaka. 2002,1:161-166.
    53 Itoh J.-I.,Nomura N.,Ohsawa H..A Comparison between V/f Control and Position-Sensorless Vector Control for the Permanent Magnet Synchronous Motor[J],PCC-Osaka,2002,3:1310-1315.
    54 Bolognani S.,Tubiana L.,Zigliotto M.Extended Kalman Filter Tuning inSensorless PMSM Drives[J],PCC-Osaka.2002,1:276-281.
    55 Joao Onofre Pereira Pinto. Analysis of Extended Constant Power Speed Range of the Permanent Magnet Synchronous Machine Driven by DualMode Inverter Control[D].The University of Tennes-sess,Knoxville,2001.
    56薛定宇.控制系统计算机辅助设计——MATLAB语言与应用(第2版),北京:清华大学出版社,2006.
    57谢宝昌.电机的DSP控制技术及其应用[M],北京:北京航空航天大学出版社,2005.
    58许大中,贺益康.电机控制,杭州:浙江大学出版社,1995.
    59尹永雷.永磁同步电机矢量控制伺服系统研究[D],北京:华北电力大学硕士学位论文,2006.
    60美国微软公司微软中国有限公司.Visual Basic6.0中文版程序员指南=Microsoft Visual Basic 6.0 Programmer's Guide.[M],北京:北京希望电脑公司,1998.
    61陈伯时.电力拖动自动控制系统[M],北京:机械工业出版社,2003.
    62尔桂花,窦曰轩.运动控制系统[M],北京:清华大学出版社,2002.
    63倪斌.永磁电机的速度控制[D],浙江大学硕士学位论文,2006.
    64邹慧君.机械系统设计原理[M],北京:科学出版社,2004.
    65富士伺服系统FALDIC-W series说明书.
    66 Panasonic交流伺服电机驱动器MINAS A系列使用说明书[M].
    67 PMAC说明手册.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700