一种四自由度平面关节型机器人的设计研究与控制实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机器人是一种典型的机电一体化设备,集运动学与动力学理论、机械设计与制造技术、计算机硬软件技术、控制理论、传感器技术、人工智能理论等科学及技术于一体,广泛应用于工业生产、国防技术等领域。
     平面关节型机器人即为SCARA(Selectively Compliance Assembly Robot Arm)型工业机器人。它在水平方向上运动空间灵活,非常适合应用于搬运、焊接和装配等重复性任务中,因此在工业生产中得到广泛应用。本课题设计了一四自由度平面关节型机器人的本体及其控制系统,并将整个系统加工实现。
     本课题根据平面关节型机器人的应用特点,首先采用模块化设计理念完成它的本体设计,各模块相互独立、结构紧凑、安装方便,其中某些模块设计方法可被其它型机器人借鉴。同时,对工业机器人的关键部分详细进行设计、核算。
     其次,运用D-H法对所设计的机器人进行运动系统建模,通过变换方程实现运动学正解,同时结合代数法和几何法实现运动学反解。之后根据现有机器人动力学分析方法,选择拉格朗日法建立机器人的完整动力学显式方程,以最简单的形式分析复杂的系统动力学。依据上述分析,根据机器人轨迹规划技术,讨论机器人的关节空间轨迹规划算法和笛卡儿空间的直线轨迹插补方法。
     为了检验机器人手臂各部分结构设计和规划结果的合理性,采用ADAMS软件对已设计的机器人进行运动学动力学的三维仿真。在ADAMS中的仿真结果可以为机器人的实际应用提供理论上的依据和支持。
     最后,将机器人本体加工,选择并搭建机器人以IPC+PMAC为基础的控制系统,通过软件系统编程实现了运动控制。对控制系统进行试验,试验结果表明该控制系统响应速度较快、定位精度较高、重复误差较小。
Robots are typical equipments of mechatronics, which include the kinematics and dynamics theory, the mechanical design and manufacturing technology, the computer hardware and software technology, the control theory, the sensor technology, the artificial intelligence and so on. Robots are widely used in the fields of industrial production, defense technology and so on.
     The SCARA (Selectively Compliance Assembly Robot Arm) robots are widely applied in the repeat tasks such as conveying, jointing, assembly etc. for their flexible working space in the horizontal direction. One 4-DOF (Degree Of Freedoms) SCARA robot's mechanism and its control system were designed in this thesis, then manufactured the whole robot.
     According to the characteristic of the SCARA robot, firstly modular-design methodology was utilized to design the mechanism. Every module is independent, compact and easy to install. Some components can be used as reference to other robots. Also, some key parts of the robot have been designed detailedly, then they have been checked.
     Secondly, based on D-H method, models of the kinematics system were built. The kinematics positive solution can be deduced by a series of transformation equations, and the inverse kinematics can be deduced by the combination of algebraic and geometrical method. After that, according to the theories of dynamic analysis, the Lagrange method was applied to build a complete explicit dynamic equation of the robot. This equation can easily solve the dynamics of the complex system. Meanwhile, according to the analysis above and by analyzing the trajectory planning algorithms of the robot, the path planning algorithm in the joint space and a linear interpolation algorithm in the Cartesian space were talked over.
     In order to verify the rationality of the mechanism design and the trajectory planning result, the software ADAMS was used to perform the 3D simulation of the kinematics and the dynamics for the robot. The results of the simulation are the basis and the support of the theories for the practical applications.
     Finally, the whole robot was manufactured, then the control system based on IPC+PMAC was chose and built, the motion control was realized by software programming. The whole control system had satisfied test results:faster response, higher positioning accuracy and smaller repeat error after testing it.
引文
1.刘文波,陈白宁,段智敏.工业机器人[M],沈阳:东北大学出版社,2007,6-8,36-50.
    2.白民,刘远江.从2004中国国际机器人展览看中国机器人产业的现状和未来[J],机器人技术与应用,2005,(1):20-24.
    3.王坤兴.机器人技术的发展趋势[J],机器人技术与应用,1999,(3):10-12.
    4. Moran M. E.. Evolution of robotic arms[J], J Robotics Surg,2007, (1):103-111.
    5.陈佩云.我国工业机器人发展状况[J],机器人技术与应用,2001,(1):2-5.
    6.刘进长.我国机器人发展战略研究[J],机器人技术与应用,2000,(3):2-5.
    7.刘成良,张为公.RV12L6R焊接机器人运动正解及计算机仿真系统[J],东南大学学报,2003,21(6):63-68.
    8.王启智,徐心和PUMA机械手逆运动方程的推导方法及求解[J],机器人,1998,3:81-87.
    9.蔡自兴.机器人学[M],北京:清华大学出版社,2000,20-35.
    10.刘迎春,余跃庆,姜春福.柔性机器人研究现状[J],机械设计,2002,20(12):4-7.
    11.孙志礼,何雪宏,何韶君.机械设计[M],北京:冶金工业出版,1998,160-170.
    12.刘鸿文.材料力学(下册)[M],北京:高等教育出版社,1992,148-155.
    13. Niku S. B.. Introduction to Robotics:Analysis, Systems, Application[M], USA:Pearson Education, 2001,154-160.
    14.大熊繁(日).机器人控制[M],北京:科学出版社,2002,30-50.
    15.柳洪义,宋伟刚.机器人技术基础[M],北京:冶金工业出版,2002,16-23,27-30.
    16.张敏,石秀华,杜向党等.三自由度机械手运动学分析[J],机械与电子,2005,(1):65-67.
    17.胡勇华,罗庆生,王娟等.一种多用途8自由度机械手的运动学分析[J],机械与电子,2006,(7):58-61.
    18.王仲民,蔡霞,崔世钢.一种4自由度机器人的运动学建模[J],天津职业技术师范学院学报,2003,13(4):1.
    19.黄磊光,李耀通,谭民.一般平面机器人的工作空间分析[J],机器人,1997,19(4):241-243.
    20. Kircanski M.. Kinematic isotropy and optimal kinematic design of planar manipulators and a 3-DOF spatial manipulator[J], Int J Robotics Res,1996,15(1):61-77.
    21.车仁炜,吕广明,陆念力.五自由度康复机械手的动力学分析[J],哈尔滨工业大学学报,2005,37(6):744-747.
    22.赖锡煌.多关节机器人运动学和动力学分析[J],机器人技术,2005,(6):34-35.
    23. Kane T., Levinson D.. The use of Kane's Dynamical Equation in Robotics[J], J.Robot.Res,1983, (2), 3-21.
    24.程汀.SCARA机器人的设计及运动、动力学的研究[D],合肥:合肥工业大学,2008.
    25.陈进,段黎明,李德敏等.多关节混合链机器人的运动学和动力学分析[J],机器人,2000,22(1):1-6.
    26.徐向荣,马香峰.机器人动力学的一种通用算法[J],机械科学与技术,1995,(4):36-40.
    27.刘鸿文.材料力学(上册)[M],北京:高等教育出版社,1992,382-386.
    28.熊有伦.机器人学[M],北京:机械工业出版社,1993,167-172.
    29. Leon J. L.. Automatic path planning for a mobile robot technique:case-analysis based multi-resolution map drawing[J]. Robotics and Autonomous Systems,1998,24(1-2):5-15.
    30.王健强,程汀. SCARA机器人结构设计及轨迹规划算法[J],合肥工业大学学报,2008,31(7):1026-1028.
    31.吴振彪,熊有伦.工业机器人[M],武汉:华中科技大学出版社,1996,191-200.
    32.陈恳,杨向东.机器人技术与应用[M],北京:清华大学出版社,2006,135-150.
    33. Angeles J.(著),宋伟刚(译).机器人机械系统原理—理论、方法和算法[M].北京:机械工业出版社,2004,251-284.
    34.曾祥义.打磨机器人主车功能的实现与研究[D],沈阳:东北大学,2007.
    35.文维阳.置片机器人的设计与研究[D],沈阳:东北大学,2007.
    36.谢存禧.机器人技术及其应用[M],北京:机械工业出版社,2005,155-159.
    37.张硕生,余达太.轮式移动机械手的点-点运动规划方法[J],北京科技大学学报,2001,23(1):81-84.
    38. Craig J. J.(著),负超(译).机器人学导论[M],北京:机械工业出版社,2005,178-202.
    39. Luhj Y. S., Lin C. S.. Approximate joint trajectories for control of industrial robots along Cartesian path [J], IEEE Transactions on Systems, Man and Cybernetics,1984,14(3):444-450.
    40. Suryawanshi A. B., Joshi M. B., Dasgupta B.,et al. Domain mapping as an expeditionary strategy for fast path planning [J], Mechanism and Machine Theory,2003, (38):11-20.
    41.王海滨.四自由度机器人机械系统的研究[D],哈尔滨:哈尔滨工业大学,2006.
    42.郭耸.水平四自由度装配机器人的设计及其运动学和动力学仿真分析[D],上海:上海交通大学,2007.
    43.白丽平.基于ADAMS的机器人动力学仿真分析[J],机电工程,2007,24(7):74-77.
    44.李增刚. ADAMS入门详解与实例[M],北京:国防工业出版社,2006,1-124.
    45.周艳平.坯料装砌机械手运动学分析研究及计算机仿真[D],武汉:武汉理工大学,2007.
    46.侯国柱.关节型机器人的结构设计及其运动学分析[D],内蒙古:内蒙古工业大学,2007.
    47.丛爽,李泽湘.实用运动控制技术[M],北京:电子工业出版社,2006,30-90.
    48.柳洪义,罗忠,王菲.现代机械工程自动控制[M],沈阳:东北大学出版社,2007,15-18.
    49.郝钢,韩秋实,孙志永.基于PMAC的开放式数控系统性能的研究[J],北京机械工业学院学报,2003,(6):24-28.
    50. Delta Tau Data system Inc. PMAC/PMAC2 software reference[M],1998,20-150.
    51.北京元茂兴公司.PMAC用户手册[M],1999,1-50.
    52. Saridis G. N.. Intelligent robotic control[J]. IEEE trans on Automatic Control,1983,28(5):547-557.
    53.万仁明,景兴碧,张以都.基于PMAC下SCARA机器人控制[J],机械与电子,2001,(1):19-21.
    54. Hong K.S., Choi K.H.. A pc-based open robot control system:PC-ORC[J], Robotics and computer integrated manufacturing,2001 (17):355-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700