多智能体系统的脉冲一致性及其动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多智能体系统的一致性问题具有广泛的应用前景,是当前国际控制理论与应用领域的前沿课题之一。本文主要基于图谱理论、随机矩阵理论与脉冲控制理论等研究多智能体系统的脉冲一致性问题,力求解决此领域的相关问题。脉冲耦合非线性系统的同步及其动力学是当前国际动力学与控制领域中的重要研究内容之一。本文主要基于压缩原理研究一类脉冲耦合振子的同步问题,并研究一类脉冲耦合Duffing振子的复杂动力学行为及其分岔机理。本文的研究对于加强多智能体系统、脉冲系统的理论及其在实际中的应用具有重要意义。本文的主要内容有:
     第一章介绍多智能体系统的一致性问题、非光滑系统、脉冲系统等的产生、发展与研究现状等,在此基础上给出本课题研究的意义和论文的主要工作与结构安排。
     当前连续控制协议研究得较多,但其他形式控制协议研究得较少。第二章针对一类线性多智能体系统,提出脉冲控制协议,该脉冲控制协议具有控制量小、实现方便等优点。基于脉冲系统理论给出线性多智能体系统达到一致的充分条件,并进一步给出脉冲时刻及脉冲矩阵的设计方法。最后研究网络拓扑动态切换的情形。
     第三章在第二章的基础上研究非线性多智能体系统的一致性问题。根据网络结构分为两个部分。第一部分研究无向网络上非线性多智能体系统的脉冲一致性问题,其中每个智能体均为同样的非线性动力系统。网络拓扑固定时利用Laplacian矩阵的最大、最小特征值给出离散时刻和脉冲常数的设计方案。网络拓扑动态切换时给出设计步骤。第二部分研究有向切换网络上非线性多智能体系统的脉冲一致性问题。基于随机矩阵理论给出系统达到一致的充分条件,并当网络拓扑动态切换且网络结构图均为强连通平衡图时给出脉冲控制协议的设计方案。
     无源性方法是关联系统稳定性分析的有效方法之一。第四章研究一类多智能体系统的脉冲输出一致性,其中每个智能体均为无源的。基于无源性原理分别给出多智能体系统在网络拓扑固定、切换两种情形下达到输出一致的充分条件。第
     二、三章中构成多智能体系统的各智能体的方程需要相同,但在智能体是无源的情形下,各智能体的方程无需相同。
     脉冲耦合振子是指仅在离散时刻相互作用的耦合振子,已在图像处理等领域具有广泛应用。第五章基于压缩原理研究脉冲耦合振子的同步问题。基于所提出的脉冲系统的部分压缩原理分别对两脉冲耦合振子和网络脉冲耦合振子进行同步分析,并给出了脉冲耦合振子达到同步的充分条件。
     周期脉冲作用下非线性系统为非光滑系统,具有丰富的动力学行为。第六章研究周期脉冲作用下Chen系统的复杂动力学行为,并通过Floquet理论揭示该系统周期解的非光滑分岔机理。周期脉冲作用下Chen系统主要通过两种途径到达混沌,即经鞍结分岔到达混沌和倍周期分岔到达混沌。
     由于脉冲耦合系统本质上为高维非光滑系统,因而会产生丰富而复杂的动力学行为。第七章研究环形脉冲耦合Duffing振子的复杂动力学行为。通过构造Poincare映射,给出该系统的分岔条件,并得到Poincare映射的Jacobi矩阵的解析表达式,结合打靶法及龙格-库塔方法求出系统的分岔集及Floquet乘子。若脉冲作用周期固定,在耦合强度变化时,系统经历稳定解、周期解、概周期解、超混沌等复杂动力学过程,利用Floquet理论研究该系统的周期解的稳定性和一些经典的分岔。
     第八章对本文的结果进行总结,并对今后的工作提出展望。
The consensus problem of multi-agent systems has wide application prospect and is one of current international topics in the field of control theory and application. This dissertation investigated the consensus problem of multi-agent systems mainly based on graph theory, random matrix theory and control theory and devoted to solve the related isslues. The synchronization and dynamics of impulsive coupled nonlinear systems are important research contents in the current international dynamics and control field. This dissertation investigated the synchronizaiton of a class of impulsive coupled systems based on contraction theory and studied the complex dynamics and its bifurcation mechanism of a class of impulsive coupled Duffing oscillators. This work has important significance in improving the theory of multi-agent systems and impulsive systems and its application in practice. The basic contents of this dissertation are given as following:
     The research background, current research status of the consensus problem of multi-agent systems, non-smooth systems and impulsive systems are given firstly in the chapter 1. Then the significance of this research and the structure of the dissertation are introduced.
     Now continuous control protocols are received much attention, however other forms of control protocols have received relatively little attention. In chapter 2, we introduce impulsive control protocols for multi-agent linear dynamic systems. The impulsive control protocols need low-cost and can easily implement. Sufficient conditions are given to guarantee the consensus of the multi-agent linear dynamic systems by the theory of impulsive systems. Furthermore, how to select the discrete instants and impulsive matrices is discussed. The case that the topologies of networks are switching is also considered.
     The third chapter investigates the impulsive consensus of multi-agent nonlinear systems on the basis of chapter 2. The third chapter is divided into two parts based on the topology of the network. In the first part, we investigate the problem of impulsive consensus of networked multi-agent systems, where each agent can be modeled as an identical nonlinear dynamical system. Firstly, an impulsive control protocol is designed for network with fixed topology based on the local information of agents. Then sufficient conditions are given to guarantee the consensus of the networked nonlinear dynamical system by using algebraic graph theory and impulsive control theory. Furthermore, how to select the discrete instants and impulsive constants is discussed. The case that the topologies of the networks are switching is also considered. In the second part, we investigate the problem of impulsive consensus of multi-agent systems for directed networks with switching topologies, where each agent can be modeled as an identical nonlinear system. Then sufficient conditions are given to guarantee the consensus of the multi-agent system based on the stochastic matrices theory. When the topologies of the networks are switching and each graph is strongly connected and balanced, the scheme to design the impulsive control protocol is proposed.
     The passivity approach is a nice tool for controlling interconnection systems. In chapter 4, we study the problem of impulsive output consensus of multi-agent dynamical systems, where each agent is a passive system. Based on the passive theory of impulsive systems, sufficient conditions are given to guarantee the output consensus of the multi-agent systems in two cases that the network is fixed and the topologies of networks are switching. The equations of agents need to be identical in chapter 2 and chapter 3, however, The equations of agents need not to be identical when the agents are passive.
     Impulsively coupled oscillators which are assumed to interact with each other only at discrete times have been utilized for various image processing applications and so on. In chapter 5, we investigate the synchronization problem of impulsively coupled oscillators based on the contraction theory. Contraction analysis of two impulsively coupled oscillators and networked impulsively coupled oscillators is provided based on the proposed partial contraction theory of impulsive systems, respectively. Sufficient conditions for synchronization of impulsively coupled oscillators are derived.
     The nonlinear systems with periodic impulsive forces are non-smooth systems and have complex dynamics. In chapter 6, the complex dynamics of Chen system with periodic impulsive forces is investigated and the Floquet theory is used to explore the non-smooth bifurcation mechanism for the periodic solutions. The non-smooth bifurcation of Chen system with periodic impulsive forces is analyzed. The system can evolve to chaos by a cascading of period-doubling bifurcations. Besides, the system can evolve to chaos immediately by saddle-node bifurcations from periodic solutions.
     Impulsively coupled systems are high dimensional non-smooth systems and have rich and complex dynamics. In chapter 7, the complex dynamics of the non-smooth system which is unidirectionally impusively coupled by three Duffing oscillators in ring structure is investigated. By constructing a Poincar6 mapping, we get the bifurcation condition, and give analytical expression of Jacobi mapping matrix of Poincare map. Then we obatin the bifurcation set and Floquet characteristic multipliers by the shooting method and the Runge-Kutta method. When the period is fxed and the coupling strength changes, the system experiences stable solution, periodic solution, Quasi-periodic solutions, hyper-chaotic, etc. The Floquet theory is used to study the stability of the periodic solutions of the system and some classic bifurcation.
     In chapter 8, some meaningful results are summarized. Also some existing problems as well as the future work are pointed out.
引文
[1]Godsil C, Royle G. Algebraic graph theory. New York:Springer-Verlag,2001.
    [2]Horn R A, Johnson C A. Matrix analysis. Cambridge:Cambridge University Press,1985.
    [3]Horn R A, Johnson C A. Topics in matrix analysis. Cambridge:Cambridge University Press, 1991.
    [4]Wang J H, Cheng D Z, Hu X M. Consensus of multi-agent linear dynamic systems. Asian Journal of Control,2008,10:144-155.
    [5]Huang M Y, Manton H J. Coordination and consensus of networked agents with noisy measurements:stochastic algorithms and asymptotic behavior. SIAM Journal of Control and Optimization,2009,48:134-161.
    [6]Olfati-Saber R, Fax J, Murray R. Consensus and cooperation in networked multi-agent systems. Proceeding of IEEE,2007,95:1-17.
    [7]傅希林,闫宝强,刘闫胜.脉冲微分系统引论.北京:科学出版社,2005.
    [8]傅希林,闫宝强,刘闫胜.非线性脉冲微分系统.北京:科学出版社,2008.
    [9]赵海清.脉冲微分系统的稳定性和可控性.博士论文.大连:大连理工大学,2006.
    [10]Yang T. Impulsive control theory. Berlin:Springer,2001.
    [11]金俐,陆启韶,王琪.非光滑动力系统Floquet特征乘子的计算方法.应用力学学报,2004,21(3):21~26.
    [12]张伟,胡海岩.非线性动力学理论与应用的新进展.北京:科学出版社,2009.
    [13]洪奕光,翟超.多智能体系统动态协调与分布式控制设计.控制理论与应用,2011,28(10):1506-1512.
    [14]王莉.基于群集智能的复杂动态网络协同控制研究.博士论文.天津:南开大学,2009.
    [15]苏厚胜.多智能体蜂拥控制问题研究.博士论文.上海:上海交通大学,2010.
    [16]谭拂晓.多智能体网络系统一致平衡点与合作控制研究.博士论文.秦皇岛:燕山大学,2010.
    [17]佘莹莹.多智能体系统一致性若干问题的研究.博十论文.武汉:华中科技大学,2010.
    [18]Lynch N A. Distributed algorithms. San Francisco, CA:Morgan Kaufmann,1997.
    [19]DeGroot M H. Reaching a consensus. Journal of the American Satistical Association,1974, 69(345):118-121.
    [20]Reynolds C W. Flocks, herds, and school:a distributed behavior model. Computer Graphics, 1987,21(4):25-34.
    [21]Vicsek T, Czirok A, Jacob E B, Cohen I, O. Schochet. Novel type of phase transition in a system of self-driven particles. Physics Review Letters,1995,75:1226-1229.
    [22]Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control,2003,48:988-1001.
    [23]刘志新,郭雷.Vicsek模型的连通与同步.中国科学E辑:信息科学,2007,37(8):979-988.
    [24]Olfati-Saber R, Murray R. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control,2004,49:1520-1533.
    [25]Ren W, Beard R W. Consensus seeking in multi-agent systems using dynamically changing interaction topologies. IEEE Transactions on Automatic Control,2005,50:655-661.
    [26]Ren W, Beard R W. Distributed consensus in multi-vehicle cooperative control:theory and applications. Communications and Control Engineering Series, London:Springer-Verlag, 2008.
    [27]Hong Y G, Gao L X, Cheng D Z, Hu J P. Lyapunov-based approach to multiagent systems with switching jointly connected interconnection. IEEE Transactions on Automatic Control, 2007,52:943-948.
    [28]Zhang Y, Tian Y P. Consentability and protocol design of multi-agent systems with stochastic switching topology. Automatica,2009,45:1195-1201.
    [29]Liu B, Chen T P. Consensus in networks of multiagents with cooperation and competition via stochastically switching topologies. IEEE Transactions on Neural Networks,2008,19(11): 1967-1973.
    [30]Tian Y P, Liu C L. Consensus of multi-agent systems with diverse input and communication delays. IEEE Transactions on Automatic Control,2008,53:2122-2128.
    [31]Sun Y G, Wang L, Xie G. Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays. Systems and Control Letters,2008,57:175-183.
    [32]Lin P, Jia Y. Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies. Automatica,2009,45:2154-2158.
    [33]Li T, Zhang J F. Mean square average consensus under measurement noises and fixed topologies:necessary and sufficient conditions. Automatica,2009,45(8):1929-1936.
    [34]王炳昌,张继峰.非平衡拓扑和随机干扰情形下多自主体系统的趋同条件.系统科学与数学,2009,29(10):1353-1365.
    [35]Erdos P, Renyi A. On the evolution of random graphs. Publ Math Inst Hungary Acd Sci,1960, 5:17-60.
    [36]Watts D J, Strogatz S H. Collective dynamics of "small-world" networks. Nature,1998,393: 440-442.
    [37]Barabasi A L, Albert R. Emergence of scaling in random networks. Science,1999,286: 509-512.
    [38]汪小帆,李翔,陈关荣.复杂网络理论及其应用.北京:清华大学出版社,2006.
    [39]郭雷,许晓鸣.复杂网络.北京:科技教育出版社,2006.
    [40]方锦清,汪小帆等.一门崭新的交义学科:网络科学(上).物理学进展,2007,27:239-343.
    [41]方锦清,汪小帆等.一门崭新的交义学科:网络科学(上).物理学进展,2007,27:361-448.
    [42]陈关荣.复杂网络及其新近研究进展简介.力学进展,2008,38(6):653-662.
    [43]郑松.几类时滞复杂动力网络的同步研究.博士论文.镇江:江苏大学,2011.
    [44]陈予恕.非线性振动.天津:天津科学技术出版社,1983
    [45]陆启韶.常微分方程的定性方法与分义.北京:北京航空航天大学出版社,1989.
    [46]胡海岩.应用非线性动力学.北京:航空工业出版社,2000.
    [47]刘延柱,陈立群.非线性动力学.上海:上海交通大学出版社,2000.
    [48]Chen G, Dong X. From chaos to order:methodologies, perspectives, and applications. Singapore:World Scientific,1998.
    [49]Wiggins S. Introduction to applied nonlinear dynamical systems and chaos. Second Edition. New York:Springer-Verlag,2003.
    [50]Khalil, Hassan K. Nonlinear systems. Third Edition. New Jersey:Prentice Hall,2002.
    [51]胡跃明.非线性控制系统理论与应用.第二版.北京:国防工业出版社,2005.
    [52]陆启韶,彭临平,杨卓琴.常微分方程与动力系统.北京:北京航空航天大学出版社,2010.
    [53]关新平,范正平,陈彩莲,华长春.混沌控制及其在保密通信中的应用.北京:国防工业出版社,2002.
    [54]赫柏林.从抛物线谈起——混沌动力学引论.上海:上海科技教育出版社,1994.
    [55]胡岗,萧井华,郑志刚.混沌控制.上海:上海科技教育出版社,2000.
    [56]陈关荣,吕金虎.Lorenz系统族的动力学分析、控制与同步.北京:科学出版社,2003.
    [57]刘宗华.混沌动力学基础及其应用.北京:高等教育出版社,2006.
    [58]刘秉正,彭建华.非线性动力学.北京:高等教育出版社,2004.
    [59]陈关荣,汪小帆.动力系统的混沌化:理论、方法与应用.上海:上海交通大学出版社,2006.
    [60]Chen G R, Yu X H. On time-delay feedback control of chaotic systems. IEEE Transaction on Circuits and Systems-I:Fundamental Theory and Applications,1999, (6):767-772.
    [61]方锦清.非线性系统中的混沌控制方法、同步原理及其应用前景(二).物理学进展.1996,(2):127-150.
    [62]Pecoral L M, Carroll T L. Synchronization in chaotic systems. Physics Review Letters,1990, (8):821-825.
    [63]刘曾荣,文铁桥,姚晓东.脑与非线性动力学.北京:科学出版社,2006.
    [64]杨绍普,曹庆杰,张伟.非线性动力学与控制的若干理论及应用.北京:科学出版社,2011.
    [65]Shaw S W, Holmes P J. A periodically forced piecewise linear oscillator. Journal of Sound and Vibration,1983,90(1):129-155.
    [66]Whiston G S. Singularities in vibro-impacting dynamics. Journal of Sound and Vibration, 1992,152(3):427-460.
    [67]Leine R I. Bifurcations of equilibria in non-smooth continuous systems. Physica D,2006, 223(1):121-137.
    [68]Kunze M. Non-smooth dynamical Systems. New York:Springer-Verlag,2000.
    [69]Filippov A F. Differential equations with discontinuous right-hand sides. Dordrecht:Kluwer Academic Publishers,1988.
    [70]Nusse H, Ott E, Yorke J. Border-collision bifurcations:an explanation for observed bifurcation phenomena. Physics Review E,1994,49(2):1073-1076.
    [71]Nordmark A B. Universal limit mapping in grazing bifurcations. Physics Review E,1997, 55(1):62-82.
    [72]Feigin M. Doubling of the oscillation period with C-bifurcations in piecewise continuous systems. Prikl Mat Mekh,1970,34(5):861-869. [in Russian]
    [73]Zhusubaliyev Zh T, Mosekilde E. Bifurcations and chaos in piecewise-smooth dynamical systems. Singapore:World Scientific,2003.
    [74]Bernardo M di, Hogan S J. Discontinuity-induced bifurcations of piecewise smooth dynamical systems. Philosophical Transactions of the Royal Society A,2010,368(1930):4915-4935.
    [75]David J, Warwick S. Bifurcations in piecewise-sooth continuous systems. Singapore:World Scientific,2010.
    [76]胡海岩.高维非光滑动力系统的周期响应数值分析.固体力学学报,1994,15(2):135-145.
    [77]罗冠炜,谢建华.碰撞振动系统的周期运动和分岔.北京:科学出版社,2004.
    [78]陆启韶,金俐.具有刚性约束的非线性动力系统的局部映射方法.固体力学学报,2005,26(2):132-138.
    [79]李健,张思进.非光滑动力系统胞映射计算方法.固体力学学报,2007,28(1):93-96.
    [80]Lakshmikantham V, Bainov D D, Simeonov P S. Theory of impulsive differential equations. Singapore:World Scientific,1989.
    [81]Bainov D D, Simeonov P S. Systems with impulse effect:stability, theory and applications. New York:Halsted Press,1989.
    [82]Haddad W M, Chellaboina V S, Nersesov S G Impulsive and hybrid dynamical systems: stability, dissipativity, and control. New Jersey:Prentice University Press,2006.
    [83]Zhou J, Xiang L, Liu Z R. Synchronization in complex delayed dynamical networks with impulsive effects. Physica A,2007,384,684-692.
    [84]Jiang H B, Yu J J, Zhou C G Robust fuzzy control of nonlinear fuzzy impulsive systems with time-varying delay. IET Control Theory and Applications,2008,2:654-61.
    [85]Xu J, Sun J T, Yu D. Stochastic finite-time stability of nonlinear Markovian switching systems with impulsive effects. Journal of Dynamic Systems, Measurement and Control,2012,134(1): 011011.
    [86]Li C, Liao X, Yang X, Huang T. Impulsive stabilization and synchronization of a class of chaotic delay systems. Chaos,2005,15:043103.
    [87]Chen Y S, Chang C C. Impulsive synchronization of Lipschitz chaotic systems. Chaos, Solitons and Fractals,2009,40:1221-1228.
    [88]Zhang Y P, Sun J T. Impulsive robust fault-tolerant feedback control for chaotic Lur'e systems. Chaos, Solitons and Fractals,2009,39:1440-1446.
    [89]Zheng Y A, Chen G Fuzzy impulsive control of chaotic systems based on TS fuzzy model. Chaos, Solitons and Fractals,2009,39:2002-2011.
    [90]Liu B, Liu B X, Chen G Robust impulsive synchronization of uncertain dynamical networks. IEEE Transactional on Circuits and Systems-I,2005,52:1431-1441.
    [91]Cai S, Zhou J, Xiang L, Liu Z. Robust impulsive synchronization of complex delayed dynamical networks. Physics Letters A,2008,372:4990-4995.
    [92]Guan Z H, Zhang H. Stabilization of complex network with hybrid impulsive and switching control. Chaos, Solitons and Fractals,2008,37:1372-1382.
    [93]Jiang H B. Hybrid adaptive and impulsive synchronization of uncertain complex dynamical networks by the generalized Barbalat's lemma. IET Control Theory and Applications,2009, 3:1330-1340.
    [94]Ma C Q, Zhang J F. Necessary and sufficient conditions for consensusability of linear multi-agent systems. IEEE Transactions on Automatic Control,2010,55(5):1263-1268.
    [95]Scardovi L, Sepulchre R. Synchronization in networks of identical linear systems. Automatica, 2009,45:2557-2562.
    [96]Guan Z H, Liu Z W, Feng G Wang Y W. Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control. IEEE Transactional on Circuits and Systems-I,2010,57:2182-2195.
    [97]Zhang Q, Chen S H, Yu C C. Impulsive consensus problem of second-order multi-agent systems with switching topologies. Communications in Nonlinear Science and Numerical Simulation,2012, in press, doi:10.1016/j.cnsns.2011.04.007.
    [98]Wu Q J, Zhou J, Lan X. Impulsive consensus seeking in directed networks of multi-agent systems with communication time delays. International Journal of Systems Science,2012, in press, doi:10.1080/00207721.2010.547630.
    [99]Saichev A I, Woyczynski W A. Distributions in the physical and engineering sciences. Boston: Birhhauser,1997, vol.1.
    [100]Xiao L, Boyd S, Kim SJ. Distributed average consensus with least-mean-square deviation. Journal of Parallel and Distributed Computing,2007,67:33-46.
    [101]Nedic A, Olshevsky A, Ozdaglar A, Tsitsiklis JN. On distributed averaging algorithms and quantization effects. IEEE Transactions on Automatic Control,2009,54:2506-2517.
    [102]Hill D J, Moylan P J. The stability of nonlinear dissipative systems. IEEE Transactions on Automatic Control,1976,21:708-711.
    [103]Byrnes C I, Isidori A. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Transactions on Automatic Control,1991,36: 1228-1240.
    [104]Liu B, Liu X Z, Teo K L. Feedback stabilization of dissipative impulsive dynamical systems. Information Sciences,2007,177(7):1663-1672.
    [105]Haddad W M, Chellaboina V. Dissipativity theory and stability of feedback interconnections for hybrid dynamical systems. Mathematical Problems in Engineering,2001,7(4):299-335.
    [106]Pogromsky YU A. Passivity based design of synchronizing systems. International Journal of Bifurcation and Chaos,1998,8:1326-1333.
    [107]Yao J, Wang H O, Guan Z H, Xu W S. Passive stability and synchronization of complex spatio-temporal switching networks with time delays. Automatica,2009,45:1721-1728.
    [108]Chopra N, Mark W, Spong M W. Passivity-based control of multi-agent systems. Advances in Robot Control, Berlin:Springer,2006,1:107-134.
    [109]Hirche S, Hara S. Stabilizing interconnection characterization for multi-agent systems with dissipative properties. Proceedings of the 17th IFAC World Congress, COEX, Korea, South, July,6-11,2008,1571-1577.
    [110]Zhu Y H, Qi H S, Cheng D Z. Synchronization of a class of networked passive systems with switching topology. International Journal of Control,2009,82:1326-1333.
    [111]Kuramoto Y. Chemical oscillations, wave, and turbulence. Berlin:Springer,1984.
    [112]Bi Q S. Dynamics and modulated chaos for two coupled oscillators. International Journal of Bifurcation and Chaos,2004,14:337-346.
    [113]Ueta T, Miyazaki H, Kousaka T, Kawakami H. Bifurcation and chaos in coupled BVP oscillators. International Journal of Bifurcation and Chaos,2004,14:1305-1324.
    [114]Bi Q S. Chaos crisis in coupled Duffing's systems with initial phase difference. Physics Letters A,2007,369:418-431.
    [115]Pikovsky A, Rosenblum M, Kurths J. Synchronization:a universal concept in nonlinear science. Cambridge:Cambridge University Press,2001.
    [116]Strogatz S H. From Kuramoto to Crawford:exploring the onset of synchronization in populations of coupled oscillators. Physica D,2000,143:1-20.
    [117]Wang Q Y, Lu Q S, Wang H X. Transition to complete synchronization via near-synchronization in two coupled chaotic neurons. Chinese Physics,2005,14:2189-2195.
    [118]Fotsin H B, Woafo P. Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification. Chaos, Solitons and Fractals,2005, 24:1363-1371.
    [119]Zhou J, Cheng X H, Xiang L, Zhang Y C. Impulsive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators. Chaos, Solitons and Fractals,2007,33:607-616.
    [120]Barron, M A, Sen M. Synchronization of four coupled van der Pol oscillators. Nonlinear Dynamics,2009,56:357-367.
    [121]Wang Q Y, Lu Q S. Adaptive lag synchronization in coupled chaotic systems with unidirectional delay. International Journal of Non-Linear Mechanics,2010,45(6):640-646.
    [122]Mirollo R M, Strogatz S H. Synchronization of pulse-coupled biological oscillators. SIAM Journal on Applied Mathematics,1990,50(6):1645-1662.
    [123]Nakano H, Saito T. Grouping synchronization in a pulse-coupled network of chaotic spiking oscillators. IEEE Transaction on Neural Networks,2004,15:1018-1026.
    [124]Han X P, Lu J A, Wu X Q. Synchronization of impulsively coupled systems. International Journal of Bifurcation and Chaos,2008,18:1539-1549.
    [125]Yang M, Wang Y W, Xiao J W, Wang H O. Robust synchronization of impulsively-coupled complex switched networks with parametric uncertainties and time-varying delays. Nonlinear Analysis:Real World Applications,2010,11:3008-3020.
    [126]Lohmiller W, Slotine J J E. On contraction analysis for nonlinear systems. Automatica,1998, 34:683-696.
    [127]Lohmiller W, Slotine J J E. Control system design for mechanical systems using contraction theory. IEEE Transactions on Automatic Control,2000,45:884-889.
    [128]Angeli D. A Lyapunov approach to incremental stability properties. IEEE Transactions on Automatic Control,2002,47:410-421.
    [129]Rifai K E, Slotine J J E. Compositional contraction analysis of resetting hybrid systems. IEEE Transactions on Automatic Control,2006,51:1536-1541.
    [130]Wang W, Slotine J J E. On partial contraction analysis for coupled nonlinear oscillators. Biological Cybernetics,2005,92:38-53.
    [131]Li K Z, Small M, Fu X C. Contraction stability and transverse stability of synchronization in complex networks. Physics Review E,2007,76:056213-7.
    [132]Russo G, Bernardo M D. Contraction theory and master stability function linking two approaches to study synchronization of complex networks. IEEE Transaction on Circuits and Systems-Ⅱ,2209,56:177-181.
    [133]Wang J W, Chen AM. Partial synchronization in coupled chemical chaotic oscillators. Journal of Computational and Applied Mathematics,2010,233(8):1897-1904.
    [134]Lorenz E N. Deterministic nonperiodic flows. Journal of Atmospheric Sciences,1963,20(2): 130-141.
    [135]Chen G, Ueta T. Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 1999,9:1465-1466.
    [136]陈关荣,吕金虎Lorenz系统族的动力学分析、控制与同步.北京:科学出版社,2003.
    [137]王兴元,武相军.不确定Chen系统的参数辨识与自适应同步.物理学报,2006,55(2):605-609.
    [138]张晓芳,陈章耀,毕勤胜.周期激励下Chen系统的簇发现象分析.物理学报,2010,59(6):3802-3809.
    [139]Yoshinaga T, Kawakami H. Bifurcation in a BVP equation with periodic impulsive force. International Symposium on Nonlinear Theory and Its Applications (NOLTA'95), Las Vegas, USA, December,10-14,1995,331-334.
    [140]Lenci S, Rega G Periodic solutions and bifurcations in an impact inverted pendulum under impulsive excitation. Chaos, Solitons and Fractals,2000,11(15):2453-2472.
    [141]Georgescu P, Zhang H, Chen L S. Bifurcation of nontrival periodic solutions for an impulsively controlled pest mangement model. Applied Mathematics and Computation,2008, 202(2):675-687.
    [142]Jiang G R, Yang Q G. Periodic solutions and flip bifurcation in a linear impulsive system. Chinese Physics B,2008,17(11):4114-09.
    [143]Qian L N, Lu Q S, Meng Q G, Feng Z S. Dynamical behaviors of a prey-predator system with impulsive control. Journal of Mathematical Analysis and Applications,2010,363(1): 345-356.
    [144]Liu F, Guan Z H, Wang H O. Controlling bifurcations and chaos in TCP-UDP-RED. Nonlinear Analysis:Real World Applications,2010,11(3):1491-1501.
    [145]张树文.时变种群动力系统解的渐近性态.博士学位论文.大连:大连理工大学,2004.
    [146]Rene Y. Synchronization dynamics in a ring of four mutually inertia coupled self-sustained electrical systems. Physica A,2006,366:187-196.
    [147]Barron M A, Sen M, Corona E. Dynamics of large rings of coupled Van der Pol oscillators, Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering, Elleithy, Khaled(ed.), Springer, Netherlands,2008,346-349.
    [148]Perlikowski P, Yanchuk S, Wolfrum M, Stefanski A, Mosiolek P, Kapitaniak T. Routes to complex dynamics in a ring of unidirectionally coupled systems. Chaos,2010,20(1):013111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700